Quantum statistics and interactions

Exercise session II - C. Winkelmann - UGA/Phelma

Introduction to Quantum Fields

Let $|0\rangle$ be the vacuum state, $\left\{\left|\phi_{i}\right\rangle\right\}$ an orthonormal basis of single particle states, and $|\mathbf{r}\rangle$ the delta-shape wave function of a particle localized at position \mathbf{r}.

1 Single-particle wave function

1.1

Prove the following orthonormality and closure relations

$$
\int d^{3} \mathbf{r} \phi_{i}^{*}(\mathbf{r}) \phi_{j}(\mathbf{r})=\delta_{i j}, \quad \sum_{i} \phi_{i}^{*}(\mathbf{r}) \phi_{i}\left(\mathbf{r}^{\prime}\right)=\delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right)
$$

1.2

We define $\Psi^{\dagger}(\mathbf{r})$ as the operator creating a particle at position \mathbf{r}. Thus we can write $\Psi^{\dagger}(\mathbf{r})|0\rangle=|\mathbf{r}\rangle$. Show that $\Psi^{\dagger}(\mathbf{r})|0\rangle=\sum_{i} \phi_{i}^{*}(\mathbf{r}) a_{i}^{\dagger}|0\rangle$.

1.3

We can thus define the field operator associated to this basis, $\Psi^{\dagger}(\mathbf{r})=\sum_{i} \phi_{i}^{*}(\mathbf{r}) a_{i}^{\dagger}$. Give also the adjoint operator $\Psi(\mathbf{r})$.

1.4

We consider the case of a spinless boson. Show that $\left[\Psi(\mathbf{r}), \Psi^{\dagger}\left(\mathbf{r}^{\prime}\right)\right]=\delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right)$ and $\left[\Psi(\mathbf{r}), \Psi\left(\mathbf{r}^{\prime}\right)\right]=0$.

1.5

Show that

$$
N=\int d^{3} \mathbf{r} \Psi^{\dagger}(\mathbf{r}) \Psi(\mathbf{r})
$$

and give an interpretation of $\Psi^{\dagger}(\mathbf{r}) \Psi(\mathbf{r})$.

1.6

We now consider the case of a spin- $1 / 2$ fermion and include the spin degree of freedom as an additional quantum number σ, writing now the operators $a_{i, \sigma}$ and $\Psi_{\sigma}(\mathbf{r})$. Write the relevant fermionic anticommutation relations, such as between $a_{i, \sigma}$ and $a_{j, \sigma^{\prime}}^{\dagger}$.

1.7

We now define the field operators as

$$
\Psi_{\sigma}^{\dagger}(\mathbf{r})|0\rangle=\sum_{i} \phi_{i}^{*}(\mathbf{r}) a_{i, \sigma}^{\dagger}|0\rangle
$$

Show that $\left\{\Psi_{\sigma}(\mathbf{r}), \Psi_{\sigma^{\prime}}^{\dagger}\left(\mathbf{r}^{\prime}\right)\right\}=\delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \delta_{\sigma, \sigma^{\prime}}$ and $\left\{\Psi_{\sigma}(\mathbf{r}), \Psi_{\sigma^{\prime}}\left(\mathbf{r}^{\prime}\right)\right\}=0$.

1.8

Define the number operator N in this case.

1.9

We consider the specific example of electrons in a cubic box of volume $V=L^{3}$. We use plane waves as a basis of wavefunctions

$$
\phi_{\mathbf{k}}(\mathbf{r})=\langle\mathbf{r} \mid \mathbf{k}\rangle=\frac{e^{i \mathbf{k} \cdot \mathbf{r}}}{L^{3 / 2}}
$$

Give the expressions of $\Psi_{\sigma}(\mathbf{r})$ and $\Psi_{\sigma}^{\dagger}(\mathbf{r})$, and interpret. Eventually show that the total number operator is given by

$$
N=\sum_{\mathbf{k}, \sigma} a_{\mathbf{k}, \sigma}^{\dagger} a_{\mathbf{k}, \sigma}
$$

2 Many-particle wave function

As above, and referring to the same single-particle basis, we can construct the many-particle wave function from the vacuum state by defining

$$
\left|\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots\right\rangle:=\Psi^{\dagger}\left(\mathbf{r}_{1}\right) \Psi^{\dagger}\left(\mathbf{r}_{2}\right) \ldots \Psi^{\dagger}\left(\mathbf{r}_{N}\right)|0\rangle
$$

In case the particles have an internal degree of freedom σ, like the spin, this can be written

$$
\begin{equation*}
\left|\mathbf{r}_{1} \sigma_{1}, \mathbf{r}_{2} \sigma_{2}, \ldots\right\rangle:=\Psi_{\sigma_{1}}^{\dagger}\left(\mathbf{r}_{1}\right) \Psi_{\sigma_{2}}^{\dagger}\left(\mathbf{r}_{2}\right) \ldots \Psi_{\sigma_{N}}^{\dagger}\left(\mathbf{r}_{N}\right)|0\rangle \tag{1}
\end{equation*}
$$

2.1

Write these bras in ket from.

2.2

Still considering the same single-particle basis as discussed previously, we construct the many-particle state

$$
\begin{equation*}
a_{1, \tau_{1}}^{\dagger} a_{2, \tau_{2}}^{\dagger} \ldots a_{N, \tau_{N}}^{\dagger}|0\rangle:=\left|1 \tau_{1}, 2 \tau_{2}, \ldots, N \tau_{N}\right\rangle . \tag{2}
\end{equation*}
$$

Show that $\left\langle\mathbf{r}_{i} \sigma_{i} \mid j \tau_{j}\right\rangle=\phi_{j}\left(\mathbf{r}_{i}\right) \delta_{\sigma_{i}, \tau_{j}}$.

2.3

Write the scalar product of the two vectors defined in (1) and (2), respectively.

2.4

Wick's theorem (not proven) allows stating that if there exists a permutation p transforming $(1,2, \ldots, N)$ into $\left(i_{1}, i_{2}, \ldots, i_{N}\right)$, then

$$
\langle 0| a_{i_{N}, \sigma_{N}} \ldots a_{i_{2}, \sigma_{2}} a_{i_{1}, \sigma_{1}} a_{1, \tau_{1}}^{\dagger} a_{2, \tau_{2}}^{\dagger} \ldots a_{N, \tau_{N}}^{\dagger}|0\rangle=\operatorname{sign}(p) \times \delta_{\sigma_{1}, \tau_{p(1)}} \ldots \delta_{\sigma_{N}, \tau_{p(N)}} .
$$

What would the value of the above matrix element if there was no such permutation?

2.5

Write the scalar product from question 2.2 in the form of a Slater determinant.

