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We study the disorder dependence of the phase coherence time of quasi-one-dimensional wires and two-
dimensional �2D� Hall bars fabricated from a high mobility GaAs/AlGaAs heterostructure. Using an original
ion implantation technique, we can tune the intrinsic disorder felt by the 2D electron gas and continuously vary
the system from the semiballistic regime to the localized one. In the diffusive regime, the phase coherence time
follows a power law as a function of diffusion coefficient as expected in the Fermi-liquid theory, without any
sign of low-temperature saturation. Surprisingly, in the semiballistic regime, it becomes independent of the
diffusion coefficient. In the strongly localized regime we find a diverging phase coherence time with decreasing
temperature, however, with a smaller exponent compared to the weakly localized regime.

DOI: 10.1103/PhysRevB.81.245306 PACS number�s�: 73.23.�b, 73.63.Nm, 03.65.Yz, 73.20.Fz

I. INTRODUCTION

Quantum coherence in mesoscopic systems is one of the
major issues in modern condensed-matter physics as it is
intimately linked to the field of quantum information. The
interaction of solid-state qubits with environmental degrees
of freedom strongly affects the fidelity of the qubit and leads
to decoherence. Consequently, the decoherence process lim-
its significantly the performance of such devices and it is
often regarded as a nuisance. It is hence important to under-
stand the limitation to the electronic coherence not only from
the fundamental point of view but also for the realization of
qubit devices.

According to the Fermi-liquid �FL� theory,1 the phase co-
herence time �� is limited by any inelastic scattering events,
such as electron-electron �e-e� interactions, electron-phonon
�e-ph� interactions, or spin-flip scattering of electrons from
magnetic impurities. In all cases, �� is expected to diverge as
the temperature goes to zero. Contrary to this expectation,
experimentally �� seems to saturate at very low tempera-
tures. Mohanty et al.2 have observed systematic low-
temperature saturations of �� for Au wires. This experiment
has triggered a controversial debate whether the low-
temperature saturation of �� is really intrinsic or extrinsic.
Golubev and Zaikin3,4 �GZ� have claimed that �� intrinsi-
cally saturates at zero temperature due to electron-electron
interactions in the ground state. On the other hand, this low-
temperature saturation of �� can also be explained by various
extrinsic reasons such as the presence of dynamical two-level
systems,5,6 the presence of a small amount of magnetic
impurities,7–20 radio-frequency-assisted dephasing,21 etc.
However, none of those extrinsic mechanisms has been able
to rule out the possibility that there might be an intrinsic
saturation of �� at low temperature. For example, an ex-
tremely small amount of magnetic impurities can always ex-
plain the observed saturation of ��.10–13 This fact shows that
one cannot clearly discriminate the intrinsic and extrinsic

mechanisms only from the temperature dependence of ��
and another parameter is needed to distinguish them.

In order to settle the important debate about the decoher-
ence at zero temperature, we have chosen to study the disor-
der dependence, in other words, the diffusion coefficient D
dependence of �� as the two different scenarios �Fermi-liquid
description or intrinsic saturation� predict different D depen-
dencies on ��. Some attempts to measure the D dependence
of �� have been performed in metallic systems2,22 as well as
in semiconductor ones.23 However, any clear conclusion
could not be drawn from those experiments since it is diffi-
cult to vary D in a controlled way over a wide range.

In this paper, we report on the electronic phase coherence
time �� measurements in quasi-one-dimensional �1D� wires
and two-dimensional �2D� Hall bars fabricated from a high
mobility 2D electron gas �2DEG�. Using an original ion im-
plantation technique, as detailed in the next section, we can
vary the diffusion coefficient D over 3 orders of magnitude
without changing any other parameter, such as electron den-
sity, band structure, etc. In our previous work on the low-
temperature decoherence as a function of D,24 we have pre-
sented mainly results for quasi-1D wires of a single width.
Here we present an exhaustive report concerning the disorder
dependence for quasi-1D wires as well as 2D Hall bars. The
dimensionality defined in this paper is determined in terms of
the phase coherence length L�=�D�� as follows; when L� is
larger than the width of wire w but smaller than the length of
wire L, the system is “quasi-1D.” On the other hand, when
L��w�L, it is “2D.” Depending on the range of the diffu-
sion coefficient D, several different regimes can be attained
for quasi-1D systems, i.e., ballistic, semiballistic, diffusive,
and strongly localized regimes. In this work, we present de-
coherence measurements in the semiballistic, diffusive, and
strongly localized regimes for the quasi-1D system as well as
in the weakly and strongly localized regimes for the 2D sys-
tem.

The paper is organized as follows; in the next section,
experimental details are described. In Sec. III, we review
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theories on the phase coherence time and weak localization
�WL� in the diffusive �or weakly localized� regime, and then
present experimental results in this regime. The results on the
WL curves and the phase coherence time in the semiballistic
regime are presented in Sec. IV. Section V is devoted to the
discussion of the disorder dependence of the decoherence in
quasi-1D wires. In Sec. VI, we discuss the effective electron
temperature in our samples as it is a very important issue
when discussing decoherence at zero temperature. Finally, in
Sec. VII we present data for decoherence in the strongly
localized regime.

II. SAMPLE FABRICATION AND EXPERIMENTAL SETUP

Samples have been fabricated from a GaAs/AlGaAs het-
erostructure grown in ultrahigh vacuum by molecular-beam
epitaxy with electron density ne=1.76�1011 cm−2 and mo-
bility �e=1.26�106 cm2 /V s at a temperature of
T=4.2 K in the dark and before processing. All lithographic
steps are performed using electron-beam lithography on
polymethyl-methacrylate �PMMA� resist. Firstly, ohmic con-
tacts have been patterned by evaporating an AuGeNi alloy
onto the wafer. The wafer has been subsequently annealed at
450 °C for a few minutes in a hydrogen atmosphere. Sec-
ondly, the desired nanostructures �wires, Hall bars, etc.� have
been etched into the MESA by argon ion milling over a depth
of 5 nm using an aluminum mask. The mask has then been
removed with a NaOH solution. Such a shallow etching re-
sults in highly specular reflection on the boundaries of the
sample,25 as discussed in Sec. IV B.

A scanning electron micrograph �SEM� of a typical
sample used in this work is shown in Fig. 1. Each sample
consists of four sets of wires of length L=150 �m and of
lithographic width w=600, 800, 1000, and 1500 nm. In order
to suppress universal conductance fluctuations �UCFs�, each
set consists of 20 wires connected in parallel. In addition, a

Hall bar allows to measure the electronic parameters of the
2DEG: ne, �e, elastic mean-free path le, elastic scattering
time �e, etc. The diffusion coefficient is obtained via the
relation D=1 /2�vFle�, where vF is the Fermi velocity. We
summarize the formulas for the electronic parameters in
Table I.

A large number of such samples is fabricated on the same
wafer. In order to vary the disorder in our samples, we place
a focused ion beam �FIB� microscope coupled to an inter-
ferometric stage on one sample using several alignment
marks written on the wafer �Fig. 2�. We then implant locally
Ga+ or Mn+ ions with an energy of 100 keV into the sample.
For such an energy, the implanted ions penetrate only about
50 nm into the GaAs heterostructure,26 whereas the 2DEG
lies 110 nm below the surface �inset of Fig. 2�.27 For the
doses used here, the ions create crystal defects in the AlGaAs
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FIG. 1. �Color online� Scanning electron microscopy �SEM� im-
age of the sample. The dark and white parts represent the mesas and
electrodes, respectively. The voltage probes for the 1000 nm wide
wires as well as the ground and current bias are added in the figure.

TABLE I. Formulas of some electronic parameters. The Drude
conductivity �= 1

Rxx

L
w is obtained from the Hall bar.

Electron density ne ne= B
eRxy

or ne= eB	
h

a

Fermi velocity vF vF=

kF

m� =

�2�ne

m�

Elastic scattering time �e �e= m��

e2ne

Elastic mean-free path le le=vF�e= h�

e2�2�ne

Diffusion coefficient D D= 1
2vFle= �
2�

e2m�

Electron mobility �e �e=
e�e

m� = �

nee

kFle kFle= h

e2 �

a	 is the filling factor.
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FIG. 2. �Color online� Schematic of a FIB microscope placed on
the GaAs wafer. The inset shows an SRIM simulation �see Ref. 26�
of the implanted ion concentration as a function of depth at a dose
of 109 cm−2 and at an energy of 100 keV. The ions are predomi-
nantly implanted 50 nm above the 2DEG.
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doped layer and modify the electrostatic disorder potential
felt by the electrons. With this original setup we are thus able
to change the intrinsic disorder of the samples on the same
wafer by simply changing the implantation dose. For such
low doses, the implanted ions affect only the elastic scatter-
ing time and the mobility of the itinerant electrons in the
2DEG,28 but do not affect the band structure and the effec-
tive mass of GaAs.29,30

By varying the implantation dose for different samples
from 108 to 1010 cm−2, we are able to vary the diffusion
coefficient from 3500 cm2 /s �unimplanted sample� to
8 cm2 /s. The diffusion coefficient variation as a function of
implantation dose is shown in Fig. 3. Above an implantation
dose of 109 cm−2, we observe an important variation in the
diffusion coefficient. The electronic parameters of all our
samples are listed in Table II. These parameters have been
measured at T=1 K for D�1400 cm2 /s and 10 K for
D600 cm2 /s.31

All measurements have been performed at temperatures
down to 10 mK using a dilution refrigerator. The resistance
of the sample is measured in a current source mode with a
standard ac lock-in technique. A voltage generated from a
signal generator �typically at a frequency of 3 Hz� is fed into
the sample via a very stable resistance, typically on the order
of 10–100 M�. The voltage across the quantum wire or the

Hall bar is then measured between two voltage probes �see
Fig. 1� and amplified by a homemade preamplifier situated at
room temperature. This voltage amplifier has an extremely
low noise voltage of about 0.5 nV /�Hz. Since the WL quan-
tum correction above �1 K is relatively small compared to
classical background resistance ��10−2�, we have used a ra-
tio transformer in a bridge configuration to compensate the
large background signal. This allows us to increase the sen-
sitivity of the WL measurement. A schematic of the measur-
ing circuit is shown in Fig. 4. In order to avoid radio-
frequency heating due to external noise, all measuring lines
are extremely well filtered with commercially available
highly dissipative coaxial cables, i.e., THERMOCOAX
�Refs. 32 and 33� at low temperatures and with � filters
situated at room temperature. The total attenuation at low
temperature is more than −400 dB at 20 GHz. All experi-
ments have been performed in thermal equilibrium which
means that the applied voltage across the entire sample is
kept such that the inequality eVkBT is satisfied at all
temperatures.
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FIG. 3. �Color online� Diffusion coefficient as a function of ion
dose for Ga+ and Mn+.

TABLE II. Characteristics of all our samples.

Ga+ ion dose
�cm−2�

D
�cm2 /s�

le

�nm�
�e

�cm2 /V s�
ne

��1011 cm−2�
vF

��107 cm /s� kFle

T��
 / �kB�e�
�K�

B��m� / �e�e�
�G�

0 3500 4000 6.2�105 1.56 1.7 400 0.33 160

0 3100 3600 5.5�105 1.56 1.7 350 0.36 180

1.0�108 a 2400 2800 4.4�105 1.49 1.7 270 0.46 230

1.0�108 1400 1700 2.6�105 1.50 1.7 160 0.78 390

6.0�108 600 660 9.7�104 1.72 1.8 69 2.1 1000

1.0�109 290 340 5.2�104 1.52 1.7 33 3.9 1900

2.0�109 170 200 3.1�104 1.48 1.7 19 6.6 3300

2.5�109 130 160 2.5�104 1.43 1.7 15 8.3 4100

3.5�109 71 95 1.7�104 1.16 1.5 8.1 12 6000

5.0�109 46 60 1.0�104 1.23 1.5 5.3 19 9500

1.0�1010 8 12 2.4�103 0.94 1.3 0.95 81 40000

aMn+ ions are implanted.

Lock-in Amp.

ratio-
transformer

oscB A

100 MΩsample

pre-amp.

f ∼ 3 Hz

FIG. 4. Schematic of our electric circuit. A ratio transformer is
used to subtract the background resistance and to extract the small
WL signal above 1 K.
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III. DIFFUSIVE REGIME

A. Theory

1. Phase coherence time

In the weakly localized regime where kFle�1, the phase
coherence time of electrons in a conductor is limited by in-
elastic scattering such as e-e interactions, e-ph interactions,
the interaction with magnetic impurities �mag�, or two-level
systems �TLS�, etc. In the presence of several decoherence
mechanisms, the phase coherence time �� can be expressed
as

1

��

=
1

�e-e
+

1

�e-ph
+

1

�mag
+

1

�TLS
+ ¯ .

In the absence of extrinsic sources of decoherence, the phase
coherence time at low temperatures is simply dominated by
e-e interactions.34 Thus, hereafter, we focus on the decoher-
ence only due to e-e interactions.

In the FL theory without any disorder, the lifetime of qua-
siparticles follows a �E−EF�−2 power law, with E the energy
and EF the Fermi energy. In a real conductor, however, there
is disorder. Altshuler, Aronov, and Khmelnitsky �AAK� took
into account the disorder and the dimensionality of a conduc-
tor within the framework of the FL theory.1 AAK showed
that for a quasi-1D wire, the phase coherence time due to the
e-e interactions can be expressed by

1

�e-e
1D = aT2/3 �1�

��AAKD−1/3T2/3 �2�

=
1

2
� kB�

weffm
��2/3

D−1/3T2/3, �3�

where kB is the Boltzmann constant and m� is the effective
mass of the electron. For a 2DEG made from a GaAs/
AlGaAs heterostructure, m�=0.067me, where me is the bare
electron mass. weff is the effective width of the wire which is
different from the lithographic width w given in the previous
section because of lateral depletion effects inherent to the
etching process. It should be noted that Eq. �3� has been
demonstrated for the diffusive regime where the effective
width weff is larger than the elastic mean-free path le such
that the electron motion from one boundary to the other is
diffusive.

In a similar way, the phase coherence time due to the e-e
interactions for the 2D system is calculated as follows:

1

�e-e
2D �

kBT

2m�D
ln�2m�D



� , �4�

where 
 is the reduced Planck constant. Note that this ex-
pression is valid until the thermal length LT=�
D /kBT is
larger than le. At higher temperatures such that LT� le
	or T�T��
 / �kB�e�
, the dephasing process is not limited
by disorder but simply by temperature as expected in the FL
theory without disorder,35

1

�e-e
2D �

m�kB
2T2

4
3ne
ln�2�
2ne

kBTm� � . �5�

In semiconductors, the crossover temperature T=
 / �kB�e� is
on order of 1 K.36

2. Weak localization correction

The measurements of the phase coherence time can be
done in various ways such as measurements of WL,9,13

Aharonov-Bohm conductance oscillations,7,37,38 UCFs,39,40

persistent currents,41 etc. In this work, we have chosen to
measure the phase coherence time of electrons via WL. Us-
ing this method, one can make the most reliable and quanti-
tative discussion on the phase coherence time as shown in
previous works.2,8–14,24 The principle of this technique relies
on constructive interference of closed electron trajectories
which are “traveled” in opposite direction �time-reversed
paths�. This leads to an enhancement of the resistance. The
magnetic field B destroys these constructive interferences,
leading to a negative magnetoresistance R�B� 	or positive
magnetoconductance G�B�
 whose amplitude and width are
directly related to the phase coherence time.

For a quasi-1D diffusive wire where weff� le, the WL cor-
rection is calculated as below42

�G�B� � G�B� − G�0� = − 2N
e2

h

L�

L � 1

�1 +
L�

2 weff
2

3lB
4

− 1� ,

�6�

where e2 /h is the quantum of conductance �e is the charge of
the electron and h is the Planck constant�, lB=�
 /eB is the
magnetic length, and N is the number of wires in parallel
�N=20 in the present case�. The spin-orbit term has been
neglected as spin-orbit coupling is very weak in GaAs/
AlGaAs heterostructures. As discussed later on, we can ob-
tain weff and G�0� independently from the experimentally
measured magnetoconductance and therefore the only fitting
parameter is L�. By fitting the experimental magnetoconduc-
tance G�B� with Eq. �6�, we can obtain the phase coherence
length L� at any temperature. The phase coherence time �� is
then extracted from the relation L�=�D��. We note that Eq.
�6� holds only when the magnetic field satisfies the inequality
lB�weff.

43 When lB�weff, the lateral confinement becomes
irrelevant for the WL and a crossover from 1D to 2D WL
occurs.

If L��w, the 2D WL correction to the conductance is
applied and given by

�G�B� =
e2

�h

w

L
��1

2
+

lB
2

4L�
2 � − ��1

2
+

lB
2

2le
2� + ln�2L�

2

le
2 �� ,

�7�

where ��x� is the digamma function. The digamma function
has the asymptotic approximation �� 1

2 +x�� ln x for large x.
In the case of 2D WL, the characteristic field Bc=
 /4eL�

2

which corresponds to one flux quantum through an area on
the order of L�

2 is usually very small. For example,
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Bc=1.6 G for L�=1 �m. The suppression of the WL effect
is complete when B�
 /2ele

2. These fields are always much
weaker than classically strong fields B��m� / �e�e�.

B. Experimental results

1. Quasi-1D wires

In order to determine the phase coherence length L�, we
have performed standard magnetoresistance measurements
as a function of temperature. A typical example for such a
magnetoresistance curve is displayed in Fig. 5. Let us first
concentrate on the field range up to a magnetic field of 2 T. A
sharp peak which is due to WL is clearly seen at zero field.
With increasing the magnetic field the WL peak disappears
and another type of negative magnetoresistance is observed
which is due to magnetic focusing. When going to even
higher fields ��0.5 T� the well-known Shubnikov de Haas
�SdH� oscillations appear.

Analyzing the WL peak allows to obtain the phase coher-
ence length L�. In Fig. 6, we show magnetoconductance
curves in units of e2 /h for w=1000 and 1500 nm wide wires
at different temperatures. Note that the field scale is about
three orders of magnitude smaller than that in Fig. 5. Since
we are in a diffusive regime where le is smaller than w, the
standard WL formula, Eq. �6�, can be used. In Eq. �6�, there
are two parameters, i.e. L�, and weff. The effective width weff,
however, is determined by fitting the magnetoconductance at
a given temperature and diffusion coefficient. For litho-
graphic widths w=1000 and 1500 nm, we obtain weff=630
and 1130 nm, respectively. The effective width is then kept
fixed for the entire fitting procedure and L� remains the only
fitting parameter.

The observed WL curves are nicely fitted using Eq. �6�
over the field ranges of �60 and �30 G for w=1000 nm
and 1500 nm, respectively. At a higher field �above
�100 G�, however, the measured WL curves start to deviate
from the theoretical fittings �insets of Fig. 6�. For this reason,
when we fit the magnetoconductance with the standard
theory, we limit the field scale within lB�weff, i.e., �B��15
and 5 G for weff=630 nm and 1130 nm, respectively.

The extracted phase coherence length L� is plotted as a
function of T at D=290 cm2 /s for w=1000 and 1500 nm
wide wires in Fig. 7. At low temperatures, L� nicely follows

a T−1/3 law down to the lowest temperatures for both the
wires. Note that the temperature below 40 mK has been cor-
rected by measuring in situ the electron temperature of the
quasi-1D wire based on e-e interaction corrections as de-
tailed in Sec. VI. The absolute values of L� at low tempera-
tures are different between the two wires, which is expected
in the AAK theory in Eq. �3�. Similar temperature depen-
dence of L� has also been observed in GaAs/GaAlAs
networks.44

Above �1 K, L� follows a T−1 law and its absolute value
does not depend on the width of the wire. This is because L�

is not limited by disorder any more but follows the FL theory
without disorder as shown in Eq. �5�.23,35 When we fit the
L� vs T curves, the following equation is used:
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FIG. 5. �Color online� Magnetoresistance curves of 1000 and
1500 nm wide wires at T=36 mK and D=290 cm2 /s.
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FIG. 6. �Color online� WL curves of �a� 1000 and �b� 1500 nm
wide wires at D=290 cm2 /s and 170 cm2 /s, respectively. The
conductance here is divided by e2 /h. The broken lines are the best
fits of Eq. �6�. The insets in �a� and �b� show the magnetoconduc-
tance at T=140 mK in larger field ranges.
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FIG. 7. �Color online� Phase coherence length of 1000 and 1500
nm wide wires as a function of T at D=290 cm2 /s. The solid lines
are the best fits with Eq. �8�.
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L� = �D�� =� D

aexpT
2/3 + bexpT

2 , �8�

where aexp and bexp are the fitting parameters.45

2. Hall bars

In a similar manner to the quasi-1D case, the phase co-
herence length for Hall bars can also be extracted by fitting
the WL curves with Eq. �7�.46,47 Figure 8 shows the WL
curves of the Hall bar at D=46 cm2 /s at different tempera-
tures and the best fits with Eq. �7�. For these fittings we
restrict the field scale to Bc=
 /4eL�

2 for which 2D WL for-
mula is applicable.47,48 We recall that Bc is on the order of
1 G when L�=1 �m �see inset of Fig. 8�. With increasing
temperature, L� becomes smaller and the fitting region be-
comes larger as shown in Fig. 8. This clearly justifies the
field limitation for the fittings.

The obtained L� of the Hall bar is plotted as a function of
T in Fig. 9. At low temperatures, it follows a T−1/2 law as
expected in the AAK theory for 2D systems 	see Eq. �4�
. On
the other hand, L� has a T−1 dependence above �5 K where
the thermal length LT is smaller than le.

35 The whole L� vs T

curve of the Hall bar is fitted by combining Eqs. �4� and �5�
as below

L� = �D�� =� D

aexpT + bexpT
2 , �9�

where aexp and bexp are the fitting parameters. The ln�T� term
in Eq. �5� has been neglected here as we only measure the
low-temperature regime.

IV. SEMIBALLISTIC REGIME

A. Theory

In this section, we review the WL theory for quasi-1D
wires in the semiballistic regime where weff� le�L. The WL
in this regime has been studied theoretically by Beenakker
and van Houten �BvH�.49 In such a clean limit, it is necessary
to take into account specular reflections on the boundary of
the wires and flux cancellation effects. Especially, the flux
cancellation effect is of importance in the pure conductor
regime, where the electrons move ballistically from one wall
to the other. This effect leads to a wider WL curve compared
to the diffusive case.

The WL correction in the semiballistic regime has been
calculated by modifying the standard WL formula, Eq. �6�,49

�G�B� = − 2N
e2

h

L�

L ��
1

�1 +
L�

2

D�B

− 1�
− �

1

�1 +
L�

2

D�B

+
2L�

2

le
2

−
1

�1 +
2L�

2

le
2
�� ,

�10�

where �B is the magnetic scattering time. The first two terms
are the same as Eq. �6� except D�B which is different from
the diffusive case as discussed below. The last two terms
come from a short-time cutoff. On short time scales t��e,
the motion is ballistic rather than diffusive, and the return
probability is expected to go to zero smoothly as one enters
the ballistic regime. The short-time cutoff, on the other hand,
should become irrelevant for ����e. Such a short-time cut-
off has been inserted heuristically to compensate the ballistic
motion in the WL correction.

In the semiballistic regime, �B has two limiting expres-
sions depending on the ratio weffle / lB

2 as given below49

D�B = �D�B
low =

9.5

2

lB
4 le

weff
3 for �weffle � lB

D�B
high =

4.8

2

lB
2 le

2

weff
2 for �weffle � lB � weff.�

The crossover from the “low” field and “high” field regions
is well described by the interpolation formula
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FIG. 8. �Color online� Magnetoconductance curves of a Hall bar
at D=46 cm2 /s at different temperatures. The conductance is nor-
malized by e2 /h. The broken lines are the best fits to Eq. �7�. The
fitted curves deviate from the experimental data at around Bc. The
inset shows a closeup view of the low-field part of the magnetocon-
ductance at low temperatures.
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D�B = D�B
low + D�B

high =
9.5

2

lB
4 le

weff
3 +

4.8

2

lB
2 le

2

weff
2 . �11�

This expression agrees well with numerical calculations49

and is useful for comparison with experiments. The magnetic
scattering time �B in Eq. �10� is then replaced by Eq. �11�
within the field scale lB�weff.

It should be stressed, on the other hand, that there is little
knowledge on the decoherence time in the semiballistic re-
gime, unlike the diffusive case discussed in Sec. III A.

B. Experimental results

As in the case of the diffusive regime, the phase coher-
ence length L� in the semiballistic regime can be extracted
by fitting experimental WL curves with Eq. �10�. Before dis-
cussing the WL peak in a small field range, we show typical
magnetoresistance curves of quasi-1D wires in the semibal-
listic regime in a field range of 2 T in Fig. 10. The overall
structure of the magnetoresistance is similar to that in the
diffusive regime �see Fig. 5�; the WL peak near zero field
and the SdH oscillation at high fields. In between these two
structures, there is a small bump due to boundary roughness
scattering50,51 which does not exist in the diffusive regime. In
the semiballistic regime where le�weff, the characteristics of
the boundaries are of importance. Electrons are reflected
specularly on the boundary with a given probability p. Oth-
erwise, they are diffusively scattered into a random direction.
In the case of shallow etching like in our case �see also Sec.
II�, the specular reflection probability p is more than 80% as
reported in previous transport measurements on 2DEG
samples.25 The diffuse boundary scattering with a small
probability 1− p ��20%� causes the observed small bump of
the resistance in Fig. 10. In the presence of magnetic field,
the electrons follow a curved trajectory and are scattered
diffusively at each collision with the boundary. When the
cyclotron radius Rc becomes comparable to the width of wire
�weff /Rc�0.55�,52 the resistance exhibits a maximum and
then decreases again with increasing field because of the ab-
sence of backscattering. As is shown in Fig. 11�a�, the maxi-
mum of the bump is located at 650 G, which corresponds to
Bmax=0.64
kF /eweff �i.e., weff /Rc=0.64�. On the other hand,
the amplitude of the bump is less than 5% compared to the

background resistance. This result indicates that the probabil-
ity of the diffusive boundary scattering is quite low,50 which
is consistent with the above statement �i.e., 1− p�20%�. The
observed bump structure vanishes with decreasing D or in-
creasing disorder 	Figs. 11�b� and 11�c�
.

Next, we focus on the WL peak on a smaller field scale.
We show magnetoconductance curves in Fig. 12 for three
different wire widths at different temperatures. As discussed
in Sec. III B, the WL peak grows and becomes sharper with
decreasing temperature for all the wires. The width of the
WL peak, however, is almost the same as in the diffusive
case �see Fig. 6�. This is due to flux cancellation effects as
mentioned above.

The phase coherence length L� in the semiballistic regime
is obtained by fitting the WL curve with Eq. �10�. Note that
there are three parameters in Eq. �10�, namely, L�, weff, and
le. The effective width weff is, however, determined in the
same way as in the diffusive case. For lithographic widths
w=1500, 1000, and 600 nm, we obtain weff=1130 nm, 630
nm, and 230 nm, respectively. The elastic mean-free path le
is also obtained from an independent measurement on the
Hall bar having the same diffusion coefficient. Thus, there is
again only one fitting parameter left, i.e., L�.

The broken lines in Fig. 12 show the best fits of Eq. �10�.
The WL curves of the three wires are nicely fitted by Eq.
�10� at low fields while deviations from the theoretical fits
occur at higher fields. As shown in Sec. IV A, the BvH ex-
pression is valid only within lB�weff. Therefore, for fitting
the magnetoconductance curves at any temperature we take
into account only the low-field data and restrict the field
range within �B��5, 10, and 30 G for weff=1130 nm, 630
nm, and 230 nm, respectively.53 Note that these fields are
much larger than B=
 /eweffle ��weffle� lB�. This means that
we still have to take into account both the low- and high-field
regions as pointed out in Eq. �11�. The obtained L� at

-2 -1 0 1 2
0

200

400

600

800

1000

B (T)

R
(Ω

)

D = 3100 cm2/s
T = 33 mK

w = 1000 nm
w = 1500 nm
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D=3500 cm2 /s is plotted as a function of T in Fig. 13. As in
the diffusive regime, L� follows a T−1/3 law at low tempera-
tures and varies linearly with T above �1 K. Such a tem-
perature dependence is indeed expected in the semiballistic
regime.54

V. DISORDER EFFECT ON PHASE COHERENCE

A. Experimental results on quasi-1D wires

In Secs. III and IV, we have been discussing the tempera-
ture dependence of the decoherence in the diffusive as well
as the semiballistic regimes. In this section, we will discuss
the disorder dependence of the decoherence time. For this
purpose, we first present in Fig. 14 the temperature depen-
dence of the phase coherence length L� for three different
wire widths and for all investigated diffusion coefficients.
Interestingly, the temperature dependence in the low-
temperature regime is identical for the diffusive regime and
semiballistic regime. Inspecting Fig. 14 more closely, it is
clear that the phase coherence length L� in the semiballistic
regime depends more weakly on D compared to the diffusive
regime. This can be emphasized by plotting the value of L�

as a function of D at fixed temperature �we take T=60 mK�
as shown in Fig. 15. One clearly observes two different D
dependencies. In the diffusive regime �weff� le�, L� follows a
D2/3 law, which is consistent with the “standard” model of
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FIG. 13. �Color online� Phase coherence length of 1500, 1000,
and 600 nm wide wires as a function of T at D=3500 cm2 /s. The
solid lines are the best fits with Eq. �8�.
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decoherence proposed in the AAK theory1 	see Eq. �3�
. On
the other hand, in the semiballistic regime where weff� le, L�

has a different power law as a function of the diffusion co-
efficient, D� with a parameter � close to 1/2. This behavior
can be seen for the three different widths of the wires. The
crossover between the two regimes occurs when weff be-
comes comparable to le, i.e., D�1000 cm2 /s.

To compare our experimental results directly with theo-
retical expressions, it is more convenient to plot the diffusion
coefficient dependence of �� rather than L�.1,3,4 We thus ob-
tain the phase coherence time �� assuming that the relation
L�=�D�� holds for all the investigated diffusion coeffi-
cients. In Fig. 16, we show the temperature dependence of
the phase coherence time �� of the 1500 nm wide wires at
different D. At low temperatures, it follows a T−2/3 power
law at any diffusion coefficient as expected for the quasi-1D
diffusive regime 	see Eq. �1�
. Above 1 K, �� tends towards
a T−2 dependency, in accordance with the FL theory without
disorder 	see Eq. �5�
.

To make a quantitative analysis, we plot in Fig. 17 the
experimental parameter aexp of Eq. �8�, normalized by the
theoretical prefactor �AAK of Eq. �2�, as a function of D.55 In
the diffusive regime, the parameter aexp /�AAK follows a
power law as a function of D with aexp /�AAK�D−1/3, which
is consistent with Eq. �2�. Moreover, the prefactor aexp ob-

tained in this work agrees with Eq. �3� in absolute value
within 15%. In the semiballistic regime, on the other hand,
we obtain a very different behavior of aexp /�AAK as a func-
tion of D. While in the diffusive regime the parameter
aexp /�AAK is in accordance with the diffusive theory, in the
semiballistic regime the decoherence time seems to be inde-
pendent of the disorder. On the other hand, we observe the
same width dependence of prefactor aexp�w−2/3 as in the
diffusive regime. From these experimental facts, it is obvious
that the temperature and width dependence of the phase co-
herence time �� in the semiballistic regime are well captured
within the AAK theory, whereas the disorder dependence of
�� has to be reconsidered in the semiballistic regime.

One could argue that the disorder-independent decoher-
ence time in the semiballistic regime might be simply due to
saturation of the diffusion coefficient D. If the boundary
scattering in quasi-1D wires were diffusive, the diffusion co-
efficient should saturate at D=1 /2�vFweff�,49 which could
lead to a D-independent ��. This possibility, however, can be
ruled out by plotting the resistance of the wires as a function
of D. Figure 18 shows the residual resistance of the quasi-1D
wires Rres �see Eq. �12� in Sec. VI� as a function of D ob-
tained from the Hall bar.56 The residual resistance Rres nicely
follows a 1 /Dweff law over the whole D range �see Table I�.
This dependency can be realized only when the boundary
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scattering in the semiballistic regime is specular. Moreover,
as mentioned in Sec. IV B, our wires have been made by
shallow etching which results in highly specular boundary
reflection.25 The D dependence of the residual resistance also
confirms our assumption that L�=�D�� is valid even in the
semiballistic regime.

There is no theoretical prediction about the disorder de-
pendence of the decoherence for quasi-1D wires in the clean
limit �very few impurities�. There are, however, a few theo-
retical works to give us some hints. It should be noted that
these calculations have been performed for 2D systems.
Wittmann and Schmid57 calculated the 2D WL correction for
arbitrary number of elastic scattering time �e. They found
that the WL correction in the clean limit can be reduced
compared to the diffusive case, leading to an underestimation
of ��. Narozhny et al.54 calculated the temperature depen-
dence of �� in a 2D system at arbitrary relation between kBT
and 
 /�e. They showed that the phase coherence time �� has
the same temperature dependence both in the diffusive and
ballistic regimes but the prefactor in the ballistic regime is
smaller than in the diffusive one. These theoretical calcula-
tions are qualitatively consistent with our experimental result
on the quasi-1D wires; as is shown in Fig. 17, the dephasing
time �� in the semiballistic regime is independent of D while
�� in the diffusive regime is quantitatively consistent with
the AAK theory, i.e., ���D1/3. However, it is not possible to
make a quantitative analysis of the diffusion coefficient de-
pendence of �� on the basis of these calculations. It is desir-
able that theoretical calculations of �� in the semiballistic
regime are performed for the quasi-1D wires.

B. Comparison with theory on zero-temperature decoherence

As pointed out in Sec. I, decoherence in metallic systems
at zero temperature has been a controversial issue over the
last decade.1–24 By studying only the temperature depen-
dence of the phase coherence time it is very difficult to dis-
criminate experimentally whether a saturating decoherence
time is observed or not. Firstly, several precautions have to
be taken such that an experimentally observed saturation is
not caused by either external radio frequency propagating
along the measuring lines or by the determination of the
actual electron temperature of the sample which is not al-
ways straightforward. Secondly, even if all these require-
ments are fulfilled, a small inclusion of magnetic impurities
will always lead to a saturating decoherence time at very low
but finite temperature.10,12,13 In addition, to avoid magnetic
impurities in metallic systems is extremely difficult as me-
tallic sources cannot be purchased with a guaranteed impu-
rity level below the parts per million level. It is hence clear
that simply studying the temperature dependence is not suf-
ficient to give a definite answer to the saturation problem. A
different approach to this problem can be done by studying
the diffusion coefficient dependence of the decoherence time.
Compared to the AAK theory, the GZ theory predicts a much
stronger diffusion coefficient dependence of �� at very low
temperatures58 as detailed below. This can be tested with the
present experiment.

According to the GZ theory, ���T� intrinsically saturates
at zero temperature in the ground state of a disordered con-

ductor at a finite value ��
0 due to the fluctuations of the elec-

tromagnetic field generated by an electron and which is ex-
perienced by the other electrons.3,4 The finite value depends
strongly on the intrinsic disorder. In particular, the GZ theory
predicts that ��

0 �D2 for 2D and ��
0 �D for 1D.59,60 Note that

the dimensionality here is determined in terms of le; the
former case should be applied in the diffusive regime where
L ,w� le while the latter case should be applied in the semi-
ballistic regime where L� le�w.61 The AAK theory, on the
other hand, predicts a very slow D dependence of the
dephasing time, i.e., ���D1/3, as shown in Eq. �3�.

The fact that we do not see any apparent saturation in the
temperature dependence of �� or L� for all samples investi-
gated �see Fig. 14� seems already in contradiction with the
GZ theory. Nevertheless, we will adopt the method proposed
in Ref. 60 to extract the saturation time ��

0 . This can be done
by plotting the inverse of the dephasing time �dephasing rate�
as a function of temperature on a linear scale. By extrapolat-
ing a linear fit to the low-temperature data down to zero
temperature �in our case we take all the data below 150 mK
for the fitting�, one obtains ��

0 as shown in Fig. 19. For com-
parison we also plot the theoretical expectation within the
AAK theory. We then determine ��

0 in the same way for all
diffusion coefficients investigated. This is shown in Fig. 20
for three wires with different width as well as for the Hall
bars. For our data we obtain a very weak variation in ��

0 as a
function of diffusion coefficient. It is clear that the diffusion
coefficient dependence of ��

0 is much weaker than the one
expected within the GZ theory �dotted and dashed-dotted
lines�. One could of course argue that our measurements do
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not extend to low enough temperature and that the saturation
of �� will only occur at lower temperature. This contrasts
however with the fact that for metals with similar diffusion
coefficients very frequently a saturation of �� is observed at
much higher temperatures. These facts therefore suggest that
the frequently observed low-temperature saturation of �� is
not intrinsic.

VI. TEMPERATURE DEPENDENCE OF THE
RESISTANCE

As mentioned above, an important issue in this paper is
decoherence at zero temperature. For decoherence measure-
ments at very low temperatures, it is important to know the
actual electron temperature of the sample which can be quite
different than that of the thermal bath. In order to probe the
electron temperature of the 2DEG in situ, we have used the
temperature dependence of the Altshuler-Aronov correction
term as detailed in Sec. VI A.

A. Altshuler-Aronov correction

In the diffusive regime, the electrical resistance of a quan-
tum wire �or Hall bar� consists of different contributions

R�B,T� = Rres + Re-ph�T� + �RWL�B,T� + �RAA�T� + ¯ .

�12�

The first term Rres corresponds to the residual resistance and
the second term comes from the e-ph interactions. At high
temperatures Re-ph simply follows a T-linear dependence and
vanishes as temperature goes to zero. The third term is the
WL quantum correction term, which has already been de-
scribed in Sec. III A. The last term is the so-called Altshuler-
Aronov �AA� correction.62 At low temperatures, the e-e in-
teractions are responsible for a small depletion of the density
of states at the Fermi energy which leads to a correction to
the resistivity. Basically, the WL and AA corrections are of
the same order but the latter can be distinguished from the
former by applying a small magnetic field which suppresses
the WL correction. The AA correction in the quasi-1D case is
given as below

�RAA�T� � R�T� − Rres = 0.782��Rres
2 N

e2

h

LT

L
= Rres

2 Atheo

�T
.

�13�

The parameter �� is a constant, which represents the strength
of the screening of the interactions. In the quasi-1D case, one
has ��=4−3F /2, where F is the screening factor varying
from 0 for an unscreened interaction to 1 for a perfectly
screened interaction. In a similar manner, one can obtain the
2D AA correction in the limit T�
 / �kB�e�,

�RAA�T� = ��Rres
2 e2

2�h

w

L
� − ln�2�kBT�e



�� , �14�

where ��0.577 is the Euler constant and ��=2−3F /2.

B. Experimental results in the diffusive regime

At fields high enough to suppress the WL correction
�B=150–500 G�, the resistance of a quasi-1D metallic wire
follows a 1 /�T law due to electron-electron interactions and
can be used as a “thermometer” to probe the effective elec-
tron temperature.10 For this purpose, we plot the resistance
of our 1000 nm wide wire as a function of 1 /�T in the inset
of Fig. 21. It follows nicely the 1 /�T dependence down to
40 mK.63 Below this temperature it starts to deviate from the
1 /�T law. This is also observed for wires with different
widths and different diffusion coefficients. To show the de-
viation more clearly, �R−Rres� /Rres

2 is plotted as a function of
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temperature in Fig. 21, where Rres is obtained by extrapolat-
ing the R vs 1 /�T curve down to zero �see inset of Fig. 21�.
Assuming that the 1 /�T dependence of the resistance holds
down to the lowest temperature, we obtain an effective elec-
tron temperature of 25 mK at the base temperature of our
cryostat. This fact is also confirmed by the temperature de-
pendence of the phase coherence length �see Fig. 7�. There-
fore, all our data have been temperature corrected below 40
mK.

In Fig. 22, the resistance variation in the 2D Hall bar for
D=46 cm2 /s is plotted as a function of T on a semilog scale.
As expected from Eq. �14�, the AA correction term follows a
ln�T� law down to 40 mK. Like in the case of quasi-1D
wires, below this temperature the resistance deviates from
the theoretical expression. In a similar manner we correct the
actual temperature below 40 mK.

C. Experimental results in the semiballistic regime

In the semiballistic regime where le�weff, we find an un-
expected temperature dependence of the resistance. In Fig.
23, a resistance vs 1 /�T curve in this regime

�D=3500 cm2 /s� is compared to that in the diffusive regime
�130 cm2 /s�. As discussed above, in the diffusive regime
and at fields high enough to suppress WL the resistance fol-
lows nicely a 1 /�T law in the entire temperature range. In
the semiballistic regime, on the other hand, we observe a
deviation from the 1 /�T law below 150 mK which is some-
what unexpected.

In this regime one has to be careful about the applied
magnetic field to suppress WL such that it does not affect the
trajectories of the electrons, in other words, does not lead the
SdH oscillations. According to Ref. 64, the AA correction to
resistance is independent of B when the condition B /B��1
is satisfied. We have therefore measured the e-e interaction
correction for different magnetic fields as shown in Fig. 23.
For fields lower than 170 G �B /B�=1� we do not observe a
significant change in the temperature dependence and we can
rule out the possibility that the observed temperature depen-
dence is due to the applied magnetic field. It is also unlikely
that the observed temperature dependence is due to a decou-
pling of the electrons from the thermal bath since the phase
coherence length nicely follows the AAK theory down to the
lowest temperatures as shown in Fig. 14. We also exclude the
possibility that this temperature dependence results from
a dimensional crossover when the thermal length
LT=�
D /kBT becomes comparable to the width of the wire
weff.

63

When entering the semiballistic regime �le�weff�, as the
scattering at the boundaries in our wires is mostly specular,
the temperature dependence of the e-e interactions may be
influenced65,66 and modified by an additional logarithmic
term at intermediate temperatures �kBT�e /
�1�.

In the following, we will try to fit the observed tempera-
ture dependence of the e-e interaction correction by a com-
bination of a 1 /�T and a logarithmic term

�RAA�T�
Rres

2 =
Aexp

�T
+ Bexp ln�T� . �15�

This is shown in Fig. 24. Indeed, fitting with Eq. �15� repro-
duces fairly well the observed temperature dependence in the
semiballistic regime �see dashed-dotted lines in Fig. 24�.
Deep in the semiballistic regime, we see a relatively strong
deviation from the 1 /�T dependence. By decreasing the dif-
fusion coefficient, the temperature dependence becomes
more and more 1D like and turns completely into the 1D
regime when entering the diffusive regime �le�weff�. From
fitting the data with Eq. �15� we can extract the values of the
prefactors of the 1D �Aexp� as well as logarithmic behavior
�Bexp� as shown in Fig. 25. We observe that the prefactor of
the 1D contribution is proportional to D1/2 as expected from
Eq. �13�. In addition, Aexp shows no wire width dependence,
which is consistent with Eq. �13�. In the diffusive regime
�D�1000 cm2 /s�, the logarithmic contribution is negli-
gible. However, when entering the semiballistic regime, the
prefactor of the logarithmic contribution becomes compa-
rable to the 1D term and dominates the 1D term for our
cleanest samples. In the overall temperature dependence, the
additional logarithmic contribution shifts the crossover tem-
perature where the 1D AA behavior dominates to much
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FIG. 22. �Color online� Resistance variation in the Hall bar at
D=46 cm2 /s as a function of T. The broken line shows a ln�T� law.
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lower temperatures. This is in line with the crossover calcu-
lated in Ref. 66 where the crossover temperature T� is renor-
malized due to the electron-electron interactions.

VII. STRONGLY LOCALIZED REGIME

So far, we have discussed decoherence in the weakly lo-
calized regime for quasi-1D wires and 2D Hall bars. In that
regime, one has to meet conditions such that the kFle value is
much larger than 1 and also the localization length �loc is
much larger than L�. By increasing the disorder, however,
one can reach a regime where kFle is on the order of 1 and
which is usually referred to as the strongly localized regime.
In this last section we will present measurements of the re-
sistance as well as the phase coherence length in quasi-1D
wires and 2D Hall bars in this regime.

A. 2D Hall bars

For the 2D case a fair amount of experimental67–77 as well
as theoretical works78–83 can be found in the literature. It is

commonly believed that the conduction process in the
strongly localized regime is attributable to 2D variable range
hopping and several experiments support this
assumption.69–72 On the contrary, the question on how deco-
herence is affected when going from the weakly localized to
the strongly localized regime is still open.

This problem has been studied mainly in semiconductor
heterojunctions with 2DEGs.69–77 In such 2D systems, an
estimation of the localization length �loc

2D is given by74,75

�loc
2D = le exp��

2
kFle� =

2�2�m�

�nh
D exp�2�2m�

h
D� .

�16�

When �loc
2D becomes comparable or smaller than the phase

coherence length L�, one enters the strongly localized re-
gime.

In Fig. 26 we show Rxx and Rxy at kFle=0.95
�or D=8 cm2 /s� at T=100 mK. At B�2 T, we can still
observe the 	=2 quantum plateau where Rxx=0. At low
fields, Rxx shows a large negative magnetoresistance which is
more than ten times larger than h /e2 for B=0. In order to see
how Rxx evolves with temperature in the low-field region, we
plot the magnetoresistance for different temperatures on a
semilog plot in Fig. 27�a�. With decreasing temperature, the
peak height exponentially grows but the shape of the mag-
netoresistance seems to be similar to that in the weakly lo-
calized regime down to T�100 mK �see Fig. 8�. Below this
temperature, Rxx near zero field is extremely enhanced. Such
a large negative magnetoresistance is probably a precursor of
the exp�−�B� law expected in the model of interference ef-
fects in variable range hopping.83 Let us now discuss in more
detail the temperature dependence of the resistance at zero
field and at a field of 2000 G where the WL correction is
basically suppressed. As seen in Fig. 27�b�, above 1 K Rxx
follows a ln�T� dependence as expected in the weakly local-
ized regime �see Fig. 22�. Below 1 K, Rxx deviates from the
ln�T� law and can be fitted to a 2D variable range hopping
law R�T��exp�TM /T�1/3; TM =300 and 28 mK for 0 G and
2000 G, respectively. Such a behavior has already been seen
in other experiments in the strongly localized regime.69–72

As pointed out above, the shape of the magnetoresistance
is similar to that in the weakly localized regime. Although
the WL theory Eq. �7� is, in principle, only applicable in the
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weakly localized regime, we nevertheless fit the magneto-
conductance curves with Eq. �7� as shown in Fig. 28�a� at
temperatures higher than 60 mK. A similar approach has al-
ready been done by Minkov et al.73,75 Let us recall that Eq.
�7� is limited to a small field range within Bc=
 /4eL�

2 . At
high temperatures, the fitting works very well in a relatively
wide field range. Going to lower temperatures, the fitting
region is getting smaller which indicates that L� increases.
The obtained L� from the WL theory is plotted as a function
of T in Fig. 28�b�. The phase coherence length L� of the Hall
bar in the strongly localized regime follows a power law Tp

at low temperatures as indicated by the solid line, just like in
the weakly localized regime, but with a smaller exponent
p=−0.32. Such a temperature dependence is very similar to
what has been observed in Ref. 74 for similar values of kFle.
In that work,74 the exponent varied from p=−0.5 to −0.3
when reducing kFle�5 down to kFle�1, similar to our ob-
servations.

Within the theoretical approach of the phase coherence in
the Anderson localization regime proposed by Vollhardt and
Wölfle,79,82 the conductivity can be calculated for arbitrarily
weak disordered systems. Their self-consistent theory leads
to the following equation for the conductivity �xx�T�:73

 �xx�T�
�e2/�h�

+ ln��xx�T�
e2/�h

�� = �kFle + ln��kFle�

− 2 ln�L��T�
le

� , �17�

where we assume that L�=�D�� and L�� le. Strictly speak-

ing, Eq. �17� is valid only when kFle�1. Nevertheless, in-
spired by Ref. 73, we plot the left side of Eq. �17� for
B=0 G as a function of T in Fig. 28�c�. It exhibits a ln�T�
dependence over the whole temperature range.84 Such a
ln�T� law is expected if one assumes a power law for the
temperature dependence of the phase coherence length. From
the slope of the left side of Eq. �17� vs T curve, we can
determine the exponent of L��T� 	L��T��Tp
. Interestingly,
we again obtain p�−0.32 which is identical to the one ob-
tained when fitting the temperature dependence of the mag-
netoconductance with the WL theory 	see Fig. 28�b�
. This
hints to the conclusion that when going from the weakly
localized to the strongly localized regime the temperature
dependence of L� is still diverging with decreasing tempera-
ture with a power law but with a smaller exponent compared
to the weakly localized regime.
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Before closing this section, let us mention the diffusion
coefficient dependence of the phase coherence length in 2D
systems. In Fig. 29, we plot L� obtained at T=60 mK in 2D
Hall bars as a function of D. In the weakly localized regime,
L� nicely follows the formula based on Eq. �4� as shown in
the dashed-dotted line in Fig. 29. With decreasing D, this
formula diverges because of the logarithmic term in Eq.

�4�,85 and the 2D localization length �loc
2D becomes smaller

than the phase coherence length. In the strongly localized
regime at zero temperature electrons should be localized
within a length scale of �loc

2D. At finite temperatures, on the
other hand, they can hop from one island with a size of �loc

2D

to another, and this hopping process gives rise to the expo-
nential increase in the resistance as shown in Fig. 27�b�.
During this process the phase coherence of the electrons
should be maintained within a length scale of L�. Thus, in
the strongly localized regime, the phase coherence length L�

can be larger than the localization length �loc
2D.

B. 1D wires

In the case of quasi-1D wires, the localization length �loc
1D

depends on the effective width of the wires and the diffusion
coefficient as below86,87

�loc
1D =

kFle

�
weff =

4m�

h
weffD . �18�

Since L� varies proportionally to D2/3 in the diffusive re-
gime, L� can be fine tuned such that it becomes close to �loc

1D.
For the case of our wires this should occur in the diffusion
coefficient range from D=30 to 300 cm2 /s for T=25 mK.
This is shown in Figs. 30�a�–30�c�, where we plot the theo-
retical localization length �loc

1D as well as the expected phase
coherence length L�

AAK at our lowest temperature
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QUANTUM COHERENCE AT LOW TEMPERATURES IN… PHYSICAL REVIEW B 81, 245306 �2010�

245306-15



T=25 mK as a function of D for three different widths of the
wires.

In Figs. 30�d�–30�f�, we show the temperature depen-
dence of measured R�T� and L�. Here, L� has been obtained
again by fitting the magnetoconductance to the WL theory.88

Above 200 mK, the resistance of the wires still follows a
1 /�T law which is attributable to the AA correction in the
diffusive regime. Below this temperature, the resistance de-
viates from the 1 /�T law and diverges exponentially. On the
other hand, the phase coherence length L� follows again a
power law, but with an exponent smaller compared to the
diffusive regime 	see dashed-dotted line for L��T� in Fig.
30
. The qualitative behavior is indeed similar to the 2D
case.

The exponential divergence of R�T� can be fitted to dif-
ferent exponential laws, like the simple activation law89

R�T� � exp�T0/T� �19�

or the 1D variable range hopping law

R�T� � exp��TM/T�1/2� . �20�

For instance, R�T� for weff=1130 nm wide wires nicely fol-
lows Eq. �19� down to the lowest temperature,90 whereas the
variable range hopping does not give satisfactory results. On
the other hand, for weff=630 and 320 nm wide wires, it can
also be fitted by the activation law, Eq. �19�, down to
�150 mK, but the 1D variable range hopping law, Eq. �20�,
gives better fitting precisions down to lower temperatures.
The two fitting parameters T0 in Eq. �19� and TM in Eq. �20�
are listed in Table III.

Similar behavior of L��T� and exponential divergence of
resistance in quasi-1D conductors have already been reported
by Gershenson and co-workers.86,91 They claim that �i� the
exponential divergence of resistance is due to the activation
law, �ii� the crossover temperature T� where L�

AAK�T��=�loc
1D is

close to T0, and �iii� L� deviates �saturates� at certain tem-
perature �Tdev� as the temperature approaches T0. These ob-
servations are qualitatively consistent with our experimental
data. However, we observe clear quantitative disagreement
among the three different temperatures T�, Tdev, and T0 which
are more or less similar in Refs. 86 and 91. It is therefore
highly desirable to investigate theoretically the detailed
mechanisms of L� and R�T� in quasi-1D conductors near the
crossover point from the weakly localized to strongly local-
ized regime.

In this section, we have confirmed that in the strongly
localized regime the phase coherence time is diverging with
a power law at low temperatures. The exponent is reduced
compared to the weakly localized regime when the system
approaches the strongly localized regime. Let us remind,
however, that for the extraction of the exponent we applied
the WL formula in a regime where it should, in principle, not
be valid. On the other hand, our data seems to show that the
WL theory gives a very good description of the magnetocon-
ductance of quasi-1D and 2D mesoscopic conductors beyond
the weakly localized regime both in the semiballistic and
strongly localized regimes.

VIII. CONCLUSIONS

We have studied the disorder dependence of the phase
coherence time �� of quasi-1D wires and 2D Hall bars made
from a 2D electron gas. By implanting locally gallium ions
into the doping layer of the heterostructure using a focused
ion beam microscope, we have been able to change the elec-
tronic diffusion coefficient D over 3 orders of magnitude.
This allowed to explore various physical regimes, namely,
the semiballistic, the weakly localized and the strongly local-
ized regimes. In the weakly localized regime, the tempera-
ture as well as the diffusion coefficient dependence of the
phase coherence time is in extremely good agreement with
the “standard model” of decoherence proposed by AAK. In
particular, for quasi-1D wires, the diffusion coefficient de-
pendence of the phase coherence time follows a D1/3 power
law, while the temperature dependence follows a T−2/3 power
law. Similar observations have been found for the 2D sys-
tem: the phase coherence time �� follows a T−1 law as ex-
pected within the AAK theory. We do not see any sign of
saturation of the phase coherence time down to a temperature
of 25 mK. In the semiballistic regime where the elastic
mean-free path is larger than the width of the wires, we have
found a regime where �� is independent of the diffusion
coefficient. In this regime, the temperature dependence of ��

is identical to that of the one observed in the weakly local-
ized regime. In the strongly localized regime, where the re-
sistance diverges exponentially with decreasing temperature,
we still observe a diverging phase coherence time, however
the exponent of the power law is decreased compared to the
weakly localized regime.
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TABLE III. Fitting parameters of the activation and 1D variable
range hopping laws.

weff

�nm�
D

�cm2 /s�
T0

�mK�
TM

�mK�
T�

�mK�

1130 71 25 9

630 170 45 30 12

320 290 51 39 28
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