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A quantum two-path interferometer allows for direct measurement of the transmission phase shift

of an electron, providing useful information on coherent scattering problems. In mesoscopic

systems, however, the two-path interference is easily smeared by contributions from other paths,

and this makes it difficult to observe the true transmission phase shift. To eliminate this problem,

multi-terminal Aharonov-Bohm (AB) interferometers have been used to derive the phase shift by

assuming that the relative phase shift of the electrons between the two paths is simply obtained

when a smooth shift of the AB oscillations is observed. Nevertheless, the phase shifts using such a

criterion have sometimes been inconsistent with theory. On the other hand, we have used an AB

ring contacted to tunnel-coupled wires and acquired the phase shift consistent with theory when the

two output currents through the coupled wires oscillate with well-defined anti-phase. Here, we

investigate thoroughly these two criteria used to ensure a reliable phase measurement, the

anti-phase relation of the two output currents, and the smooth phase shift in the AB oscillation. We

confirm that the well-defined anti-phase relation ensures a correct phase measurement with a quan-

tum two-path interference. In contrast, we find that even in a situation where the anti-phase relation

is less well-defined, the smooth phase shift in the AB oscillation can still occur but does not give

the correct transmission phase due to contributions from multiple paths. This indicates that the

phase relation of the two output currents in our interferometer gives a good criterion for the

measurement of the true transmission phase, while the smooth phase shift in the AB oscillation

itself does not. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4928035]

The transmission phase of an electron plays a crucial

role in various quantum interference phenomena. Full char-

acterization of the coherent transport therefore requires a

reliable phase measurement, but this is still challenging. One

may envisage a quantum two-path interferometer because

the interference is measured as a function of the phase differ-

ence between the two paths. For instance, the phase shift

across a quantum dot (QD), in which one can control the

quantum state of single electrons, can be measured using a

QD embedded in one of the two arms of the interferometer.

The theory predicts a Breit-Wigner type phase shift across a

Coulomb peak (CP)1 and a p=2 phase shift across a Kondo-

singlet state2 and both were experimentally investigated.

The Breit-Wigner type phase shift was confirmed by a

pioneering experiment for a QD embedded in a multi-

terminal Aharonov-Bohm (AB) interferometer.3 The phase

shift was derived from a smooth shift of AB oscillation

phase. However, unanticipated results have sometimes been

observed, such as a universal phase lapse between CPs for a

large QD3,4 and a large phase shift exceeding p across two

CPs of a spin degenerated level for a Kondo correlated

QD.5,6 Although several mechanisms have been proposed to

account for the universal phase lapse,7–12 origins of the

behavior remain unaccounted. This is also related to the fact

that only a few experiments have been reported for the phase

measurement3,4,13 due to difficulty in realizing a reliable

phase measurement for QDs. In a two-terminal AB interfer-

ometer, which is usually considered as a two-path interfer-

ometer, the phase of the AB oscillation is fixed to either 0 or

p at zero magnetic field due to the boundary conditions

imposed by the two-terminal geometry, whereas the real

transmission phase across the QD is not. The 0–p rigidity of

the observed phase called phase rigidity1,14 therefore implies

that the two-terminal AB ring is not a true two-path interfer-

ometer; because not only direct two paths but also paths of

an electron encircling the AB ring multiple times contribute

to the interference.

A multi-terminal3–6,15,16 as well as a multi-channel17

AB interferometer were employed to avoid the phase rigidity

and to measure the transmission phase shift across a

gate-defined QD embedded in one of the two arms. In these

experiments, lifting of the phase rigidity was confirmed by

observation of a smooth phase shift with gate voltage at a

fixed magnetic field. On the other hand, lifting of the phase

rigidity does not readily ensure that the observed interference

is a pure two-path interference. There is a possibility thata)Electronic mail: shintaro.takada@neel.cnrs.fr
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contributions from multi-path interferences18,19 still remain.

Previously we have developed a new type of interferometer

realized in an AB ring contacted to tunnel-coupled wires. It

can be tuned into a two-path interferometer in the weak

tunnel-coupling regime when the two output currents

through the two coupled wires oscillate with magnetic field

but opposite phase.20–22 We have used this original device to

investigate the transmission phase shift across a Kondo cor-

related QD and obtained a very good agreement for the phase

shift between experiment and theory by carefully analyzing

the anti-phase oscillations.23 In addition, we have noticed

that a smooth phase shift as a function of gate voltage can be

observed even when the contributions from other than the

direct two-paths exist. Here, a question, on how reliable the

phase measurement in such a situation is, is raised. This is,

indeed, a serious problem because all previous experiments

relied on the observation of such a smooth phase shift to

derive the phase shift and the results often showed disagree-

ment with theory.

In this letter, we experimentally address this question.

We investigate the influence of multi-path interferences on

the phase measurement by analyzing both anti-phase and

non-anti-phase AB oscillations between the two output cur-

rents through the coupled wires. We show that the smooth

phase shift at a fixed magnetic field is observed even when

contributions of interferences from multiple paths are pres-

ent. In this case, however, we observe no well-defined

anti-phase AB oscillations and find that the measured phase

shift deviates significantly from the theoretically expected

transmission phase shift. In contrast when we observe the

anti-phase AB oscillation, the derived phase shift is in very

good agreement with theory. We thus conclude that the anti-

phase oscillations of the two output currents are a hallmark

of a reliable phase measurement while the smooth phase shift

as observed for a multi-terminal geometry is not.

The device was fabricated on a two-dimensional electron

gas formed in a GaAs/AlGaAs heterostructure [electron

density n ¼ 3:21� 1011 cm�2, electron mobility l ¼ 8:6
�105cm2=Vs at the temperature of T¼ 4.2 K; see Fig. 1].

The interferometer was defined by applying negative voltages

on surface Schottky gates and locally depleting electrons

underneath the gates. It consists of an AB ring at the center

and tunnel-coupled wires on both ends of the ring. The cou-

pling energy of the tunnel-coupled wires can be controlled by

the gate voltages VT1 and VT2. The gate voltages VM1; VM2

(VM3; VM4) are used to modulate the wave vector of electrons

in the upper (lower) path. A QD can also be formed by apply-

ing the gate voltages VL; Vp, and VR. We measured two sam-

ples with a slightly different size of the AB ring and QD

(devices A and B). The data shown in Figs. 2 and 3 were

measured in device A and that in Fig. 4 for device B.

Electrons are injected from the lower left contact by applying

an AC bias (20� 100 lV, 23.3 Hz) and currents are measured

at the two right contacts by voltage measurements across

the resistance (I1ð2Þ ¼ V1ð2Þ=R) using a standard lock-in

technique.

We first tuned the tunnel-coupled wires into the weak

coupling regime such that the interferometer works as a two-

path interferometer, where the two output currents oscillate

with anti-phase as shown in Fig. 2(a). For panels (a)–(c) of

Fig. 2, we plot the oscillating components of the currents as

a function of magnetic field, which are obtained by perform-

ing a complex fast Fourier transform (FFT) of the raw data,

filtering out the noise outside the oscillation frequency and

performing a back transform. The two-path interference is

sensitive to the difference of the transmission phase shift

between the two paths across the AB ring h ¼
Þ

k � dl
� e

�h BSþ udot. The first term is the geometrical phase

depending on the path length l and the wave vector of an

electron k, the second term is the AB phase controlled by the

magnetic field B penetrating the surface area S enclosed by

the two paths, and the third term is the transmission phase

shift across the QD, respectively. Fig. 2(a) shows the phase

shift induced by the modulation of the AB phase.

FIG. 1. SEM picture of device A and measurement setup. Output currents

are measured for a constant voltage bias Vsd as a voltage across the resist-

ance R ¼ 10 kX. Dashed lines indicate electron trajectories for the two-path

interference.

FIG. 2. (a)–(c) Quantum oscillations as a function of magnetic field B
observed in I1 (black line) and I2 (red line) in the weak tunnel-coupling re-

gime. Only oscillating parts extracted from raw data by performing a com-

plex fast Fourier transform (FFT) are plotted. Three figures are measured at

the different gate voltages of DVM1;2, which are indicated in (d). (d)

Modulation of geometrical phase as a function of B and DVM1;2. The oscil-

lating components with B extracted from a complex FFT of (I ¼ I1 � I2) are

plotted in the plane of B and DVM1;2. The black solid lines are added to high-

light the change of the slope.
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We then measured the phase shift induced by modula-

tion of the geometrical phase, where the wave vector of elec-

trons passing through the upper path is controlled by the gate

voltages VM1 and VM2. Here, VM1 and VM2 are shifted

simultaneously by the same amount. The result is shown in

Fig. 2(d). The oscillating part of I ¼ I1 � I2 as a function

of magnetic field, which mainly consists of the anti-phase

components, is plotted for the gate voltage shift VM1;2 along

the vertical axis around the configuration used for the

measurement of Fig. 2(a). Around DVM1;2 ¼ 0, where the

anti-phase oscillations of the two output currents are

observed, the phase smoothly shifts along the vertical axis

with a certain slope. Around the gate voltage shift from

�5 mV to �25 mV and the magnetic field range from

�15 mT to �30 mT, the phase smoothly shifts as well but

with a slightly different slope as indicated with the black

solid lines, where the two output currents do not oscillate

with anti-phase as shown in Fig. 2(b). For the more negative

voltage shift and the magnetic field range from �30 mT to

�45 mT, abrupt phase jumps of p along the vertical axis are

observed similar to a two-terminal device that suffers from

the phase rigidity. In this region, the two output currents

oscillate in phase as shown in Fig. 2(c).

The anti-phase oscillations of the two output currents

indicate that the total current (I1 þ I2) is independent on h.

This is a clear indication that interferences coming from

encircling paths around the AB ring are absent and hence the

realization of the pure two-path interference as depicted by

the dashed lines in Fig. 1. On the other hand, when the two

output currents do not oscillate with anti-phase, paths encir-

cling the AB ring also contribute to the interference even

though the magneto oscillations still show a smooth phase

shift as a function of gate voltages at a fixed magnetic field.

In such a case, however, the observed phase shift is modified

from the true transmission phase shift as we will demonstrate

in the following.

First, we show that the phase relation between the two

output currents is a good criterion to exclude the contribu-

tions of multi-path interferences and allows for a reliable

measurement of the transmission phase shift. For this, we

carefully tuned the interferometer to observe the anti-phase

oscillations as shown in Fig. 3(b). For this condition, we

observed a smooth phase shift induced by the modulation of

the geometrical phase through VM3;4 with a single constant

slope [Fig. 3(a)]. At the same time, we also measure the

transmission phase shift across a QD, where the experimen-

tal results can be compared with theory1,3,23 [Figs. 3(c) and

FIG. 3. (a) Transmission phase shift by modulation of geometrical phase in anti-phase configuration. Quantum oscillations as a function of magnetic field

extracted from the FFT analysis of (I ¼ I1 � I2) are plotted for different gate voltage shifts of DVM3;4. (b) The oscillating part of I1 (black) and I2 (red) of the

data shown in (a) at DVM3;4 (blue dashed line). (c) Transmission phase shift across a Coulomb peak in the anti-phase configuration. The phase obtained from

experiment is shown by the red circles for left axis with the phase behavior expected theoretically (red solid line). The I2 averaged over one oscillation period

of magnetic field is plotted on the right axis with the Lorentzian fit of I2 (black solid line). (d) Oscillating part of I1 (black) and I2 (red) of the data shown in (c)

at Vp indicated by the blue dashed line.

FIG. 4. (a) Influence of multi-path interference on the transmission phase shift

across a Coulomb peak. The phase shift indicated by the blue (red) circles is

extracted from (I1 � I2) for the oscillating two output currents with poorly

(well) defined anti-phase. The red solid line shows the calculation of the phase

using Friedel’s sum rule. The black triangles indicate the measured current I2

at each Vp averaged over one oscillation period of magnetic field and the black

solid line is the Lorentzian fit. (b) and (c) Quantum oscillations of the two out-

put currents I1 in black and I2 in red measured at the Vp indicated by (b) and

(c) in (a). Oscillating components extracted by a complex FFT are plotted here.
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3(d)]. The QD is formed by tuning the gate voltages VL; Vp,

and VR and the phase shift across a CP is observed by record-

ing quantum oscillations as a function of magnetic field at

each value of the plunger gate voltage Vp. This result is pre-

sented in Fig. 3(c). The current I2 averaged over one oscilla-

tion period of the magnetic field mimics the shape of the CP

with a finite background current coming from the current

through the upper path of the AB ring. The black solid line is

a Lorentzian fit of the CP, which is used to calculate the

transmission phase shift expected from Friedel’s sum rule

and depicted by the red solid line.1,3,23 The numerical values

of the observed phase shift are obtained from a complex FFT

of (I1 � I2). The observed phase shift is in good agreement

with the theoretically expected p-phase shift. This result con-

firms that the phase evolution obtained under the condition

of anti-phase oscillations of the two output currents is the

true transmission phase shift observed for the pure two-path

interference.

We now turn to the phase shift measurements when the

two output currents are not kept anti-phase over the entire

gate voltage (Vp) scan across a CP. The measured phase shift

is shown in Fig. 4(a). The phase smoothly shifts across the

CP by 1:5p, which is inconsistent with the p-phase shift

expected from Friedel’s sum rule (red solid line). In this

data, the two output currents oscillate with anti-phase for Vp

only around the center of the CP (red circles) as shown in

Fig. 4(b). For the entire other range (blue circles), they do

not oscillate with anti-phase as shown in Fig. 4(c) and hence

the measured phase shift must contain contributions from

multi-path interferences. The larger phase shift observed

here must therefore come from the additional multi-path con-

tributions. Such contributions from multi-path interferences

might explain the unexpected large phase shift across Kondo

correlated Coulomb peaks observed in the previous experi-

ments.5,6 Note that we consider the oscillations as non-anti-

phase when the phase difference between the two outputs is

deviating more than 10% (�0:2p) from the anti-phase. The

phase measurements with anti-phase oscillations within this

error are in good agreement with theoretical expectations as

shown in Fig. 3(c).

In the weak tunnel-coupling regime, the device has four

terminals and hence each output current is not bound to the

phase rigidity. This allows for observation of a smooth phase

shift induced by the gate voltage at a fixed magnetic field.

However, in case we fail to keep an anti-phase relation

between the two output currents, the obtained phase shift can

be modified by multi-path contributions and the phase shift

is inconsistent with theory.

Finally, we discuss the key to realize a pure two-path in-

terference in an AB ring contacted to tunnel-coupled wires.

As we already pointed out in our earlier experimental20 and

theoretical21,22 works, the most important factor is to make

the tunnel-coupling weak enough to suppress the encircling

paths. In addition, a smooth potential connection between

the AB ring and the tunnel-coupled wires is important. As

seen from Fig. 2(d), the gate voltages VM1 and VM2 play a

crucial role to realize the anti-phase oscillations or two-path

interference. The gate voltages VM1 and VM2 are not effective

for the tunnel-coupling strength, but effective for the poten-

tial profile at the transition regions between the ring and the

coupled wires. This suggests that the key is not only the

weak tunnel-coupling but also a smooth potential connection

between the AB ring and the tunnel-coupled wires. In other

words, one needs to suppress backscattering of an electron

into the other path at this transition region. Indeed, the

importance of the smooth potential connection is also men-

tioned in Ref. 21. However, note that smooth here is not with

respect to the Fermi wave-length: since the 2DEG is 100 nm

away from the gate electrodes, the potential profile is smooth

with respect to the Fermi wavelength for all gate voltages in

Fig. 2(d). The required smoothness depends on the tunnel-

coupling energy and the potential profile of the two wires at

the transition regions, although it is difficult to explore

experimentally the detail of the connection of the wave func-

tion due to the existence of many channels in each path.

In summary, we employed an AB ring with tunnel-

coupled wires to demonstrate how to measure the true trans-

mission phase of an electron. We find that lifting the phase

rigidity, i.e., the observation of a smooth phase shift at a

fixed magnetic field in a multi-terminal AB interferometer,

does not ensure a correct measurement of the true transmis-

sion phase. Our original AB interferometer, on the contrary,

allows for the measurement of the true transmission phase

shift by simply tuning it into a regime where the two output

currents oscillate with anti-phase. This interferometer is

hence extremely suitable to investigate unsolved problems

related to the transmission phase such as the universal phase

behavior for large quantum dots.3,4
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