
Quantum statistics and interactions

Exercise session IV - C. Winkelmann - UGA/Phelma

Jaynes-Cummings Hamiltonian and vacuum Rabi oscillations

This session deals with coupled eigenstates of light and matter. Part I introduces equivalent formulations
of quantum dynamics. Part II establishes the general Hamiltonian of light-matter interaction, in the so-called
Jaynes-Cummings model. In part III we will seek the eigenstates of this coupled system, leading to the notion
of dressed atom.

Rabi oscillations between these eigenstates were experimentally first observed by the team of S. Haroche
et J.-M. Raimond (M. Brune et al., Phys. Rev. Lett. 76, 1800 (1996)).

Definitions and conventions:

• I0 is the identity operator; e is the elementary charge; [A,B] = AB −BA is the commutator of A and
B.

• We define the following matrices

σz =

(
1 0
0 −1

)
, σ+ =

(
0 1
0 0

)
et σ− =

(
0 0
1 0

)
.

• The exponential of an operator A is defined as

exp(A) = eA =

+∞∑
n=0

An

n!
.

The exponential of an operator has most of the properties of the scalar exponential function. In particular,
if A and B commute,

eA eB = eA+B .

Further, if A is time dependent, then

d exp(A(t))

dt
=
dA(t)

dt
exp(A(t)).

Finally, if [A,B] = 0 then
[
eA, B

]
= 0

• As the origin of energies is arbitrary, two Hamiltonians differing only by λI0 (with λ a constant) can be
considered as identical.

1 Schrödinger, Heisenberg and Dirac pictures

Let |ϕ(t)〉 be the normalised quantum state of a particle at time t, living in a Hilbert space H and governed
by a time-independent total Hamiltonian H. We assume that there is an operator U(t, t0) acting on H → H
such that for all (t, t0)

|ϕ(t)〉 = U(t, t0) |ϕ(t0)〉. (1)

We call U the evolution operator: its knowledge allows determining simply |ϕ(t)〉 at any time from its value
at the initial time t0.
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1.1 Show that under the above assumptions

U(t, t0) = exp

(
− i(t− t0)H

~

)
fulfills the above criterion. Explain why things are more complicated when H is time dependent.

1.2 Let 〈A〉(t) be the quantum average at time t of an observable A (which doesn’t have an explicit time
dependence itself), averaged over state |ϕ(t)〉. Show that

〈A〉(t) = 〈ϕ(t0)|AH(t) |ϕ(t0)〉 (2)

where
AH(t) := U(t, t0)†A U(t, t0).

Rather than postulating that operators are constant and state vectors depend on time via the Schrödinger
equation, one can thus just as well postulate that the quantum state is time independent and that the
observables depend on time, like AH . This point of view is called the Heisenberg picture, as opposed to the
more common Schrödinger picture.

There exists a third point of view, the so-called Dirac or interaction picture, which is very useful when
H contains a constant well-understood principal term H0 plus a smaller interaction term W (t), which may be
time dependent, so that H = H0 + W (t). We define now for any state vector |ϕ(t)〉 and any operator A(t)
(which could be time dependent)

|ϕ̃(t)〉 = eitH0/~|ϕ(t)〉,

AD(t) = exp

(
itH0

~

)
A(t) exp

(
− itH0

~

)
where we have set t0 = 0 for simplicity. Note that AD(0) = A(0).

1.3 Prove the so-called Schwinger-Tomonaga equation

i~
d|ϕ̃〉
dt

= WD|ϕ̃〉,

which is the equivalent of the Schrödinger equation in the interaction picture.

1.4 If A is time independent (in the Schrödinger picture), show that

i~
dAD(t)

dt
= [AD(t), H0] .

1.5 Let H0 = α~σz, with α a real constant. Show that

σ+,D(t) = e2iαtσ+.

Similarly, one finds σ−,D(t) = e−2iαtσ−.

1.6 Let a and a† be the annihilation/creation operators appearing in the Hamiltonian H0 = β~ a†a of a
harmonic oscillator, with β a real constant. Show that

a†D(t) = eiβta†.

Similarly, one finds aD(t) = e−iβta.
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2 Jaynes-Cummings Hamiltonian

We will now investigate the interaction of an atom with a single mode of the electromagnetic field, with
angular frequency ω, inside a cavity. The atome has only two energy levels, noted |g〉 and |e〉 (for ground and
excited), which are resonant with the cavity, such that ω0 := (Ee − Eg)/~ ≈ ω, whereas all other electronic
transitions are off resonant. We can thus neglect the existence of all atomic levels other than |g〉 and |e〉. We
assume that the orbital wave functions of the eigenstates of the atomic Hamiltonian Hat are either inversion
symmetric or asymmetric : ψg,e(−~r) = ±ψg,e(~r).

2.1 In the subspace generated by |g〉 and |e〉, write the matrices σz, σ+ and σ− as a function of |g〉〈g|,
|g〉〈e|, |e〉〈g| and |e〉〈e|.

2.2 Show that the atomic Hamiltonian can be reduced to the form −~ω0

2 σz in the basis of (|g〉, |e〉).

We assume that the electric field operator in the cavity can be written

~E = ~uz

√
~ω
ε0ν

(
a+ a†

)
sin ky,

where a† and a are the creation/annihilation operators of a photon with energy ~ω, ε0 the vacuum dielectric
constant, ν the volume of the cavity and k the modulus of the wave vector. The position y inside the cavity
will be regarded as a classical variable. The Hamiltonian of the single mode of the electromagnetic field is
then

Hem = ~ω
(
a†a+

I0
2

)
and we write |n〉 the eigenstate of n photons in the cavity. The term ~ωI0/2 drops out in the remainder.

The dipolar coupling between the atom and the electromagnetic field writes

W = − ~D · ~E ,
with ~D the quantum operator associated to the dipole moment of the atom, defined as

~D = −e~R,
with ~R the position operator.

2.3 Justify that
〈g| ~D|g〉 = 〈e| ~D|e〉 = ~0.

2.4 We thus define d := 〈e|
(
~D · ~uz

)
|g〉 (which can be taken real without any loss of generality). Show

that ~D · ~uz = d (σ+ + σ−) and thus

W =
~κ(y)

2
(σ+ + σ−)(a+ a†), (3)

with κ(y) a real function.

2.5 We are thus led to writing H = H0 +W with

H0 = Hat +Hem = −~ω0

2
σz + ~ωa†a.

Express W in the interaction picture, and factorise scalar time-dependent terms.

2.6 The Jaynes-Cummings model consists in neglecting the operators which have a rapid time dependence
in the interaction picture. Remember that the frequency mismatch δ = ω0 −ω obeys |δ| � ω0, ω. Show that
the Jaynes-Cummings Hamiltonian HJC , which describes a two-level atom coupled to a single mode of the
electromagnetic field, is given by

HJC = −1

2
~ω0σz + ~ωa†a+

~κ(y)

2
(σ+a

† + σ−a).
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Figure 1: Experimental setup: The oven O emits rubidium atoms, which are prepared in state |e〉 in B (box).
They fly through the cavity C (2 superconducting mirrors). An ultra-stable field source S feeds 0 to n photons
into C. The state of the atom after it has crossed C is measured in the detector D.

3 Dressed atom

In the experiment sketched in Fig. 1, the atom is injected to the cavity along a trajectory ⊥ ~uy, with sin ky = 1
(thus κ(y) = κ is a constant).

In the absence of dipolar coupling, the eigenstates of the atom and cavity states are given for example by
|e, n〉, with |e〉 the state of the atom and |n〉 the state of the cavity.

3.1 Write the action of HJC on vectors |e, n〉 and |g, n+ 1〉.

3.2 Show that HJC can be decomposed as HJC =
∑
nHn, where each Hn acts on a subspace generated

by (|e, n〉, |g, n+ 1〉).

3.3 Show that in the basis (|e, n〉, |g, n+ 1〉),

Hn = E0
nI0 +

~
2

(
δ κ

√
n+ 1

κ
√
n+ 1 −δ

)
,

with E0
n a real number depending only on n and ω.

3.4 Find the eigenvalues of Hn, introducing the Rabi (angular) frequency Ωn =
√
δ2 + κ2(n+ 1).

3.5 We define the interaction angle 0 < θn < π/2 by

sin(θn) =
κ
√
n+ 1√

(Ωn − δ)2 + κ2(n+ 1)
.

Show that the two vectors defined by

|χ−n 〉 = cos θn|e, n〉 − sin θn|g, n+ 1〉,

|χ+
n 〉 = sin θn|e, n〉+ cos θn|g, n+ 1〉
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Figure 2: Experimental probability of finding the atom in state |g〉, as a function of the interaction time inside
the cavity (δ = 0, n = 0).

are an orthonormal diagonalisation basis of Hn.

3.6 Resonant case. We assume in this question that δ = 0 (ω0 = ω). Find the eigenvalues and -vectors of
Hn.

3.7 Non-resonant case. Supposing now |δ| � κ
√
n+ 1, approximate the eigenvalues and -vectors of Hn,

depending on if the resonance mismatch is blue shifted (δ < 0) or red shifted (δ > 0).

3.8 Avoided crossing. Plot the eigenvalues as a function of δ and give the eigenvectors at appropriate
places. Comment.

3.9 Rabi vacuum oscillations. Assuming resonant conditions (δ = 0) and that the atom enters the cavity
at t = 0, in its excited state |e〉, while the cavity is in its photon ground state (n = 0). Show that the
probability to find the atom in the excited state at time t > 0 is

P = cos2
Ω0t

2
.

3.10 Comment on the measurements of Brune and coworkers (Fig. 2).

3.11 Same question as in 3.9, but for |δ| � κ: justify that the Rabi oscillations are strongly suppressed
and that P remains close to 1.
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