
Quantum statistics and interactions

Final Exam 2022 - C. Winkelmann - UGA/Phelma

Bose-Einstein condensation

We study here the properties of a gas of a large number N of identical and spinless bosons, with mass
m and dispersion relation εk = (~k)2/2m. At thermal equilibrium the different energy states are occupied
according to the Bose-Einstein distribution

f(E) =
(
eβ(E−µ) − 1

)−1
,

where β = 1/(kBT ), µ is the chemical potential, T is the temperature and kB the Boltzmann constant.
Depending on the questions, we will consider the gas to be confined in a cubic box of volume L3, or a
three-dimensional harmonic trap.

1 Bose-Einstein condensation without interactions

We neglect interactions between the particles in this part of the problem.

1.1

To start with, consider a single such particle, trapped in a three-dimensional isotropic harmonic potential

Vtr(r) =
1

2
mω2

0 |r|2. (1)

We take the bottom of the potential as the origin of energies. The energy levels in this potential are given by
En = ~ω0(n+ 3/2). In this potential the particle has a ground state wave function

ψ0(r) ∝ exp

(
−1

2

|r|2

d2

)
. (2)

Relate the value of d to the parameters of the problem within numerical prefactors of order 1, from simple
energetic arguments.

1.2

Describe (graphically) the energy distribution of the gas of N bosons in the trap. What is the sign of µ−E0?
Assuming T � ~ω0/kB , give an estimate of the spatial extent of the cloud confined in the trap.

1.3

Describe qualitatively how µ evolves as the temperature is lowered and the number N is kept fixed. You may
write the sum/integral of occupations over energies to discuss this.

1.4

It can be shown that below a certain critical temperature Tc, f(E0) suddenly becomes very large → N .
This phenomenon is called Bose-Einstein condensation, and corresponds to the condensation of a macroscopic
fraction of the N particles into the ground state. Assuming no interactions, write the zero-temperature
ground state |Ψ0〉 of in second quantized formalism in which all particles are condensed in ψ0, starting from

the vacuum state |0〉 and using the creation operator a†0 of a particle in the single-particle ground state. Make
sure |Ψ0〉 has the correct prefactor, which guarantees that this state is normalised for bosons.
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2 Hamiltonian of N weakly interacting bosons

We now consider a gas of N bosons confined in a cubic box of volume L3. For describing the interactions of
neutral atoms, we can assume that the two-particle interaction potential V (r) is short-ranged and repulsive.
The simplest way of modelling this potential is V (r) = g × δ(r), with g > 0.

2.1

Define the non-interacting N -particle ground state |Ψ0〉 is defined in the present case of particles confined in
a cubic box.

2.2

Recall the general form of the N -particle Hamiltonian in the presence of interactions from the lecture, and
explain the action of the different creation and annihilation operators. Justify that in the present case the
Hamiltonian can be written

H =
∑
k

εka
†
kak +

g

2L3

∑
k,k′,q

a†ka
†
k′ak′+qak−q. (3)

2.3

Due to interactions, not all particles will be in state k = 0 in the ground state of the gas. Our aim is to
estimate the effect of weak interactions on the ground state population. The operator n̂0 = a†0a0 counts the

number of particles in state k = 0, while n̂e =
∑

k6=0 a
†
kak counts the number of particles in k 6= 0 states. We

note n0 and ne the corresponding expectation values, and obviously N = n0 + ne. Because the interactions
are weak, we have n0 ≈ N and ne � n0, N . Show that n̂20 can be approximated as

n̂20 ≈ N2 − 2N
∑
k 6=0

a†kak. (4)

2.4

Since the expectation value of n̂0 is a large number, we can neglect
[
a0, a

†
0

]
= 1 with respect to n̂0. This is

equivalent to considering a0 and a†0 as simple numbers ≈ √n0. All other ak 6=0 and a†k6=0 are still considered
as operators.

Separate the sum in the interaction term in Eq. (3) according to three cases:

• i) all four momentum indices are 0,

• ii) two momentum indices are 0, the two other being 6= 0. The six different sub-cases of case ii) should

be discussed in detail. Show that these introduce a term 4a†kak + a−kak + a†ka
†
−k.

• iii) more than two indices are 6= 0.

Neglecting the terms � n0 arising from case iii), show that one is eventually left with

H ≈
∑
k

εka
†
kak +

g

2L3

n20 + n0
∑
k6=0

(
4a†kak + a−kak + a†ka

†
−k

) . (5)

2.5

Substituting back n0 and n20 by their operator expressions, as for instance in Eq. (4), show that

H ≈ N2 g

2L3
+
∑
k6=0

{(
εk +

Ng

L3

)
a†kak +

Ng

2L3
(a−kak + a†ka

†
−k)

}
. (6)
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3 Bogoliubov transformation

It will be convenient to define b = Ng/L3. We will now show that the Hamiltonian in Eq. (6) can be
diagonalised using a clever change of variables. Following Bogoliubov, we define a new set of operators

αk = ukak − vka†−k, (7)

where uk, vk are a priori freely chosen real numbers.

3.1

Write also α†k and show that the new operators αk and α†k obey the standard bosonic commutation relations,
under the condition that uk and vk are chosen such that uk = u−k, vk = v−k, and u2k − v2k = 1, which we
will assume from here on.

3.2

Revert the relation between a’s and α’s defined by Eq. (7) and its hermitian conjugate.

3.3

Rewrite Eq. (6) in terms of these new operators. Separate the
∑

k6=0 into three parts, with one containing

no α or α†, the second containing only terms proportional to α†kαk, and the third one containing terms

proportional to
(
α−kαk + α†kα

†
−k

)
.

3.4

Justify that there is a (unique) mathematical solution allowing to chose uk and vk such that

u2k − v2k = 1, (εk + b)ukvk +
b

2
(u2k + v2k) = 0. (8)

For this, it is possible to use the following hyperbolic trigonometry relations

cosh2 x− sinh2 x = 1, cosh2 x+ sinh2 x = cosh(2x), 2 coshx sinhx = sinh(2x).

3.5

Show that this choice allows considerably simplifying the Hamiltonian in Eq. (6). Discuss its new form.

3.6

Defining ζk =
√
εk(εk + 2b), show that the Hamiltonian reduces to

H ≈ H0 +
∑
k6=0

ζk α
†
kαk, (9)

where H0 does not contain any α†k or αk operators.

3.7

We recognise thus that the α†k or αk operators create and annihilate excitations (called quasiparticles), which
are composite in ±k. The lowest energy state of the weakly interaction Bose gas is given by the absence of
any such excitation. We define the new ground state, in the presence of weak interactions, by αk|Ψ0〉 = 0 for

any k 6= 0. Show that in this state, the number of particles with wavevector k 6= 0 is 〈Ψ0|a†kak|Ψ0〉 = v2k.
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3.8

Evaluate the total number of uncondensed particles ne = 〈Ψ0|n̂e|Ψ0〉.
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