In this paper, we report on the transport properties of nanostructured boron doped diamond thin films. The nanostructures made from polycrystalline boron doped diamond show clear evidence of superconductivity with critical temperatures in the Kelvin range and critical field in the Tesla range. Such robust superconducting properties in these superhard materials make them promising candidates for superconducting nanoelectromechanical systems.

1 Introduction

The huge interest seen in the special class of superconducting materials belonging to the covalent metals started with the discovery of superconductivity in MgB2 [1]. Ekimov et al. [2] in 2004 reported the superconducting properties of boron doped diamond for the first time. This led to the study of superhard superconducting materials [3, 4]. Apart from the mechanism of superconductivity in these systems, which remain largely unexplored, the very high Young’s modulus of boron doped diamond makes it a front runner for making nanoelectro mechanical systems (NEMS) of exceptional high quality factor. Before realizing any NEMS made from boron doped diamond it is, however, essential to prove that both the qualities of this system, i.e. superconductivity [5–7] and mechanical properties [8], are preserved when nanocrystalline layers grown on non-diamond substrate are nanopatterned. Earlier studies in this system have concentrated their attention towards the bulk properties of this system. Hence, it is quite essential to investigate the properties of nanostructured boron doped diamond.

In this paper, a comprehensive study of nanostructured superconducting polycrystalline diamond films is presented. It is shown that these nanostructures have superconducting critical parameters like transition temperature and critical field comparable to that of bulk materials.
shown. The wafer was spin coated with 4% polymethyl-
methacrylate (PMMA) to form a 250 nm thick layer which
was prebaked at 180 °C for 5 min. This PMMA layer was
exposed to electron beam with a dose of 360 μC cm⁻² for an
acceleration voltage of 20 kV. For the development of the
exposed wafer, the wafer was dipped in 1:3 solution of
methyl isobutyl ketone (MIBK) and isopropyl alcohol (IPA)
for 1 min. A thin layer of nickel (65 nm) was then deposited
and patterned using a standard electron-gun evaporator and
lift-off technique. This was followed by plasma etching of
diamond structures using electron cyclotron resonance
oxygen plasma [11] and a −27 V dc bias for 8 min. This
leads to an etching rate of ≈40 nm/min. The nickel layer
acted as a mask in this process. The nickel layer was removed
using FeCl₃ solution and ohmic contacts were then obtained
by an evaporation of metals (Ti–Au).

In Fig. 2, a typical microcircuit fabricated by electron
beam lithography technique is shown. The bottom left panel
in the figure shows the picture of the line with the smallest
width ≈80 nm, which is ≈500 nm long and ≈300 nm thick.
Note that in this case the aspect ratio is as high as ≈1:3, the
anisotropy of the plasma etching allowing to pattern one
single grain. The top and bottom right panels are blow up of
200 × 200 μm² and 50×50 μm² area in the centre of the
microcircuit, respectively.

3 Results and discussion In Fig. 3, the resistance of
an unpatterned thin film as a function of temperature is
shown. Four silver paste electrical contacts were deposited
on the surface of as-grown layer for this measurement. A
standard ac lock-in technique with a very low current
injection of 1 μA was used for this measurement. The data
clearly show a superconducting transition with a zero
resistance at ≈3.5 K. The width of the transition is quite
large, typically 0.7 K with a 10–90% of the onset resistance
criterion. In the inset of the same figure a scanning electron
microscope (SEM) picture of the sample with grains of
typical size ≈250 nm, for a film thickness of ≈300 nm is
shown. The large width of transition seen in the resistivity
data is attributed to the distribution of the grain sizes across
the sample.

In Fig. 4a and b, the current–voltage characteristic (V–I
curve) and the calculated differential resistance for a 350 nm
wide and 500 nm long wire is shown. The inset in the panel
(a) shows the critical temperature of a few representative
wires of varying widths. These measurements were
performed in both a 3He and a 3He/4He dilution refrigerators.
The current through the sample for these measurements were
100 nA for the 500 nm wide wire and 10 nA for the rest of the

Figure 1 (online colour at: www.pss-a.com) Schematics of the
nanofabrication process.

Figure 2 The SEM images of a typical microcircuit fabricated by
electron beam lithography.

Figure 3 (online colour at: www.pss-a.com) Superconducting
resistive transition in a boron-doped diamond thin film. The inset
is a SEM image of the surface of the sample, consisting of grains of
typically ≈250 nm.
wires. For the measurement of the V–I curves, we have used a standard four probe dc technique. No significant difference was observed from the critical temperature measured on the ‘bulk’ sample (≈2.5 K for this wafer) except for the case of the narrowest wire (below 100 nm wide, $T_c ≈ 1.7$ K). This was seen for all our superconducting diamond thin films: the critical temperature of the wires were those of the bulk material except for the cases where the wire width is less than 100 nm. The V–I curves in panel (a) are hysteretic due to thermal effect (Joule heating). The inset shows the R versus T curves for four representative wires. (b) Differential resistance extracted from the V–I curves. The resistance goes to zero when the wire is in its superconducting state.

Figure 4 (online colour at: www.pss-a.com) (a) Voltage–current (V–I) characteristic of a 350 nm wide wire at different temperatures. The V–I curves are hysteretic due to thermal effect (Joule heating). The inset shows the R versus T curves for four representative wires. (b) Differential resistance extracted from the V–I curves. The resistance goes to zero when the wire is in its superconducting state.

wires. The critical field of this sample was also measured by applying magnetic field in and out of plane of the sample. The field is applied perpendicular to the plane of the sample. The behaviour is hysteretic until the applied field reaches 20 mT. (b) Differential resistance extracted from the V–I curves. The resistance goes to zero when the applied field is below 100 mT.

Figure 5 (online colour at: www.pss-a.com) (a) Voltage–current (V–I) characteristic of a 350 nm wide wire at 50 mK under different magnetic fields. The field is applied perpendicular to the plane of the sample. The behaviour is hysteretic until the applied field reaches 20 mT. (b) Differential resistance extracted from the V–I curves. The resistance goes to zero when the applied field is below 100 mT.
in Fig. 5b. One can see that when the applied field is smaller than 100 mT a clear zero is observed around \(I = 0 \). Now, when the field is increased further, a clear dip near the zero current even for applied fields as high as 2 T is seen. This shows that there are still pockets of superconductivity in the nanowires at such high fields. The most likely explanation would be that some grains in the wires remain superconducting even at such high magnetic field.

In Fig. 6a and b, the \(V-I \) characteristics and the differential resistance of the 350 nm wide wire when the applied field is in the plane of the sample and perpendicular to the current through the sample is shown. In this case, the hysteresis in the sample was completely removed only when the field was above 80 mT. So this means, that for the same applied field, the critical current is higher for the case when the applied field is in the plane of the sample. We do not have any definitive explanation to this effect but it is quite possible that the introduction of vortices plays a key role in the determination of the critical field. In this case, the difference in aspect ratio of the devices when applying the field perpendicular to the structures or in the plane of the structures may account for the observed behaviour. The differential resistance calculated for this configuration (shown in Fig. 6b) shows that there is distinct zero in the resistance even at fields as high as 200 mT.

In Fig. 7a and b, the \(V-I \) characteristics and the calculated differential resistance, respectively, are shown for a 250 nm wide and 500 nm long wire. The wire shows hysteresis due to
thermal effects until the temperature reaches 600 mK. The retrapping current in this case is of the order of 70 nA while for 350 nm wire it was 83 nA. If one defines the retrapping power as $I_r^2 R_r$, where I_r is the retrapping current and R_r is the retrapping resistance, then for a given sample this quantity should be constant. To check this fact with our experimental data, we compare the retrapping powers of two wires of different widths. Since in the nanowires presented in this paper the lengths and the thicknesses are constant one can say that the ratio of the widths of any two wires should be equal to the ratio of the squares of their respective retrapping currents.

When one compares these ratio for the 350 and 250 nm wire, it is seen that the ratio of the widths is 1.4 which is similar to the ratio of the squares of the retrapping current for the corresponding wires. Hence, we can conclude that the retrapping power is an intrinsic property of the sample.

In Fig. 8a and b, the field dependence of critical current and differential resistance at a fixed temperature of 50 mK for the 250 nm wide wire is shown. One can see that the curves are hysteretic but the hysteresis disappears on applying a magnetic field of 30 mT. The differential resistance plotted in panel (b) of the same figure reveals the presence of few grains (as seen for 350 nm wide wire as well) having critical field above 2 T.

In Fig. 9a and b, the $V–I$ characteristics and differential resistance respectively, of a 90 nm wide and 500 nm long wire as a function of temperature is shown. Here the
characteristic is not hysteretic. This can be explained as follows. The retrapping power for this sample is \(\sim 4.5 \, \text{pW} \). For 90 nm wide wire, the power dissipated at the critical current at 50 mK is equal to 0.65 pW, which is much less than the retrapping power and hence the hysteretic behaviour is not seen. The differential resistance plotted in panel (b) shows that the sample is completely superconducting below 400 mK and above this temperature, the wire remains in the superconducting transition region until it reaches a temperature of \(\sim 1.7 \, \text{K} \) (inset of Fig. 4).

4 Conclusion In conclusion, nanostructures from boron-doped nanocrystalline superconducting diamond has been successfully fabricated. Using electron beam lithography, devices of characteristic size less that 100 nm and aspect ratio as high as 1:3 have been prepared. These structures have critical temperatures in the Kelvin range, similar to what is observed in ‘bulk’; only a slight decrease of \(T_c \) is observed for wires thinner than 100 nm. Critical fields close to 100 mT were measured and traces of superconductivity were observed even under magnetic fields as strong as 2 T. The experiments also revealed that there is stronger suppression of critical properties when the applied magnetic field is perpendicular to the sample plane. This study proves that superconductivity in boron-doped diamond is a very robust phenomenon which makes it a promising candidate for future applications in the field of superconducting nanoelectro-mechanical systems.

Acknowledgements We thank L. Marty for help in the AFM measurements and P. Mohanty and M. Imboden for fruitful discussions. This work has been supported by the French National Agency (ANR) in the frame of its programme in ‘Nanosciences and Nanotechnologies’ (supernems project no. ANR-08-NANO-033).

References

Q1: Author: Please provide the keywords.
Please correct your galley proofs and return them within 4 days together with the completed reprint order form. The editors reserve the right to publish your article with editors’ corrections if your proofs do not arrive in time.

After having received your corrections, your paper will be published online up to several weeks ahead of the print edition in the EarlyView service of Wiley InterScience (www.interscience.wiley.com).

Please keep in mind that reading proofs is your responsibility. Corrections should therefore be clear. The use of standard proof correction marks is recommended. Corrections listed in an electronic file should be sorted by line numbers.

LaTeX and Word files are sometimes slightly modified by the production department to follow general presentation rules of the journal.

Note that the quality of the halftone figures is not as high as the final version that will appear in the issue.

Check the enclosed galley proofs very carefully, paying particular attention to the formulas (including line breakings introduced in production), figures, numerical values, tabulated data and layout of the pages.

A black box (■) or a question at the end of the paper (after the references) signals unclear or missing information that specifically requires your attention. Note that the author is liable for damages arising from incorrect statements, including misprints.

The main aim of proofreading is to correct errors that may have occurred during the production process, and not to modify the content of the paper. Corrections that may lead to a change in the page layout should be avoided.

Note that sending back a corrected manuscript file is of no use.

If your paper contains color figures, please fill in the Color Print Authorization and note the further information given on the following pages. Clearly mark desired color print figures in your proof corrections.

Return the corrected proofs within 4 days by e-mail.

Please do not send your corrections to the typesetter but to the Editorial Office.

E-MAIL: pssa.proofs@wiley-vch.de

Please limit corrections to errors in the text; cost incurred for any further changes or additions will be charged to the author, unless such changes have been agreed upon by the editor.

Full color reprints, PDF files, Issues, Color Print, and Cover Posters may be ordered by filling out the accompanying form.

Contact the Editorial Office for special offers such as

- Personalized and customized reprints (e.g. with special cover, selected or all your articles published in Wiley-VCH journals)
- Cover/frontispiece publications and posters (standard or customized)
- Promotional packages accompanying your publication

Visit the MaterialsViews.com Online Store for a wide selection of posters, logos, prints and souvenirs from our top physics and materials science journals at www.cafepress.com/materialsviews
Order Form

Manuscript No. ____________________

Author/Title/Issue No.

Reprints/Issues/PDF Files/Posters
Whole issues, reprints and PDF files (300 dpi) for an unlimited number of printouts are available at the rates given on the third page. Reprints and PDF files can be ordered before and after publication of an article. All reprints will be delivered in full color, regardless of black/white printing in the journal.

Reprints

Please send me and bill me for
☐ full color reprints with color cover
☐ full color reprints with color cover and customised color sheet

Issues

Please send me and bill me for
☐ entire issues

PDF

Please send me and bill me for
☐ a PDF file (300 dpi) for an unlimited number of printouts with customised cover sheet.

The PDF file will be sent to your e-mail address.

Send PDF file to: ________________________________

Please note that posting of the final published version on the open internet is not permitted. For author rights and re-use options, see the Copyright Transfer Agreement at http://www.wiley.com/go/ctavchglobal.

Cover Posters
Posters are available of all the published covers in two sizes (see attached price list). Please send me and bill me for

☐ A2 (42 × 60 cm/17 × 24in) posters
☐ A1 (60 × 84 cm/24 × 33in) posters

Mail reprints and/or issues and/or posters to (no P.O. Boxes):

Subscriptions
For subscriptions, please send your order to:
WILEY-VCH Verlag GmbH & Co. KGaA, P.O. Box 101161, 69451 Weinheim, Germany.
Tel. + 49 (0) 62 01–60 64 00, Fax + 49 (0) 62 01–60 61 84,
e-mail: subservice@wiley-vch.de or to a bookseller.
The prices listed below are valid only for orders received in the course of 2010. Minimum order is 50 copies.

Reprints can be ordered before and after publication of an article. All reprints are delivered with color cover and color figures. If more than 500 copies are ordered, special prices are available upon request.

Single issues are available to authors at a reduced price.

The prices include mailing and handling charges. All prices are subject to local VAT/sales tax.

<table>
<thead>
<tr>
<th>Reprints with color cover</th>
<th>50 copies</th>
<th>100 copies</th>
<th>150 copies</th>
<th>200 copies</th>
<th>300 copies</th>
<th>500 copies*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (pages)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-4</td>
<td>314,—</td>
<td>367,—</td>
<td>425,—</td>
<td>445,—</td>
<td>548,—</td>
<td>752,—</td>
</tr>
<tr>
<td>5-8</td>
<td>448,—</td>
<td>530,—</td>
<td>608,—</td>
<td>636,—</td>
<td>784,—</td>
<td>1077,—</td>
</tr>
<tr>
<td>9-12</td>
<td>581,—</td>
<td>683,—</td>
<td>786,—</td>
<td>824,—</td>
<td>1016,—</td>
<td>1396,—</td>
</tr>
<tr>
<td>13-16</td>
<td>708,—</td>
<td>832,—</td>
<td>958,—</td>
<td>1004,—</td>
<td>1237,—</td>
<td>1701,—</td>
</tr>
<tr>
<td>17-20</td>
<td>843,—</td>
<td>990,—</td>
<td>1138,—</td>
<td>1196,—</td>
<td>1489,—</td>
<td>2022,—</td>
</tr>
<tr>
<td>for every additional</td>
<td>134,—</td>
<td>156,—</td>
<td>175,—</td>
<td>188,—</td>
<td>231,—</td>
<td>315,—</td>
</tr>
<tr>
<td>4 pages</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>for additional customised</td>
<td>190,—</td>
<td>340,—</td>
<td>440,—</td>
<td>650,—</td>
<td>840,—</td>
<td>990,—</td>
</tr>
<tr>
<td>colored cover sheet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PDF file (300 dpi, unlimited number of printouts, customised cover sheet)	€ 330.00
Issues	€ 48.00 per copy for up to 10 copies.*
Cover Posters	
• A2 (42 x 60 cm/17 x 24in)	€ 49.00
• A1 (60 x 84 cm/24 x 33in)	€ 69.00

*Prices for more copies available on request.

Special offer: If you order 100 or more reprints you will receive a PDF file (300 dpi, unlimited number of printouts, color figures) and an issue for free.

Color figures

If your paper contains color figures, please notice that, generally, these figures will appear in color in the online PDF version and all reprints of your article at no cost. This will be indicated by a note „(online color at: www.pss-a.com)” in the caption. The print version of the figures in the journal hardcopy will be black/white unless the author explicitly requests a color print publication and contributes to the additional printing costs.

<table>
<thead>
<tr>
<th>Approximate color print figure charges</th>
</tr>
</thead>
<tbody>
<tr>
<td>First figure</td>
</tr>
<tr>
<td>Each additional figure</td>
</tr>
</tbody>
</table>

If you wish color figures in print, please answer the color print authorization questions on the second page of our Order Form and clearly mark the desired color print figures in your proof corrections.

Information regarding VAT:

Please note that for German sales tax purposes the charge for color print is considered a service and therefore is subject to German Sales tax. For institutional customers in other countries the tax will be waived, i.e. the Recipient of Service is liable for VAT. Members of the EU will have to present a VAT identification number. Customers in other countries may also be asked to provide according tax identification information.