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Quantum coherence at low temperatures in mesoscopic systems: Effect of disorder
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We study the disorder dependence of the phase coherence time of quasi-one-dimensional wires and two-
dimensional (2D) Hall bars fabricated from a high mobility GaAs/AlGaAs heterostructure. Using an original
ion implantation technique, we can tune the intrinsic disorder felt by the 2D electron gas and continuously vary
the system from the semiballistic regime to the localized one. In the diffusive regime, the phase coherence time
follows a power law as a function of diffusion coefficient as expected in the Fermi-liquid theory, without any
sign of low-temperature saturation. Surprisingly, in the semiballistic regime, it becomes independent of the
diffusion coefficient. In the strongly localized regime we find a diverging phase coherence time with decreasing
temperature, however, with a smaller exponent compared to the weakly localized regime.
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I. INTRODUCTION

Quantum coherence in mesoscopic systems is one of the
major issues in modern condensed-matter physics as it is
intimately linked to the field of quantum information. The
interaction of solid-state qubits with environmental degrees
of freedom strongly affects the fidelity of the qubit and leads
to decoherence. Consequently, the decoherence process lim-
its significantly the performance of such devices and it is
often regarded as a nuisance. It is hence important to under-
stand the limitation to the electronic coherence not only from
the fundamental point of view but also for the realization of
qubit devices.

According to the Fermi-liquid (FL) theory,' the phase co-
herence time 7, is limited by any inelastic scattering events,
such as electron-electron (e-¢) interactions, electron-phonon
(e-ph) interactions, or spin-flip scattering of electrons from
magnetic impurities. In all cases, 7, is expected to diverge as
the temperature goes to zero. Contrary to this expectation,
experimentally 7, seems to saturate at very low tempera-
tures. Mohanty et al? have observed systematic low-
temperature saturations of 7, for Au wires. This experiment
has triggered a controversial debate whether the low-
temperature saturation of 7 is really intrinsic or extrinsic.
Golubev and Zaikin** (GZ) have claimed that 7, intrinsi-
cally saturates at zero temperature due to electron-electron
interactions in the ground state. On the other hand, this low-
temperature saturation of 7, can also be explained by various
extrinsic reasons such as the presence of dynamical two-level
systems,»® the presence of a small amount of magnetic
impurities,”?° radio-frequency-assisted dephasing,?! etc.
However, none of those extrinsic mechanisms has been able
to rule out the possibility that there might be an intrinsic
saturation of 7, at low temperature. For example, an ex-
tremely small amount of magnetic impurities can always ex-
plain the observed saturation of 74.'%!3 This fact shows that
one cannot clearly discriminate the intrinsic and extrinsic
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mechanisms only from the temperature dependence of 7,
and another parameter is needed to distinguish them.

In order to settle the important debate about the decoher-
ence at zero temperature, we have chosen to study the disor-
der dependence, in other words, the diffusion coefficient D
dependence of 7, as the two different scenarios (Fermi-liquid
description or intrinsic saturation) predict different D depen-
dencies on 7,4 Some attempts to measure the D dependence
of 7, have been performed in metallic systems*** as well as
in semiconductor ones.?> However, any clear conclusion
could not be drawn from those experiments since it is diffi-
cult to vary D in a controlled way over a wide range.

In this paper, we report on the electronic phase coherence
time 7, measurements in quasi-one-dimensional (1D) wires
and two-dimensional (2D) Hall bars fabricated from a high
mobility 2D electron gas (2DEG). Using an original ion im-
plantation technique, as detailed in the next section, we can
vary the diffusion coefficient D over 3 orders of magnitude
without changing any other parameter, such as electron den-
sity, band structure, etc. In our previous work on the low-
temperature decoherence as a function of D,?* we have pre-
sented mainly results for quasi-1D wires of a single width.
Here we present an exhaustive report concerning the disorder
dependence for quasi-1D wires as well as 2D Hall bars. The
dimensionality defined in this paper is determined in terms of
the phase coherence length L= VD 7,4 as follows; when L, is
larger than the width of wire w but smaller than the length of
wire L, the system is “quasi-1D.” On the other hand, when
Ly<w<L, it is “2D.” Depending on the range of the diffu-
sion coefficient D, several different regimes can be attained
for quasi-1D systems, i.e., ballistic, semiballistic, diffusive,
and strongly localized regimes. In this work, we present de-
coherence measurements in the semiballistic, diffusive, and
strongly localized regimes for the quasi-1D system as well as
in the weakly and strongly localized regimes for the 2D sys-
tem.

The paper is organized as follows; in the next section,
experimental details are described. In Sec. III, we review
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FIG. 1. (Color online) Scanning electron microscopy (SEM) im-
age of the sample. The dark and white parts represent the mesas and
electrodes, respectively. The voltage probes for the 1000 nm wide
wires as well as the ground and current bias are added in the figure.

theories on the phase coherence time and weak localization
(WL) in the diffusive (or weakly localized) regime, and then
present experimental results in this regime. The results on the
WL curves and the phase coherence time in the semiballistic
regime are presented in Sec. IV. Section V is devoted to the
discussion of the disorder dependence of the decoherence in
quasi-1D wires. In Sec. VI, we discuss the effective electron
temperature in our samples as it is a very important issue
when discussing decoherence at zero temperature. Finally, in
Sec. VII we present data for decoherence in the strongly
localized regime.

II. SAMPLE FABRICATION AND EXPERIMENTAL SETUP

Samples have been fabricated from a GaAs/AlGaAs het-
erostructure grown in ultrahigh vacuum by molecular-beam
epitaxy with electron density n,=1.76 X 10" ¢cm™ and mo-
bility u,=126X10° cm*>/V's at a temperature of
T=4.2 K in the dark and before processing. All lithographic
steps are performed using electron-beam lithography on
polymethyl-methacrylate (PMMA) resist. Firstly, ohmic con-
tacts have been patterned by evaporating an AuGeNi alloy
onto the wafer. The wafer has been subsequently annealed at
450 °C for a few minutes in a hydrogen atmosphere. Sec-
ondly, the desired nanostructures (wires, Hall bars, etc.) have
been etched into the MESA by argon ion milling over a depth
of 5 nm using an aluminum mask. The mask has then been
removed with a NaOH solution. Such a shallow etching re-
sults in highly specular reflection on the boundaries of the
sample,” as discussed in Sec. IV B.

A scanning electron micrograph (SEM) of a typical
sample used in this work is shown in Fig. 1. Each sample
consists of four sets of wires of length L=150 um and of
lithographic width w=600, 800, 1000, and 1500 nm. In order
to suppress universal conductance fluctuations (UCFs), each
set consists of 20 wires connected in parallel. In addition, a
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TABLE 1. Formulas of some electronic parameters. The Drude
conductivity 0'=RL§ is obtained from the Hall bar.

: B
Electron density n, n,=%— or ng:%’ a
Xy
. . fikp  N27n,
Fermi velocity vy V==
Elastic scattering time 7, T,=%%
en,
Elastic mean-free path /, l,=v FTe=ﬁ
v e
. . . 1 ’
Diffusion coefficient D D= SU Fl,= ezm‘f
. erT, o
Electron mobility u, Me=7r=0s

kgl, kil,=%0

%y is the filling factor.

Hall bar allows to measure the electronic parameters of the
2DEG: n,, u,, clastic mean-free path [,, elastic scattering
time 7, etc. The diffusion coefficient is obtained via the
relation D=1/2(vyl,), where vy is the Fermi velocity. We
summarize the formulas for the electronic parameters in
Table I.

A large number of such samples is fabricated on the same
wafer. In order to vary the disorder in our samples, we place
a focused ion beam (FIB) microscope coupled to an inter-
ferometric stage on one sample using several alignment
marks written on the wafer (Fig. 2). We then implant locally
Ga* or Mn* ions with an energy of 100 keV into the sample.
For such an energy, the implanted ions penetrate only about
50 nm into the GaAs heterostructure,?® whereas the 2DEG
lies 110 nm below the surface (inset of Fig. 2).2” For the
doses used here, the ions create crystal defects in the AlGaAs

SRIM simulation for 100 kV FIB
T

%1012
: ! dose: 10° cm
& Ga*
§
5 ] Mn*
2 L i
= 2DEG layer
3
c
o
o
o .
0 100 200
depth (nm)
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FIG. 2. (Color online) Schematic of a FIB microscope placed on
the GaAs wafer. The inset shows an SRIM simulation (see Ref. 26)
of the implanted ion concentration as a function of depth at a dose
of 10° cm™ and at an energy of 100 keV. The ions are predomi-
nantly implanted 50 nm above the 2DEG.
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FIG. 3. (Color online) Diffusion coefficient as a function of ion
dose for Ga* and Mn™.

doped layer and modify the electrostatic disorder potential
felt by the electrons. With this original setup we are thus able
to change the intrinsic disorder of the samples on the same
wafer by simply changing the implantation dose. For such
low doses, the implanted ions affect only the elastic scatter-
ing time and the mobility of the itinerant electrons in the
2DEG,?8 but do not affect the band structure and the effec-
tive mass of GaAs.?%30

By varying the implantation dose for different samples
from 10® to 10'° ¢cm™2, we are able to vary the diffusion
coefficient from 3500 cm?/s (unimplanted sample) to
8 cm?/s. The diffusion coefficient variation as a function of
implantation dose is shown in Fig. 3. Above an implantation
dose of 10° cm™2, we observe an important variation in the
diffusion coefficient. The electronic parameters of all our
samples are listed in Table II. These parameters have been
measured at T=1 K for D=1400 cm?/s and 10 K for
D=600 cm?/s.3!

All measurements have been performed at temperatures
down to 10 mK using a dilution refrigerator. The resistance
of the sample is measured in a current source mode with a
standard ac lock-in technique. A voltage generated from a
signal generator (typically at a frequency of 3 Hz) is fed into
the sample via a very stable resistance, typically on the order
of 10-100 M(). The voltage across the quantum wire or the
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FIG. 4. Schematic of our electric circuit. A ratio transformer is
used to subtract the background resistance and to extract the small
WL signal above 1 K.

Hall bar is then measured between two voltage probes (see
Fig. 1) and amplified by a homemade preamplifier situated at
room temperature. This voltage amplifier has an extremely
low noise voltage of about 0.5 nV/+Hz. Since the WL quan-
tum correction above ~1 K is relatively small compared to
classical background resistance (<1072), we have used a ra-
tio transformer in a bridge configuration to compensate the
large background signal. This allows us to increase the sen-
sitivity of the WL measurement. A schematic of the measur-
ing circuit is shown in Fig. 4. In order to avoid radio-
frequency heating due to external noise, all measuring lines
are extremely well filtered with commercially available
highly dissipative coaxial cables, i.e., THERMOCOAX
(Refs. 32 and 33) at low temperatures and with 7 filters
situated at room temperature. The total attenuation at low
temperature is more than —400 dB at 20 GHz. All experi-
ments have been performed in thermal equilibrium which
means that the applied voltage across the entire sample is
kept such that the inequality eV=kgT is satisfied at all
temperatures.

TABLE II. Characteristics of all our samples.

Ga* ion dose D l, Mo n, Vg T'=h/(kg7,) B*'=m*/(eT,)
(cm™2) (cm?/s) (nm) (cm?/V's) (x10" ecm™) (X107 cm/s) kgl, (K) (G)
0 3500 4000 6.2X10° 1.56 1.7 400 0.33 160
0 3100 3600 5.5%10° 1.56 1.7 350 0.36 180
1.OX 1082 2400 2800 4.4X10° 1.49 1.7 270 0.46 230
1.0x 108 1400 1700 2.6X10° 1.50 1.7 160 0.78 390
6.0%x 108 600 660 9.7x10* 1.72 1.8 69 2.1 1000
1.0x 10° 200 340 52x10* 1.52 1.7 33 3.9 1900
2.0x10° 170 200 3.1x10* 1.48 1.7 19 6.6 3300
2.5%10° 130 160 2.5x10* 1.43 1.7 15 8.3 4100
3.5%x10° 71 95 1.7x10* 1.16 1.5 8.1 12 6000
5.0 10° 46 60 1.0x10* 1.23 1.5 53 19 9500
1.0x 10 8 12 24x10° 0.94 1.3 0.95 81 40000

2Mn* ions are implanted.
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II1. DIFFUSIVE REGIME
A. Theory
1. Phase coherence time

In the weakly localized regime where krl,> 1, the phase
coherence time of electrons in a conductor is limited by in-
elastic scattering such as e-e interactions, e-ph interactions,
the interaction with magnetic impurities (mag), or two-level
systems (TLS), etc. In the presence of several decoherence
mechanisms, the phase coherence time 74 can be expressed
as

In the absence of extrinsic sources of decoherence, the phase
coherence time at low temperatures is simply dominated by
e-e interactions.>* Thus, hereafter, we focus on the decoher-
ence only due to e-e interactions.

In the FL theory without any disorder, the lifetime of qua-
siparticles follows a (E—Ey)~> power law, with E the energy
and E the Fermi energy. In a real conductor, however, there
is disorder. Altshuler, Aronov, and Khmelnitsky (AAK) took
into account the disorder and the dimensionality of a conduc-
tor within the framework of the FL theory.! AAK showed
that for a quasi-1D wire, the phase coherence time due to the
e-e interactions can be expressed by

1
ﬁzaTzl3 (1)

e-e

= aAAKD_l/3T2/3 (2)

23
=1<k3_77*) DT, (3)
2 Wegfm

where kg is the Boltzmann constant and m™ is the effective
mass of the electron. For a 2DEG made from a GaAs/
AlGaAs heterostructure, m*=0.067m,, where m, is the bare
electron mass. w. is the effective width of the wire which is
different from the lithographic width w given in the previous
section because of lateral depletion effects inherent to the
etching process. It should be noted that Eq. (3) has been
demonstrated for the diffusive regime where the effective
width w.g is larger than the elastic mean-free path /, such
that the electron motion from one boundary to the other is
diffusive.

In a similar way, the phase coherence time due to the e-e
interactions for the 2D system is calculated as follows:

1 kT <2m*D>
h 9

2= omD" @
where 7 is the reduced Planck constant. Note that this ex-
pression is valid until the thermal length Ly=VAD/kgT is
larger than [,. At higher temperatures such that L;y<<[,
lor T>T"=/(kg7,)], the dephasing process is not limited
by disorder but simply by temperature as expected in the FL
theory without disorder,*
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1 K21 [ 2mh?
7 n( fel. (5)

. 1
72 4hn, kgTm™

e-e
In semiconductors, the crossover temperature T=%/(kg7,) is
on order of 1 K.3¢

2. Weak localization correction

The measurements of the phase coherence time can be
done in various ways such as measurements of WL,
Aharonov-Bohm conductance oscillations,’-*7-38 UCFs,3940
persistent currents,*! etc. In this work, we have chosen to
measure the phase coherence time of electrons via WL. Us-
ing this method, one can make the most reliable and quanti-
tative discussion on the phase coherence time as shown in
previous works.>8-1424 The principle of this technique relies
on constructive interference of closed electron trajectories
which are “traveled” in opposite direction (time-reversed
paths). This leads to an enhancement of the resistance. The
magnetic field B destroys these constructive interferences,
leading to a negative magnetoresistance R(B) [or positive
magnetoconductance G(B)] whose amplitude and width are
directly related to the phase coherence time.

For a quasi-1D diffusive wire where w¢>[,, the WL cor-
rection is calculated as below*?

&L 1
AG(B) = G(B) - G(0) = - 2N;—L‘é ——1.
1+ LQWeff
kI

(6)

where €?/h is the quantum of conductance (e is the charge of
the electron and # is the Planck constant), lB=\e“'h/eB is the
magnetic length, and N is the number of wires in parallel
(N=20 in the present case). The spin-orbit term has been
neglected as spin-orbit coupling is very weak in GaAs/
AlGaAs heterostructures. As discussed later on, we can ob-
tain wey and G(0) independently from the experimentally
measured magnetoconductance and therefore the only fitting
parameter is L. By fitting the experimental magnetoconduc-
tance G(B) with Eq. (6), we can obtain the phase coherence
length L4 at any temperature. The phase coherence time 74 is
then extracted from the relation L,=\D7, We note that Eq.
(6) holds only when the magnetic field satisfies the inequality
15> Wer ¥ When [z <w,g, the lateral confinement becomes
irrelevant for the WL and a crossover from 1D to 2D WL
occurs.

If L,<w, the 2D WL correction to the conductance is
applied and given by

2 1 B 1 - 212
AG(B):e—K \If<—+—32)—‘1'(—+—32 +1n—2"[z ,
mhL| \2 4L} 2 2P 12

(7)

where W(x) is the digamma function. The digamma function
has the asymptotic approximation ‘P(%+x) =1In x for large x.
In the case of 2D WL, the characteristic field B.=#/ 4eL3ﬁ
which corresponds to one flux quantum through an area on
the order of Lé is usually very small. For example,
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FIG. 5. (Color online) Magnetoresistance curves of 1000 and
1500 nm wide wires at T=36 mK and D=290 cm?/s.

B.=1.6 G for Ly=1 um. The suppression of the WL effect
is complete when B>ﬁ/2@l§. These fields are always much
weaker than classically strong fields B*=m"/(e7,).

B. Experimental results
1. Quasi-1D wires

In order to determine the phase coherence length L, we
have performed standard magnetoresistance measurements
as a function of temperature. A typical example for such a
magnetoresistance curve is displayed in Fig. 5. Let us first
concentrate on the field range up to a magnetic field of 2 T. A
sharp peak which is due to WL is clearly seen at zero field.
With increasing the magnetic field the WL peak disappears
and another type of negative magnetoresistance is observed
which is due to magnetic focusing. When going to even
higher fields (>0.5 T) the well-known Shubnikov de Haas
(SdH) oscillations appear.

Analyzing the WL peak allows to obtain the phase coher-
ence length Ly In Fig. 6, we show magnetoconductance
curves in units of e?/h for w=1000 and 1500 nm wide wires
at different temperatures. Note that the field scale is about
three orders of magnitude smaller than that in Fig. 5. Since
we are in a diffusive regime where /, is smaller than w, the
standard WL formula, Eq. (6), can be used. In Eq. (6), there
are two parameters, i.e. Ly, and weg. The effective width wgy,
however, is determined by fitting the magnetoconductance at
a given temperature and diffusion coefficient. For litho-
graphic widths w=1000 and 1500 nm, we obtain w. =630
and 1130 nm, respectively. The effective width is then kept
fixed for the entire fitting procedure and L, remains the only
fitting parameter.

The observed WL curves are nicely fitted using Eq. (6)
over the field ranges of =60 and £30 G for w=1000 nm
and 1500 nm, respectively. At a higher field (above
~100 G), however, the measured WL curves start to deviate
from the theoretical fittings (insets of Fig. 6). For this reason,
when we fit the magnetoconductance with the standard
theory, we limit the field scale within Iz>wg, i.e., |B| <15
and 5 G for wz=630 nm and 1130 nm, respectively.

The extracted phase coherence length L, is plotted as a
function of 7 at D=290 cm?/s for w=1000 and 1500 nm
wide wires in Fig. 7. At low temperatures, L nicely follows
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FIG. 6. (Color online) WL curves of (a) 1000 and (b) 1500 nm
wide wires at D=290 cm?/s and 170 cm?/s, respectively. The
conductance here is divided by e?/h. The broken lines are the best
fits of Eq. (6). The insets in (a) and (b) show the magnetoconduc-
tance at 7=140 mK in larger field ranges.

a T7'3 law down to the lowest temperatures for both the
wires. Note that the temperature below 40 mK has been cor-
rected by measuring in situ the electron temperature of the
quasi-1D wire based on e-e interaction corrections as de-
tailed in Sec. VI. The absolute values of Ly at low tempera-
tures are different between the two wires, which is expected
in the AAK theory in Eq. (3). Similar temperature depen-
dence of L, has also been observed in GaAs/GaAlAs
networks.**

Above =1 K, L, follows a T-! law and its absolute value
does not depend on the width of the wire. This is because L
is not limited by disorder any more but follows the FL theory
without disorder as shown in Eq. (5).2>*> When we fit the
Ly vs T curves, the following equation is used:

; D = 290 cm?/

Lo (um)

Ol
0.01 0.1 1 10

FIG. 7. (Color online) Phase coherence length of 1000 and 1500
nm wide wires as a function of 7 at D=290 cm?/s. The solid lines
are the best fits with Eq. (8).
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D =46 cm?/s
Hall bar
1 Il Il
-15 10 -5

FIG. 8. (Color online) Magnetoconductance curves of a Hall bar
at D=46 cm?/s at different temperatures. The conductance is nor-
malized by e?/h. The broken lines are the best fits to Eq. (7). The
fitted curves deviate from the experimental data at around B,. The
inset shows a closeup view of the low-field part of the magnetocon-
ductance at low temperatures.

— D
Ly=\Dry=\—5——. 8
¢= Ty TP p T2 (8)

exp exp

where ay, and by, are the fitting parameters.*’

2. Hall bars

In a similar manner to the quasi-1D case, the phase co-
herence length for Hall bars can also be extracted by fitting
the WL curves with Eq. (7).46*” Figure 8 shows the WL
curves of the Hall bar at D=46 cm?/s at different tempera-
tures and the best fits with Eq. (7). For these fittings we
restrict the field scale to Bc=i’L/4eLi5 for which 2D WL for-
mula is applicable.*’*8 We recall that B, is on the order of
1 G when Lg=1 um (see inset of Fig. 8). With increasing
temperature, L, becomes smaller and the fitting region be-
comes larger as shown in Fig. 8. This clearly justifies the
field limitation for the fittings.

The obtained L of the Hall bar is plotted as a function of
T in Fig. 9. At low temperatures, it follows a 7-"? law as
expected in the AAK theory for 2D systems [see Eq. (4)]. On
the other hand, Ly has a 7! dependence above =5 K where
the thermal length Ly is smaller than [,.3° The whole LyvsT

5
J T MR |

D =46 cm*/s
Hall bar

0.5

Ly (um)

0.1}
0.05}

T

T
1

0.01 0.1 1 10

FIG. 9. (Color online) Phase coherence length of the Hall bar at
D=46 cm?/s as a function of T. The solid line is the best fit with

Eq. (9).
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curve of the Hall bar is fitted by combining Egs. (4) and (5)

as below
— D
L,=\Dr,=\|———, 9
S=NETOEN o T4 b T ©)

exp exp

where a.,, and by, are the fitting parameters. The In(7) term
in Eq. (5) has been neglected here as we only measure the
low-temperature regime.

IV. SEMIBALLISTIC REGIME
A. Theory

In this section, we review the WL theory for quasi-1D
wires in the semiballistic regime where w.y;<</,<L. The WL
in this regime has been studied theoretically by Beenakker
and van Houten (BvH).* In such a clean limit, it is necessary
to take into account specular reflections on the boundary of
the wires and flux cancellation effects. Especially, the flux
cancellation effect is of importance in the pure conductor
regime, where the electrons move ballistically from one wall
to the other. This effect leads to a wider WL curve compared
to the diffusive case.

The WL correction in the semiballistic regime has been

calculated by modifying the standard WL formula, Eq. (6),*
ez L¢ 1
AGB)=-2N——2| | —— -1

h L L2

¢

1+ —

DTB

1 1

(10)

where 7 is the magnetic scattering time. The first two terms
are the same as Eq. (6) except D7z which is different from
the diffusive case as discussed below. The last two terms
come from a short-time cutoff. On short time scales <7,
the motion is ballistic rather than diffusive, and the return
probability is expected to go to zero smoothly as one enters
the ballistic regime. The short-time cutoff, on the other hand,
should become irrelevant for 7,2 7,. Such a short-time cut-
off has been inserted heuristically to compensate the ballistic
motion in the WL correction.

In the semiballistic regime, 7z has two limiting expres-
sions depending on the ratio wegl,/[3 as given below*

95103 —
Tlé)w = 7 336 fOr V’Weffle < lB
Dy = Wett
b wn 48LE N
DTl;; = 7_2 for \‘Jweffle > lB > Wett-
Wess

The crossover from the “low” field and “high” field regions
is well described by the interpolation formula
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FIG. 10. (Color online) Magnetoresistance curves of 1000 and
1500 nm wide wires at T=33 mK and D=3100 cm?/s.

0514, 485

D7y=D7g" + DTy = — 5
2 W

(11)

2
2 wig

This expression agrees well with numerical calculations*

and is useful for comparison with experiments. The magnetic
scattering time 75 in Eq. (10) is then replaced by Eq. (11)
within the field scale Iz>w .

It should be stressed, on the other hand, that there is little
knowledge on the decoherence time in the semiballistic re-
gime, unlike the diffusive case discussed in Sec. IIT A.

B. Experimental results

As in the case of the diffusive regime, the phase coher-
ence length L, in the semiballistic regime can be extracted
by fitting experimental WL curves with Eq. (10). Before dis-
cussing the WL peak in a small field range, we show typical
magnetoresistance curves of quasi-1D wires in the semibal-
listic regime in a field range of 2 T in Fig. 10. The overall
structure of the magnetoresistance is similar to that in the
diffusive regime (see Fig. 5); the WL peak near zero field
and the SdH oscillation at high fields. In between these two
structures, there is a small bump due to boundary roughness
scattering®®>! which does not exist in the diffusive regime. In
the semiballistic regime where [, > w,g, the characteristics of
the boundaries are of importance. Electrons are reflected
specularly on the boundary with a given probability p. Oth-
erwise, they are diffusively scattered into a random direction.
In the case of shallow etching like in our case (see also Sec.
II), the specular reflection probability p is more than 80% as
reported in previous transport measurements on 2DEG
samples.”> The diffuse boundary scattering with a small
probability 1—p (<20%) causes the observed small bump of
the resistance in Fig. 10. In the presence of magnetic field,
the electrons follow a curved trajectory and are scattered
diffusively at each collision with the boundary. When the
cyclotron radius R, becomes comparable to the width of wire
(wegt/ R,~0.55),%? the resistance exhibits a maximum and
then decreases again with increasing field because of the ab-
sence of backscattering. As is shown in Fig. 11(a), the maxi-
mum of the bump is located at 650 G, which corresponds to
B =0.64%kg/ ew (€., wee/ R,=0.64). On the other hand,
the amplitude of the bump is less than 5% compared to the
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FIG. 11. (Color online) Magnetoresistance curves of 1000 nm
wide wires at three different diffusion coefficients; (a) D=3100, (b)
1400, and (c) 600 cm?/s. The broken line shows the maximum
position of the small bump, i.e., B,y.

background resistance. This result indicates that the probabil-
ity of the diffusive boundary scattering is quite low,”® which
is consistent with the above statement (i.e., 1 —p<<20%). The
observed bump structure vanishes with decreasing D or in-
creasing disorder [Figs. 11(b) and 11(c)].

Next, we focus on the WL peak on a smaller field scale.
We show magnetoconductance curves in Fig. 12 for three
different wire widths at different temperatures. As discussed
in Sec. III B, the WL peak grows and becomes sharper with
decreasing temperature for all the wires. The width of the
WL peak, however, is almost the same as in the diffusive
case (see Fig. 6). This is due to flux cancellation effects as
mentioned above.

The phase coherence length L, in the semiballistic regime
is obtained by fitting the WL curve with Eq. (10). Note that
there are three parameters in Eq. (10), namely, L4, weg, and
l,. The effective width wg is, however, determined in the
same way as in the diffusive case. For lithographic widths
w=1500, 1000, and 600 nm, we obtain w=1130 nm, 630
nm, and 230 nm, respectively. The elastic mean-free path [,
is also obtained from an independent measurement on the
Hall bar having the same diffusion coefficient. Thus, there is
again only one fitting parameter left, i.e., L.

The broken lines in Fig. 12 show the best fits of Eq. (10).
The WL curves of the three wires are nicely fitted by Eq.
(10) at low fields while deviations from the theoretical fits
occur at higher fields. As shown in Sec. IV A, the BvH ex-
pression is valid only within /> w;. Therefore, for fitting
the magnetoconductance curves at any temperature we take
into account only the low-field data and restrict the field
range within |B| <5, 10, and 30 G for w.z=1130 nm, 630
nm, and 230 nm, respectively.”> Note that these fields are
much larger than B=71/ewgl, (\Wel, > 1). This means that
we still have to take into account both the low- and high-field
regions as pointed out in Eq. (11). The obtained L, at

245306-7



NIIMI et al.

D =3500 cm?/s
w= 1500 nm

5
15 -10 -5 0 5 10 15

301 D= 3100 cm?/s
w= 1000 nm
30 20 40 0 10 20 30
B(G)

5L D = 2400 cm®/s
w =600 nm
L Il Il
-80 40 0 40 80
B(G)

FIG. 12. (Color online) WL curves of (a) 1500, (b) 1000, and (c)
600 nm wide wires at D=3500 cm?/s, 3100 cm?/s, and
2400 cm?/s, respectively. The conductance is normalized by e/h.
The broken lines are the best fits to Eq. (10).

D=3500 cm?/s is plotted as a function of T in Fig. 13. As in
the diffusive regime, Ly, follows a T~ law at low tempera-
tures and varies linearly with 7" above =1 K. Such a tem-
perature dependence is indeed expected in the semiballistic
regime.>*

100 ————rrrm e
E D = 3500 cm?/s]

Ly (um)

T(K)

FIG. 13. (Color online) Phase coherence length of 1500, 1000,
and 600 nm wide wires as a function of 7 at D=3500 cm?/s. The
solid lines are the best fits with Eq. (8).
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FIG. 14. (Color online) Phase coherence length L of t