
PHYSICAL REVIEW B 89, 125432 (2014)

Theoretical, numerical, and experimental study of a flying qubit electronic interferometer

Tobias Bautze,1,2 Christoph Süssmeier,1,2 Shintaro Takada,3 Christoph Groth,4 Tristan Meunier,1,2 Michihisa Yamamoto,3,5

Seigo Tarucha,3,6 Xavier Waintal,4 and Christopher Bäuerle1,2,*
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We discuss an electronic interferometer recently measured by Yamamoto et al. This “flying quantum bit”
experiment showed quantum oscillations between electronic trajectories of two tunnel-coupled wires connected
via an Aharanov-Bohm ring. We present a simple scattering model as well as a numerical microscopic model
to describe this experiment. In addition, we present experimental data to which we confront our numerical
results. While our analytical model provides basic concepts for designing the flying qubit device, we find that
our numerical simulations allow us to reproduce detailed features of the transport measurements such as in-phase
and antiphase oscillations of the two output currents as well as a smooth phase shift when sweeping a side gate.
Furthermore, we find remarkable resemblance for the magnetoconductance oscillations in both conductance and
visibility between simulations and experiments within a specific parameter range.
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I. INTRODUCTION

In quantum information science, solid state approaches are
attractive as they are easily scalable. The coherent transport of
information in such systems is usually coded into the degrees
of freedom of the electron, either spin [1] or charge [2,3].
The advantage of the spin degree of freedom lies in the fact
that it is well protected from the electrostatic environment,
whereas the charge degree of freedom is easily measurable [4].
Over the last decade, a variety of interesting electronic devices
have been proposed and tested, such as Fabry-Perot [5–7] or
Mach-Zehnder interferometers in the quantum Hall regime
[8–11]. In particular, these quantum Hall systems are partic-
ularly appealing as they could be operated as flying qubits,
where the quantum information can be manipulated during
flight, due to the absence of backscattering. The fact that
now an individual electron charge can be controlled and
manipulated in such systems, opens the possibility to perform
electron quantum optics experiments at the single electron
level [12–16]. In a recent experiment by Yamamoto et al. [17],
the charge degree of freedom has been exploited to gain full
electrical control of a flying qubit. The system is composed
of an Aharonov-Bohm (AB) ring connected to two tunnel-
coupled wires at each side, which can act as beam splitters
for the ballistic electrons. In this case, the system behaves like
a Mach-Zehnder interferometer for ballistic electrons [8,11].
Compared to quantum Hall systems, this system is more easily
scalable and no magnetic field is in principle necessary to
operate the device. It is made from a semiconductor het-
erostructure and electrostatic surface gates define the borders
of the interferometer by locally depleting the two-dimensional
electron gas while the two middle gates allow us to tune the
tunnel coupling of the two wires at the entrance and exit of
the AB ring (see Fig. 1) [18,19]. In the original experiment,
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several interesting experimental features have been observed.
By applying a relatively small negative gate voltage on the right
tunnel gate VT and connecting the left tunnel gate to ground,
only the middle island will be depleted, but essentially no
tunnel barrier will be formed in the tunnel-coupled wire region.
In this case the system behaves as a two-terminal device and
the currents Iu and Id are identical. When sweeping the gate
voltage more negative, the tunnel barrier between the upper
and lower channel can be tuned. For a sufficiently negative
voltage the in-phase oscillations of Iu and Id turn surprisingly
into antiphase oscillations. Other interesting observations have
been made such as the possibility to control the partition
between the two output currents by using the tunnel-coupling
gates. It has also been shown that this interferometer does not
suffer from backscattered electrons which encircle the AB loop
and hence allows us to perform reliable phase shift measure-
ments [20]. In this article we address all the experimental
findings of Ref. [17] by means of a simplified theoretical
model that can account for several features observed in the
experiments. In order to capture the more subtle features we
perform numerical simulations and confront them with the
experiment. Our simulations show that the majority of the
experimentally observed features can be well explained within
the Landauer-Büttiker scattering formalism [21–24].

II. SUMMARY OF THE MAIN EXPERIMENTAL
FEATURES

The flying qubit sample is tailored within a two-
dimensional electron gas (2DEG) of density ns = 3.2 ×
1011 cm−2 and a mobility μ = 0.86 × 106 cm2/V s made from
a GaAs/AlGaAs heterostructure by metallic (Ti/Au) surface
gates (see Fig. 1). The 2DEG is situated 90 nm below the
surface, hence the electrostatic potential applied to the surface
gates leads to a smooth potential change in the 2DEG over
roughly the same distance. For the measurements, a bias
voltage is applied to the lower left contact (the upper left
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FIG. 1. (Color online) Scanning electron microscope image of
the flying qubit sample. The outer metallic gates (light gray) define
the borders of the interferometer, while the right tunnel gate (blue)
allows for depletion of the center AB island as well as for adjustment
of the tunnel barrier of the split wire. Changing the voltage of the side
gate (red) allows us to induce a phase shift in the lower branch (see
text). White squares represent the ohmic contacts.

contact is floating) and the current is measured simultaneously
in the right upper and lower contact. To observe Aharonov-
Bohm oscillations, the magnetic field is swept over a field
range of approximately ±80 mT. Above this field one suffers
from Shubnikov–de-Haas oscillations. As the right tunnel
gate voltage VT is switched on, the sample goes through a
series of different regimes. Initially, the Aharonov-Bohm loop
does not exist and one only observes universal conductance
fluctuations. As VT is swept more negative, the AB region
gets more depleted, yet the gate does not affect much the
tunnel-coupled region. We refer to this regime as the strong
coupling regime (SCR). Upon further increasing negative VT ,
one enters the regime of main interest: the weak coupling
regime (WCR), where the 2DEG is also partly depleted
underneath the tunnel gate. In this regime there is a finite
coupling between the up and down channels in the wire region.
Finally, upon further increase of VT , one enters a regime where
the upper and lower channels are decoupled. Below we list the
different experimental features when either scanning the tunnel
gate through the different regimes or by scanning the side gate
voltage of Vs (see Fig. 1) and which we attempt to reproduce
with analytical as well as numerical approaches.

(P1a) Magnetic field sweep in SCR:
Iu and Id show almost identical in-phase
oscillations with magnetic field.

(P1b) Magnetic field sweep in WCR
Iu and Id show antiphase oscillations
with magnetic field.

(P2a) Side gate sweep in SCR:
AB oscillations show phase jumps for
Iu(B) and Id (B).

(P2b) Side gate sweep in WCR:
AB oscillations show a smooth phase
shift for Iu and Id .

(P3) Antiphase oscillations in WCR:
Iu and Id show oscillations with respect
to the tunnel gate voltage VT .

III. A MINIMUM (SCATTERING) THEORY OF THE
FLYING QUBIT

In this section we develop a minimum scattering approach
which captures the main features of the experiment. In Fig. 2
we show a sketch of the actual device used in Ref. [17].

FIG. 2. (Color online) Schematic of the system used for the
modeling. We divide the sample into several regions: the injection
region on the left, the central Aharonov-Bohm region, and the
tunnel-coupled wire on the right. The tunnel-coupled wire can further
be split into three regions I–III: The two wires are coupled only in
region II and decoupled upon entering in region I or III. (a) and (b)
show two possible backscattered electron trajectories that could, in
principle, contribute to the reflection amplitude.

Here the two left contacts of the original device have been
replaced by a single contact. This is a simplification which
has no effect on the experimentally observed results. As we
show below, the flying qubit can be manipulated even in such
a three-terminal configuration [18,19]. The difference from
the four-terminal device only appears as a shift of the AB
oscillation phase by π/2.

The device consists of several distinct regions: the injecting
region on the left, the central Aharonov-Bohm region, and the
tunnel-coupled wire on the right which are modeled by their
respective scattering matrices Sinj, Sab, and Stw. In this section
we assume for simplicity that a single channel, labeled up and
down, is propagating inside each arm of the interferometer
(this assumption will be relaxed in the numerics performed on
the microscopic model).

A general property of a 2DEG is the smoothness of the
electrostatic potential generated by the surface gates felt by
the electrons in the 2DEG as it is situated approximately
90 nm below the surface. Here we assume that the scattering
is mostly forward, which is valid in a specific configuration.
Suppose the width of each wire is kept unchanged between
the ring and coupled-wire region, the potential change �V

of each wire at this transition region is simply defined by the
tunnel coupling. For small �V (smooth potential change), the
length scale of the tunneling � vx/�V becomes much larger
than that of the potential change at the transition region, which
suppresses tunnel backscattering into the other arm. Since the
potential is also smooth with respect to the Fermi wavelength,
intrawire backscattering is also suppressed.

A. Generalities

Let us first discuss the structure of the different scattering
matrices for the three distinct regions. Sinj is rather arbitrary.
It is characterized by the amplitude for an electron injected
from the left to be transmitted into the upper au and lower
ad channel (which, we assume, does not depend on the
injecting channel). The probability |Sbs|2 for an electron to
be backscattered into the injecting electrode is obtained from
the current conservation law |Sbs|2 + |au|2 + |ad |2 = 1. The
Aharonov-Bohm region is translation invariant along x, and
therefore, no backscattering occurs there and the upper/lower
electrons are simply transmitted into their respective arms. The
down transmission amplitude picks up an Aharonov-Bohm
phase ei2π�/�0 with respect to the upper one where �0 = h/e
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is the flux quantum and � = SB is the magnetic flux through
the Aharonov-Bohm region (B: magnetic field, S: effective
surface of the AB ring). Next we describe the tunnel-coupled
wire region. If the variation of the lateral confinement potential
at the transition region between the AB ring and the coupled
wire is smooth, the electrons can only be transmitted and ring
encircling paths due to backscattering can be ignored. Once
the electrons are scattered into the tunnel-coupled wire, the
corresponding transmission matrix can be parametrized as

ttw =
(

tuu tud

tdu tdd

)
, (1)

with ttwt
†
tw = 1 (current conservation). Summing up all the

probability amplitudes for the different paths taken by the
electrons, we arrive at a Mach-Zehnder-like expression

tu = tuuau + ei2π�/�0 tudad, (2)

td = tduau + ei2π�/�0 tddad, (3)

where tu/d is the total amplitude for an electron injected from
the left to be transmitted in the upper/lower right electrode.
The corresponding currents are given by the Landauer for-
mula [21,22],

dIu/d

dVb

= 2e2

h
Tu/d . (4)

Here Tu/d = |tu/d |2 is the total transmission probability from
the left to the right upper/lower electrode.

Before going further, let us discuss the conclusions that can
be already drawn at this stage. First, properties (P1a) and (P2a)
are rather natural: In the strong coupling limit, the system
is essentially a two-terminal Aharonov-Bohm device where
forward scattering in the wire makes the upper and lower
current homogeneous (P1a). Onsager symmetry imposes that
G(B) = G(−B) which leads to phase rigidity [25,26] as the
phase of the conductance can only take multiples of π at
zero magnetic field, as observed in many experiments [27,28].
Current conservation imposes that the injected current Iinj =
Ibs + Iu + Id , hence property (P1b) simply translates into Ibs

being independent on B. From the sample geometry we can
also make some assumptions about the electron trajectories
that dominantly contribute to the transport properties. Figure 2
shows two different backscattered trajectories that could
potentially contribute to the electronic transport. In particular,
in order to observe an Aharonov-Bohm effect on Ibs, one needs
both trajectories. We have argued, however, that trajectory
(b) can be neglected due to the smoothness of the confining
potential that prevents backscattering at the interface between
the Aharonov-Bohm and tunnel wire region, hence only (a)
contributes to the reflection amplitude and Ibs is essentially
independent of the magnetic field (P1b). Property (P2b) is
also due to the absence of the backscattering trajectory (b).
It straightforwardly leads to a realization of the two-slit
experiment once the electron is injected into the AB ring.

B. Scattering matrix of the tunnel-coupled wire

Let us now focus on the tunneling region and compute the
transmission matrix ttw. As seen from Fig. 2, at the entrance
and exit of tunnel-coupled wire (regions I and III), the tunnel

barrier is infinitively high and, as a consequence, the two
separated wires are fully decoupled, whereas in the central
region (region II), the coupling is finite. We suppose that the
transition between the regions happens smoothly.

The eigenstate in region II for mode α takes the form

�α(x,y) = �α(y)eikαx (5)

and we consider the situation where only two modes can
propagate in the wire, hereafter labeled the symmetric |SII〉 and
antisymmetric |AII〉 mode. Indeed, �α(y) corresponds to the
solution of the 1D Schrödinger equation along the transverse
direction y,[

− �
2

2m

∂2

∂y2
+ V (y)

]
�α(y) = E�α(y), (6)

with E = EF − �
2

2m
k2
α and its two solutions in the absence

of the tunneling gate are, respectively, a symmetric and
antisymmetric function of y. The actual wave function of these
two eigenstates of the tunnel-coupled region are displayed in
Fig. 4. The discussion of the evolution of these states when
changing the tunnel barrier height is postponed to the next
subsection where we treat this issue semianalytically.

Upon going from region I to II, |AII〉 is essentially
unaffected [the weight of �AII (y) in this tunneling region is
very small so the gate hardly affects this mode] while |SI〉
is smoothly transformed into |SII〉 whose wave function is
essentially �SI (y) = |�AI (y)|. The two modes |SI〉 and |AI〉
are degenerate and can also be rewritten as combinations of
the modes that propagate in the upper (|↑〉) or lower (|↓〉) parts:

|SI〉 = |↑〉 + |↓〉; |AI〉 = |↑〉 − |↓〉. (7)

The transmission matrix ttw can now be obtained by the follow-
ing adiabatic argument: Let us start with an electron in mode
|↑〉 = (|SI〉 + |AI〉)/2. In the beginning of region II, the wave
function has smoothly evolved into (|SII〉 + |AII〉)/2. Towards
the end of region II, the wave function has picked up mode-
dependent phases and reads (eikSL |SII〉 + eikAL |AII〉)/2, where
L is the total length of region II. Then, the wave function is
smoothly transformed into (eikSL |SIII〉 + eikAL |AIII〉)/2, which
can be reexpressed as (eikSL[|↑〉 + |↓〉] + eikAL[|↑〉 − |↓〉])/2.
We can directly read from this expression the amplitude
to be transmitted in the up [(eikSL + eikAL)/2] and down
[(eikSL − eikAL)/2] channel. Repeating the procedure for spin
down we arrive at

ttw = exp

(
i
kS + kA

2
L

)(
cos

(
kA−kS

2 L
)

i sin
(

kS−kA

2 L
)

i sin
(

kS−kA

2 L
)

cos
(

kA−kS

2 L
)
)

.

(8)

Putting everything together, the Landauer formula finally
provides

dIu/d

dVb

= 2e2

h

{ |au|2 + |ad |2
2

± |au|2 − |ad |2
2

cos[(kA − kS)L]

±|auad | sin[(kA − kS)L] cos(2π�/�0 + φ)

}
. (9)
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FIG. 3. (Color online) Electrostatic potential V (y) created by the
electrostatic gates defining the split wire for different tunnel gate
voltages. The horizontal lines correspond to the quantized energies
of the symmetric and antisymmetric state for each tunnel gate voltage.

Equation (9) now provides a general analytical description
of the interferometer. Changing the amplitudes au and ad

allows us to control the symmetry of the injected wave
function. When injecting into one arm only, the last term
of Eq. (9) cancels and the system reduces to a simple split
wire. This simple analysis shows that the currents in the
upper and lower branches oscillate antiphase as a function
of �k = kA − kS . Varying �k is equivalent to changing the
tunnel gate voltage and hence explains the experimentally
observed oscillations with respect to VT [property (P3)]. In
a similar way, for a given �k the two output currents have
opposite sign and will also oscillate antiphase as a function of
magnetic field (P1b).

C. Semianalytical analysis

In this subsection we would like to get some more physical
insight into the experimental system by calculating the precise
dependence of �k on the tunnel gate voltage VT . This can
be done by numerically solving the Schrödinger equation
[Eq. (6)] of our system [29]. For this we first implement
the electrostatic potential felt by the electrons which are at
a depth of 90 nm below the surface gates by following the
approach of Ref. [30], where the electrostatic potential created
by a polygon surface gate is calculated by solving the Laplace
equation (screening effects by the electrons in the 2DEG are

FIG. 4. (Color online) Normalized wave function probability of
the symmetric (left) and antisymmetric (right) state in the tunnel-
coupled wire for different tunnel gate voltages.

FIG. 5. (Color online) (a) Energy dependence of the symmetric
(green) and antisymmetric (blue) state as a function of tunnel gate
voltage for B = 0 T. (b) Tunnel gate voltage dependence of �k for
different magnetic fields. (c) Magnetic field dependence of �k for
different tunnel gate voltages. (d) Surface area increase with respect
to the AB ring calculated using the results of (c).

however not taken into account). The obtained electrostatic
potential profile of the split wire along the y direction for
different tunnel gate voltages is shown in Fig. 3. It resembles
qualitatively the one of the experimental situation of the data
we present later on and has been used to realize the numerical
simulation in Sec. IV. As can be seen from Fig. 3, we explore
in detail the crossover region between the SCR and the WCR
regime.

Assuming an infinitely long tunnel-coupled wire we can
then calculate numerically the actual wave function of the
symmetric and antisymmetric state as displayed in Fig. 4. At
zero tunnel gate voltage the weight of the symmetric state is
pinned in the center of the split wire, whereas the antisymmet-
ric wave function has its weight within each tunnel-coupled
wire. When increasing the tunnel barrier, the symmetric and
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FIG. 6. (Color online) Conductance of the upper/lower channel
as a function of tunnel gate voltage as given by Eq. (9). The mapping
between VT and �k was performed numerically.

the antisymmetric wave functions are displaced differently.
However, upon further increasing the tunnel barrier, the
symmetric and antisymmetric wave function become similar
and finally degenerate when completely decoupled.

This can easily be seen when plotting the corresponding
eigenenergies of the symmetric and antisymmetric state as
illustrated in Fig. 5(a). At zero tunnel barrier height the energy
difference is simply the energy separation of the two lowest
energy states of the potential created by the approximately
harmonic confinement of the outer electrostatic gates of the
split wire, whereas at large tunnel barrier height, the energy
difference vanishes as the two minima of the split wire
potential are decoupled. The absolute energy values of the
two states move to higher energy as the confinement potential
is stronger due to the strong influence of the tunnel barrier
and eventually cross the Fermi energy (in our case 11.4 meV,
see Sec. IV).

Similarly, the dispersion relation of our system as well
as the values for �k = kA − kS as a function of tunnel gate
voltage and magnetic field can be evaluated, which is detailed
in the Appendix. At low energy, which is of interest here,
we observe that the energy bands for the symmetric and
antisymmetric states are affected by the tunnel coupling as well
as the magnetic field. For zero magnetic field, �k is decreasing
when increasing the negative tunnel gate voltage [Fig. 5(b)].
This is expected since the symmetric and antisymmetric state
become degenerate. The contrary is observed when applying
a magnetic field. The influence of the magnetic field is to
displace the wave functions with respect to the center of the
tunnel-coupled wire (see Appendix). As a consequence, �k for
a given tunnel gate voltage is increasing with magnetic field.
This can also be seen in the field dependence of �k for fixed
tunnel gate voltages [Fig. 5(c)]. The stronger the tunnel barrier,
the stronger is the increase in �k. For a completely decoupled
wire the slope of �k with respect to magnetic field finally
saturates. As a consequence, the electrons will pick up an
additional phase difference when traversing the tunnel-coupled
wire. This will eventually lead to a change in oscillation period
of the magnetoconductance oscillations. We will come back
to this point in Sec. IV.

Having numerically determined the values of �k for dif-
ferent tunnel barrier heights, we can then compute the current
in the upper (lower) branch using Eq. (9). The corresponding

conductance versus VT trace is shown in Fig. 6. We clearly see
that the two output currents oscillate in antiphase with respect
to the tunnel gate voltage VT as observed in the experiment. At
zero tunnel gate voltage the two output currents are equal since
the upper and lower channels are strongly coupled. Increasing
the negative tunnel gate voltage induces antiphase oscillations
until the tunnel gate completely separates the two channels
(P3). This demonstrates that the tuning of the tunnel gate
allows us to reach a fully electrical control of the repartition
of the output currents into the upper/lower branch. When the
two output currents are equal, the tunnel-coupled wire behaves
like a perfect beam splitter.

IV. MICROSCOPIC THEORY: MODEL AND SIMULATION

In the preceding section we have been able to understand
the underlying physics of the Aharonov-Bohm interferometer
coupled to a tunnel-coupled wire by means of a simplified
analytical model (complemented with a numerical calculation
of the mapping between VT and �k = kA − kS). Even though
the analytical model provides basic concepts for designing the
flying qubit device, it relies on the assumption that encircling
paths induced by backscattering are fully suppressed. In the
following, we make use of a detailed microscopic model to
confirm that we can indeed suppress the encircling paths for
the weak tunnel coupling by correctly choosing the device
configuration. We show that the main experimental features
(P1)–(P3) are very well reproduced with the simulations.
Neglecting screening and Coulomb interactions, our potential
calculations do not allow us to discuss precise quantitative
agreement between experiments and simulations. Interestingly
however, we find that for a certain parameter range, both the
conductance and the visibility of the oscillation can be tuned
close to what is observed in the experiments.

A. Microscopic model

In the following numerical simulations the sample is
modeled by a simple single-band Schrödinger equation that
includes the confining potential V (x,y) due to the gate
structure as well as an uniform magnetic field B:

1

2m
[i� �∇ − e �A(x,y)]2ψ(x,y) + V (x,y)ψ(x,y) = Eψ(x,y).

(10)

For the actual simulations, the model is discretized on a square
lattice with lattice constant a and we introduce the wave
function ψnx,ny

≡ ψ(nxa,nya). The discretized Schrödinger
equation reads

− e−iφny ψnx+1,ny
− e+iφny ψnx−1,ny

− ψnx,ny+1 − ψnx,ny−1

+ Vnx,ny
ψnx,ny

= (E/γ + 2)ψnx,ny
, (11)

where γ = �
2/(2ma2) and φ = eBa2/�. The numerical calcu-

lations of the differential conductances are performed with the
Kwant code [31]. Kwant is a general purpose library designed
for quantum transport. The calculations are done within the
standard framework of the Landauer-Büttiker approach [32]
which is also equivalent, in this context, to the nonequilibrium
Green’s function formalism (NEGF) [33].
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FIG. 7. (Color online) Top: Lattice site model of the sample (see
Fig. 1). For clarity we only display few lattice sites. In the actual
sample the lattice grid was much finer, e.g., 800 × 100 lattice sites.
Bottom: Electrostatic potential felt by the electrons in the 2DEG,
about 90 nm below the surface.

The system that we used for the simulations is composed of
approximately 800 × 100 lattice sites as shown in Fig. 7(a). We
have taken a sufficiently large number of lattice sites such that
no influence of the discretization on the transport properties is
observed and we can hence safely assume that we are in the
continuum limit. The separation of the tunnel-coupled wire on
the right side has been implemented by a smooth transition
towards the ohmic contacts. These contacts are mimicked
by semi-infinite wires following the standard approach in
NEGF. In order to convert the tight-binding parameters into
experimental units [34], we fix the Fermi energy of the
system to 11.4 meV corresponding to an electron density of
ns = 3.2 × 1011 cm−2. Using a lattice constant of a = 5 nm
we define gates and distances in real space units.

In order to provide a realistic electrostatic potential asso-
ciated with the different electrostatic gates of the sample, we
follow the approach of Ref. [30] as briefly mentioned in Sec. II.
The two-dimensional potential at a depth of 90 nm below the
surface obtained with this approach is plotted in Fig. 7(b). For
convenience we also separate the right tunnel-coupled wire
from the middle island, such that we can sweep its voltage
independently. This allows us to investigate the influence
of the tunnel-coupled wire on the AB oscillation frequency
without affecting the depleted AB area. When performing the
simulations, we adjust the gate voltages for the simulations
by the following procedure: First, we fix the energy to match
the Fermi energy and then sweep simultaneously all the outer
gates to obtain the desired conductance similar to the one of
the experiment. Afterwards, we sweep the desired parameter
(VT , VS , or B) and record the two output currents.

B. Comparison between numerics and experiment

In the following we first address the issue of the magneto-
oscillations in the strong coupling regime [(P1a) and (P2a)].
We apply a finite gate voltage to the center island in order to
form an Aharanov-Bohm ring and then sweep the magnetic
field as well as the side gate voltage VS . The simulated
data is confronted with the experimental data in Fig. 8. For
all simulations we set the total conductance (transmitted as
well as backscattered signal) to approximately five channels,

FIG. 8. (Color online) Magnetoconductance oscillations in the
strong coupling regime after subtraction of a smooth background.
Left: Simulations, right: experimental data. Top: Magnetoconduc-
tance oscillations for small tunnel gate voltage VT . The blue (green)
curve corresponds to the current in the upper (lower) contact. Bottom:
2D color plot of the magnetoconductance oscillations of the total
transmitted current (upper − lower) as a function of side gate voltage
Vs . Phase jumps are clearly observed in the simulated as well as
experimental data.

similar to the experimental conditions. In this regime we can
safely assume that electron interactions can be efficiently
screened and the Landauer-Büttiker approach is valid. In
this two-terminal setup, the upper and lower current oscillate
in-phase and several phase jumps are observed when sweeping
the side gate voltage Vs as imposed by the phase rigidity. One
also remarks on the symmetry with respect to magnetic field as
imposed by the Onsager relations. Let us note that the values
for the side gate voltage are much smaller for the simulated
data to induce a phase jump. This difference is simply due
to electron screening, which is not taken into account in
the simulations. One can evaluate a scaling factor of about
20–30 by comparing the pinch-off voltages of the individual
gates between experiment and simulations.

The more interesting regime, however, is the weak coupling
regime when a finite tunnel coupling is induced by the right
tunnel-coupled wire. In this case one observes the appearance
of antiphase oscillations when imposing a finite gate voltage
on the tunnel gate as shown in Fig. 9. The simulated data
(left panel) reproduces nicely the experimentally observed
antiphase oscillations (right panel). From the simulations we
find that antiphase oscillations appear even by imposing only
a very small tunnel barrier. For the present simulations VT has
been set to −8.3 mV where we are basically in a single wire
regime with a very flat bottom for the electrostatic potential.
We associate the appearance of the antiphase oscillations
to a situation where the potential change at the transition
region between the AB ring and the tunnel-coupled wire
is such that the symmetric modes of the AB ring can be
smoothly coupled to the symmetric and antisymmetric modes
within the tunnel-coupled wire which finally leads to antiphase
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FIG. 9. (Color online) Magnetoconductance oscillations in the
crossover region between the SCR and WCR after subtraction of
a smooth background: left simulations, right experimental data.
Top: Magnetoconductance oscillations for VT = −8.3 mV. The blue
(green) curve corresponds to the current in the upper (lower) contact.
Bottom: 2D color plot of the magnetoconductance oscillations of the
total transmitted current (upper − lower) as a function of side gate
voltage. For both data sets one observes a smooth phase shift of the
AB oscillations as a function of side gate voltage Vs .

oscillations. It should hence be possible to induce antiphase
oscillation in a single wire when shaping carefully the potential
landscape. In such a “peculiar” single wire regime, one is also
able to induce a smooth shift of the AB oscillations when
sweeping the side gate voltage VS . This is shown in the bottom
panels of Fig. 9. Features (P1b) and (P2b) are hence nicely
reproduced by the simulations. The absolute amplitude of
the conductance oscillations is very sensitive to the side gate
voltage and can vary between 0.01 and 0.1 × 2e2/h for the
investigated gate voltage scan. Let us note that the smoothness
of the phase shift is sensitive to symmetry of the gate voltages
applied to the individual gates. For instance, if we induce an
asymmetry of two equivalent gates the phase shift becomes
more irregular and the antiphase oscillations are not perfectly
antiphase any more. This is also observed in the experiments.

The most interesting observation of the experiment is
certainly the conductance oscillations with respect to the
tunnel gate voltage in the WCR. This allows us to partition
the output current into the upper/lower channels and hence
tune the tunnel-coupled wire into a beam splitter regime. In
this case the left tunnel gate is fully depleted to inject the
current only into the lower branch of the AB interferometer.
In Fig. 10 we show the simulated as well as the experimental
data. While at very small tunnel gate voltage (SCR) the two
output currents are basically equal, we observe antiphase
oscillations for both data sets when approaching the WCR.
For strongly negative gate voltage the tunnel barrier splits the
tunnel-coupled wire into two independent wires. Again the
correspondence between experiment and simulation is quite
remarkable. Let us note, however, that in the experiment for
a gate voltage regime below the 2D pinch-off (VT ≈ −0.3

FIG. 10. (Color online) Conductance as a function of tunnel gate
voltage after subtraction of a smooth background: left simulations,
right experimental data. The blue (green) curve corresponds to the
current in the upper (lower) contact.

to −0.5 V) the oscillations are suppressed. This is most
probably due to density alignment of one of the subbands
caused by electron-electron interactions [17,35], which sets the
corresponding channel into off-resonance. Such influences of
the Coulomb interaction is not taken into account in our model.

Analyzing the magnetoconductance oscillations as a func-
tion of tunnel gate voltage VT , we observe in the numerical
simulations a change in the magnetoconductance oscillation
frequency when passing from the SCR to the WCR as
displayed in Fig. 11. For the SCR (VT = 0 V) we observe
in-phase oscillations as expected and the oscillation period
corresponds simply to the surface area enclosed by the AB
loop. When increasing the tunnel barrier height (decrease
of tunnel gate voltage) one clearly observes an increase of
the number of periods for a given magnetic field scan. This
implies that the effective AB surface area increases. We
emphasize this by taking the fast Fourier transform (FFT) of
the magneto-oscillations and by plotting the FFT peak position

FIG. 11. (Color online) Simulations of the evolution of the AB
conductance oscillations for different values of the tunnel gate voltage
VT . A smooth background has been subtracted from the data. Bottom
right panel: Frequency of the magneto-oscillations (obtained by FFT
of the other panels) as a function of VT .
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as a function of the tunnel gate voltage (bottom panel). One
clearly sees an increase of the Fourier peak as a function of
tunnel gate voltage as indicated by the dashed line in Fig. 11.

To explain this observation, the electron has to pick up an
AB phase over a significant distance in the tunnel-coupled
wire. We associate this effect to the presence of the magnetic
field which displaces the wave function with respect to the
center of the tunnel-coupled wire due to the Lorentz force.
As a consequence, the electrons will acquire an additional
Aharonov-Bohm phase which is proportional to �

e
∂�k
∂B

L, in
agreement with the semianalytical results of Fig. 5 (bottom
panel). This can be interpreted as a surface area increase and
explains the observed change in the magneto-oscillation period
in the simulations when going from the SCR to the WCR.
Note however, that the Lorentz force makes the symmetric
and antisymmetric states more localized in either of the
two wires (see Appendix) and induces an imbalance of the
coupling of these states to the upper and lower wire. As a
consequence, the visibility decreases with increasing surface
area. In addition, increasing the length of the tunnel-coupled
wire enhances this surface area increase almost linearly. These
effects could readily be tested with the experimental setup of
Ref. [17]. Naturally it would also be interesting to implement
electron interactions into the numerical simulations [36] to
allow for better quantitative agreement between theory and
experiment as well as the possibility to study other effects
such as decoherence [11,36–39].

V. CONCLUSION

We have presented a minimum scattering theory as well
as realistic simulations of an Aharonov-Bohm interferom-
eter connected to two tunnel-coupled wires, a solid state
implementation of a flying qubit. While our simplified model
could account for most experimental observations by assuming
suppression of backscattered induced loop trajectories, our
numerical simulations of the actual experimental system
with realistic parameters can reproduce the majority of the
experimentally observed features as well as suppression of
multiple loops in the AB ring. These simulations are important
in particular for the understanding of rather subtle, geometry
related aspects. The good agreement between experiment and
theory shows that the physics of the flying qubit is well
described within the Landauer-Büttiker scattering formalism.
In addition to the interpretation of the experiments, the sort of
simulations performed with Kwant could be a useful tool for
quantum device design and signal optimization.
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APPENDIX

Dispersion relation: For each set of experimental parame-
ters, e.g., tunnel gate voltage and magnetic field, we calculate
the dispersion relations for the symmetric and antisymmetric
state as shown in Fig. 12 for VT = 0 V and B = 0 T. From this
we can extract the wave vectors in propagation direction x̂ for
each mode at the Fermi energy EF and hence �k. By taking
k2
F = k2

y + k2
x we can also compute the eigenenergies of these

two states due to confinement.
Magnetic field dependence: At zero magnetic field, the

symmetric and antisymmetric state are degenerate at high
tunnel gate voltage. However, when a magnetic field is
applied, the situation becomes rather subtle. To understand
the underlying physics, we consider the two-dimensional
Schrödinger equation (10).

FIG. 13. (Color online) Effective confinement potential under
magnetic field of 60 mT. Blue (red) solid line corresponds to
the symmetric (antisymmetric) state. The dashed lines show their
respective eigenenergies. Green solid line shows the confinement
potential for B = 0 T for comparison. The blue (red) dotted curves
correspond to the symmetric (antisymmetric) wave function under
magnetic field.
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The vector potential can be expressed within the Landau
gauge

�A = −Byêx, (A1)

which leads after separation of variables to[
�

2k2
x+2e�Bykx+e2B2y2−�

2�+V (y)
]
�(y)=E�(y)2m.

(A2)

We can now identify three spatially dependent terms: V (y)
denotes the electrostatic potential in the tunnel-coupled wire
created by the surface gates. The quadratic term increases the
parabolic confinement symmetrically, whereas the second term
induces a tilt in the potential landscape which is linear in y,
B, and kx . This leads to a energy difference of the symmetric
and antisymmetric state and hence to a finite �k as depicted
in Fig. 13.
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and S. Tarucha, Nat. Nanotechnol. 7, 247 (2012).

[18] N. Tsukada, A. D. Wieck, and K. Ploog, Appl. Phys. Lett. 56,
2527 (1990).

[19] J. A. D. Alamo and C. C. Eugster, Appl. Phys. Lett. 56, 78
(1990).
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