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Classical versus quantum currents

Drude model
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Expression of current
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Quantum point contacts
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FIG. 1. Point-contact resistance as a function of gate volt-
age at 0.6 K. Inset: Point-contact layout.

FIG. 2. Point-contact conductance as a function of gate
voltage, obtained from the data of Fig. 1 after subtraction of
the lead resistance. The conductance shows plateaus at multi-
ples of e /xh.

pinched off at Vg =—2.2 V.
We measured the resistance of several point contacts

as a function of gate voltage. The measurements were
performed in zero magnetic field, at 0.6 K. An ac lockin
technique was used, with voltages across the sample kept
below kT/e, to prevent electron heating. In Fig. 1 the
measured resistance of a point contact as a function of
gate voltage is shown. Unexpectedly, plateaus are found
in the resistance. In total, sixteen plateaus are observed
when the gate voltage is varied from —0.6 to —2.2 V.
The measured resistance consists of the resistance of the
point contact, which changes with gate voltage, and a
constant series resistance from the 2DEG leads to the
point contact. As demonstrated in Fig. 2, a plot of the
conductance, calculated from the measured resistance
after subtraction of a lead resistance of 400 0, shows
clear plateaus at integer multiples of e /&A. The above
value for the lead resistance is consistent with an es-
timated value based on the lead geometry and the resis-
tivity of the 2DEG. We do not know how accurate the
quantization is. In this experiment the deviations from
integer multiples of e /zh might be caused by the uncer-
tainty in the resistance of the 2DEG leads. Inserting the
point-contact resistance at V~= —0.6 V (750 0) into
Eq. (1) we find for the width W,„=360nm, in reason-

able agreement with the lithographically defined width
between the gate electrodes.
The average conductance increases almost linearly

with gate voltage. This indicates that the relation be-
tween the width and the gate voltage is also almost
linear. From the maximum width W,„(360 nm) and
the total number of observed steps (16) we estimate the
increase in width between two consecutive steps to be 22
nm.
We propose an explanation of the observed quantiza-

tion of the conductance, based on the assumption of
quantized transverse momentum in the contact constric-
tion. In principle this assumption requires a constriction
much longer than wide, but presumably the quantization
is conserved in the short and narrow constriction of the
experiment. The point-contact conductance G for ballis-
tic transport is given by "

G =e NpW(It/2m)( [ k„~ ).

The brackets denote an average of the longitudinal wave
vector k, over directions on the Fermi circle, N p
=m/eh 2 is the density of states in the two-dimensional
electron gas, and W is the width of the constriction. The
Fermi-circle average is taken over discrete transverse
wave vectors k» = ~ nz/W (n =1,2, . . . ), so that we can
write

T

&Ik. l&= J d'krak, )&(k—kF) g 6' k»—
7C F 8', -) 8' (3)

Carrying out the integration and substituting into Eq. (2), one obtains the result

N,

(4)

where the number of channels (or one-dimensional subbands) N, is the largest integer smaller than kFW/x. For
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charged edge mode. The oscillations at ν = 2/3 are plotted in Fig. 6b. 
These oscillations have notably lower amplitude than those at both 
integer states and at ν = 1/3 (see Supplementary Section 6 for a dis-
cussion of amplitudes). The presence of an integrally charged mode 
suggests that the Macdonald edge structure holds in our device. 
However, we do not find evidence for interference of a fraction-
ally charged e* = −e/3 mode at ν = 2/3, even if the QPC bias is tuned 
to reduce backscattering. A possible explanation for this is that 
e* = −e/3 should have a significantly smaller velocity due to being an 
inner mode; therefore, it will have lower phase coherence, making it 
very difficult to observe. Smaller device size or lower experimental 
temperatures might make measurement of the −e/3 mode possible.

It is noteworthy that our observation of an integrally charged 
mode differs from previous experimental findings, in which shot 
noise and Coulomb blockade measurements suggested a different 
edge structure consisting of two e* = e/3 charge modes and two neu-
tral modes45,46, with no integrally charged mode observed. A pos-
sible explanation for this discrepancy is that our sample may have a 
sharper confining potential due to the short setback of the screen-
ing wells (see Supplementary Section 7 and Supplementary Fig. 8), 
resulting in our device supporting the edge structure described in 
ref. 40. Our work provides evidence that experimental details such as 
the confining potential affect which of the candidate edge structures 
is formed at ν = 2/3. We mention that a sharp confining potential 
may also be beneficial for measuring interference at the ν = 1/3 state 
by preventing edge reconstruction and the proliferation of neutral 
edge modes47–49 that may cause dephasing50,51; neutral modes have 
been detected at ν = 1/3 and numerous other fractional quantum 
Hall states in standard GaAs structures without screening wells52.

Finally, we remark that although we have observed Aharonov–
Bohm interference of fractionally charged quasiparticles at the 
ν = 1/3 fractional quantum Hall state, we have not observed the 
fractional braiding statistics predicted for these quasiparticles1,6. It 
has been suggested that increasing the flux through the interferom-
eter by one flux quantum should result in the addition of one quasi-
particle into the area of the device to keep the system charge neutral; 
this should result in an interference phase jump Δθanyon = 4π/3 at the 
ν = 1/3 state2,12. We appear to measure only the Aharonov–Bohm 
phase when magnetic field is varied, suggesting that adding flux 
does not introduce quasiparticles in our device. Critically, the 
ν = 1/3 state has a large energy gap for the creation of quasipar-
ticles measured to be approximately 700 μeV in a 2DES of similar 
density53. This energy is more than an order of magnitude larger 
than the measured charging energy in our device ≈ μ( )17 Ve

C2

2
,  

which suggests that when the magnetic field is varied it may be 
energetically favourable for the primary quantum well to remain at 
a fixed filling factor (without creating quasiparticles) rather than a 
fixed sheet density, with the energy cost of the variations in quan-
tum well density reduced by the screening wells. When the experi-
ment is performed at a fixed filling factor it is expected that only the 
Aharonov–Bohm phase of the quasiparticles will be observed when 
magnetic field and side-gate voltage are varied2,4, consistent with our 
observations. An alternative method to introduce quasiparticles and 
measure braiding statistics would be to directly manipulate the elec-
trostatic potential with a gate in the centre of the interferometer2,4;  
efforts are underway to fabricate devices with this type of gate.
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summaries, source data, statements of data availability and asso-
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s41567-019-0441-8.

Received: 21 September 2018; Accepted: 22 January 2019;  
Published online: 4 March 2019

References
 1. Jain, J. K. Composite Fermions (Cambridge Univ. Press, Cambridge, 2007).
 2. Chamon, C. et al. Two point-contact interferometer for quantum Hall 

systems. Phys. Rev. B 55, 2331–2343 (1997).
 3. Sarma, S. D., Freedman, M. & Nayak, C. Topologically protected qubits from 

a possible non-Abelian fractional quantum Hall state. Phys. Rev. Lett. 94, 
166802 (2005).

 4. Stern, A. & Halperin, B. I. Proposed experiments to probe the non-Abelian  
ν = 5/2 quantum Hall state. Phys. Rev. Lett. 96, 016802 (2006).

 5. Kim, E. Aharonov–Bohm interference and fractional statistics in a quantum 
Hall interferometer. Phys. Rev. Lett. 97, 216404 (2006).

 6. Halperin, B. I. Statistics of quasiparticles and the hierarchy of fractional 
quantized Hall states. Phys. Rev. Lett. 52, 1583–1586 (1984).

 7. Zhang, Y. et al. Distinct signatures for Coulomb blockade and interference  
in electronic Fabry–Perot interferometers. Phys. Rev. B 79, 241304(R) (2009).

 8. Lin, P. V., Camino, F. E. & Goldman, V. J. Electron interferometry in the 
quantum Hall regime: Aharonov–Bohm e!ect of interacting electrons. Phys. 
Rev. B 80, 125310 (2009).

 9. Baer, S. et al. Cyclic depopulation of edge states in a large quantum dot. New 
J. Phys. 15, 023035 (2013).

 10. Ofek, N. et al. Role of interactions in an electron Fabry–Perot interferometer 
operating in the quantum Hall e!ect regime. Proc. Natl Acad. Sci. USA 107, 
5276–5281 (2010).

 11. Halperin, B. I. & Rosenow, B. In"uence of interactions on "ux and  
back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98,  
106801 (2007).

 12. Halperin, B. I., Stern, A., Neder, I. & Rosenow, B. #eory of the Fabry–Perot 
quantum Hall interferometer. Phys. Rev. B 83, 155440 (2011).

 13. von Keyserlingk, C. W., Simon, S. H. & Rosenow, B. Enhanced bulk–edge 
Coulomb coupling in fractional Fabry–Perot interferometers. Phys. Rev. Lett. 
115, 126807 (2015).

 14. Manfra, M. J. Molecular beam epitaxy of ultra-high-quality AlGaAs/GaAs 
heterostructures: enabling physics in low-dimensional electronic systems. 
Annu. Rev. Condens. Matter Phys. 5, 347–373 (2014).

13.01 13.02 13.03 13.04 13.05

–35

–30

–25

–20

–15

–10

B (T)

δV
ga

te
 (

m
V

)
δV

ga
te

 (
m

V
)

110

118

126

134

142

150

RD (kΩ)

RD (kΩ)

a

b

ΔB = 22.2 mT

ΔVgate = 6.1 mV

6.83 6.84 6.85
–20

–15

–10

–5

0

B (T)

58

59

60

61

νbulk =
1
3

= 0.29
e*
e

ΔB = 5.5 mT

ΔVgate = 3.7 mV

νbulk =
2
3

= 0.93
e*
e

Fig. 6 | Interference of fractional quantum Hall states. a, Aharonov–Bohm 
conductance oscillations at ν!=!1/3. The QPCs are biased to approximately 
22% reflection. b, Aharonov–Bohm conductance oscillations at ν!=!2/3.  
The QPCs are biased to approximately 20% reflection. In both cases, δVgate 
is relative to −1.4!V.
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steeper slope and shows clear quantum Hall plateaus and concomi-
tant zeros in longitudinal resistance (not shown), demonstrating 
that parallel conduction through the screening wells has been elimi-
nated. This selective depletion technique was pioneered to isolate 
transport in bulk bilayer systems17. Here we have demonstrated that 
the technique has utility for mesoscale electronic devices as well.

The presence of the screening wells acts to reduce the Coulomb 
charging energy, characterized by measuring Coulomb blockade 
through the device at zero magnetic field18. Coulomb blockade dia-
monds (obtained by measuring the differential conductance ∂

∂
I
V

 ver-
sus side-gate voltage Vgate and source–drain voltage VSD), shown in 
Fig. 2b, yield a charging energy ≈ μ17 eVe

C2

2
. The Coulomb block-

ade charging energy characterizes the incremental increase of elec-
trostatic energy when an electron is added in the presence of all 
the other electrons localized in the interior of the device; therefore, 
this energy may be loosely identified with the bulk–edge coupling 
constant KIL in ref. 12, which determines whether the device is in 
the Coulomb-dominated or Aharonov–Bohm regime. A similarly 
sized device without screening wells would have charging energy 

~ ≈ μϵ 200 eVe
C

e
r2

2 2
 (where r is the radius of the dot), indicating that 

the screening wells are very effective at reducing Coulomb effects 
in the interferometer (Coulomb blockade from a device without 
screening wells is shown in Supplementary Fig. 1). It is important to 
note that although Coulomb effects are screened on the scale of the 
mesoscopic device, the presence of several fractional quantum Hall 
plateaus visible in Fig. 3a indicates that the Coulomb interaction on 
the microscopic length scales relevant for the fractional quantum 
Hall effect is not significantly reduced.

ν = 1 interference
Next, we operate the device at filling factor ν = 1 in the integer quan-
tum Hall regime, where the bulk of the 2DES is insulating and cur-
rent is carried by a chiral edge state. The interference path is shown 
schematically in Fig. 4a. Electrons incident from the source contact 
are backscattered by the two QPCs to the opposite edge, and the two 
backscattered paths interfere; this is shown schematically in Fig. 4a. 
The quantum mechanical phase difference between the two inter-
fering paths is given by the Aharonov–Bohm phase: θ = π Φ2 A BI

0
, where 

AI is the area of the interference path, B is the magnetic field and 
Φ ≡ h

e0  is the magnetic flux quantum. The device may be operated 
by changing the magnetic field B, or by changing the voltage on the 
side gates to change AI.
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Fig. 1 | Heterostructure design and device layout. a, Layer stack of the GaAs/AlGaAs heterostructure along the growth direction, showing the positions of 
the GaAs quantum well and screening wells (blue), AlGaAs spacers (green) and AlAs barriers (red). b, Conduction band edge (red) and electron density 
(blue) versus growth direction (z axis) calculated using a self-consistent Schrodinger–Poisson method. The sheet density in each well is indicated.  
c, Schematic showing the layout of the mesa (blue), Ohmic contacts (green), surface gates used to isolate the top screening well from the contacts 
(orange) and the backgate used to isolate the contacts from the bottom screening well (red). The surface gates used to define the interference path are 
shown in yellow. Additionally, there is a global backgate underneath the mesa (red). A four-terminal measurement circuit is indicated in which current is 
injected into the Hall bar and the perpendicular Hall voltage is measured; when the interferometer gates are biased to define the interference path, the 
measured resistance is referred to as the diagonal resistance, RD.

500 nm

Fig. 2 | Scanning electron micrograph of the interferometer. False-colour 
scanning electron micrograph of the interferometer, located in the centre 
of the Hall bar shown schematically in Fig. 1c. The device consists of 
two QPCs to backscatter current and a pair of side gates to define the 
interference path (yellow); when these gates are negatively biased, the 
2DES underneath is depleted, which defines the interference path. In the 
measurements, the gate voltage Vgate applied to both side gates is varied to 
change the area of the interference path. An additional gate over the top of 
the area of the device (green) is grounded for these experiments.
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At ν = 1 the interferometer exhibits strong conductance oscilla-
tions, probed by measuring the diagonal resistance RD across the 
device. RD as a function of gate voltage and magnetic field is plotted 
in Fig. 4b; the lines of constant phase exhibit negative slope, consis-
tent with the device being in the Aharonov–Bohm regime despite its 
small size. The magnetic field oscillation period ΔB = 5.7 mT, which 
gives an area of the interference path AI = ΔB/Φ0 ≈ 0.73 μm2. This 
area is smaller than the lithographic area of the device, indicating 
that the 2DES is depleted in a region approximately 180 nm wide 
around the gates; this agrees with simulations of the 2DES density 
at the edge of the gate (see Supplementary Fig. 3). Additionally, we 
find that ΔB does not vary significantly with filling factor in the 
range 1 ≤ ν ≤ 12, consistent with Aharonov–Bohm behaviour and 
in contrast to the Coulomb-dominated regime in which ΔB is pro-
portional to 1/ν (refs. 7,10–12). Previous Fabry–Perot interferometry 
experiments utilizing conventional heterostructures have required 
a device area of 20 μm2 for Coulomb effects to be small enough for  

the device to be in the Aharonov–Bohm regime7,10; unambiguous 
observation of the Aharonov–Bohm regime in a much smaller device 
demonstrates the effectiveness of the device design employed here.

For weak backscattering by symmetrically tuned 
QPCs, conductance oscillations due to interference obey  







η∕ = − + π Φ( )G G r1 2 1 cos 2 AB

0
2

0 , where =G R
1
D
 is the conductance  

across the device, ≡G e
h0
2  is the conductance quantum, r2 is the reflec-

tion probability of the QPCs and η is the coherence factor. We  
characterize coherence of the interference at ν = 1 by measuring 
conductance oscillations at different cryostat temperatures, plotted 
in Fig. 4c; we normalize by dividing the conductance oscillations 
δG by the reflection amplitude r2, with each QPC tuned to approxi-
mately 97% transmission and 3% reflection. The coherence factor η 
(defined as the amplitude of δG

G r2 0
2
) decays with temperature following 

an approximately exponential trend, shown in Fig. 4d, with a charac-
teristic temperature T0 = 206 mK. For comparison, in measurements 
of a Fabry–Perot interferometer in ref. 19, T0 was found to be less 
than 20 mK for magnetic fields exceeding 1.5 T; in measurements of 
Mach–Zehnder interferometers the largest T0 measured was 40 mK 
(ref. 20), with larger devices exhibiting smaller T0. The significantly 
larger T0 observed in our experiment indicates that the smaller size 
achieved in our device is beneficial to achieving quantum coherence.

Edge-mode velocity
When the device is operated at a lower magnetic field (higher fill-
ing factor), multiple integer edge modes are present. In our device 
it is possible to selectively interfere a particular edge mode by tun-
ing the QPC voltages to partially backscatter that edge, while fully 
transmitting the outer edges so that only the partially backscattered 
edge interferes; this is shown schematically in Fig. 5a for the case 
of bulk filling factor νbulk = 3, and a corresponding trace of the QPC 
conductance versus gate voltage is shown in Fig. 5b with the operat-
ing points corresponding to the selective interference of each edge 
mode indicated with coloured circles.

The interference phase may be additionally modulated by chang-
ing the energy ϵ of injected electrons, which changes the wavevec-
tor k. This introduces a phase shift θ ϵδ = δ =ϵ

ϵ∂
∂

δ
ℏLk L

vedge
, where L is  

the path length around the interference loop and ≡ ϵ
ℏ

∂
∂v kedge

1  is the  
velocity of the edge mode2. ϵ may be modulated by applying a  
finite source–drain bias VSD across the device; this results in oscil-
lations in differential conductance as a function of both VSD and  

flux: 






δ ∝ π Φ ℏ( )G cos 2 cosAB eV L

v20

SD

edge  (ref. 21). This results in nodes in  
a ‘chequerboard’ pattern when δG is measured in the VSD − Vgate 
plane (plotted at νbulk = 1 in Fig. 5c and for the inner N = 1 mode at 
νbulk = 3 in Fig. 5d), with nodes in the interference pattern occurring  
at = ± πℏV v

eLSD
edge. The velocity may thus be extracted: = π

Δ
ℏv eL V

edge 2
SD  

(refs. 21,22), where ΔVSD is the spacing between nodes, and we  
estimate L from the interference area, ≈L A4 I . The extracted 
velocity probably represents the average velocity of the edge mode 
in the interferometer since there may be local variations in the con-
fining potential and thus velocity.

In ref. 21 this method was used to measure edge velocity versus 
filling factor, but without controlling which edge mode was being 
interfered; in ref. 22 edge velocity for only the N = 0 Landau level was 
reported (where N = 0, 1, 2… is the Landau level index). In Fig. 5e 
we plot the edge-state velocity for the N = 0, N = 1 and N = 2 Landau 
level edge modes versus bulk filling factor νbulk. The inner, higher-
index Landau levels generally have lower velocity and correspond-
ingly lower coherence. At magnetic fields below approximately 1.2 T 
(νbulk = 4), the QPCs show spin-degenerate conductance plateaus,  
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even though the bulk transport exhibits spin-split quantum Hall 
states down to 0.2 T. This suggests that although distinct edge states 
exist, below 1.2 T they are too close to one another to be inter-
fered independently; therefore, at filling factors vbulk > 4 we show a 
single velocity measurement for each Landau level, while at lower 
fillings we show both spins when resolved. We also mention that 
we observe the same period-halving phenomenon in our device 
that was reported in previous interferometry experiments23–25  
(see Supplementary Section 2 and Supplementary Fig. 4).

Much of the magnetic field dependence in Fig. 5e can be under-
stood from the fact that edge currents in the quantum Hall regime 
are generated by Hall drift: = ×v

B
E B

Hall 2 , where E is the in-plane 
electric field at the edge due to the confining potential and B is  
the perpendicular magnetic field. This implies that the edge veloc-
ity should increase with decreasing magnetic field (increasing filling 
factor), and this is indeed the predominant trend observed at filling 
factors 2 < νbulk < 9. On the other hand, it must also be considered 
that the electric field experienced by each edge state also depends on 
both magnetic field and Landau level index. We see in Fig. 5e that the 
outer, lower-index Landau levels generally have higher edge velocity 
than the inner, higher-index ones. This behaviour can be understood 
from the works of Chklovskii et al.26,27, who found that the confining 
potential is steepest at the outer edge, resulting in a higher electric 
field and thus higher velocity for the outer Landau level edge modes 
and a smaller electric field and lower velocity for the inner ones.

The results of numerical simulations of edge transport in the 
integer quantum Hall regime for the heterostructure used in these 
experiments are plotted in Fig. 5f; see Supplementary Section 3 
and ref. 16 for an in-depth review. In these simulations, the spatially 
varying in-plane electric field is self-consistently evaluated for the 
Landau level density of states, considering the electrostatic effects 
of the heterostructure, doping, surface states and gates. We obtain 
the velocity by solving quantum transport (non-equilibrium Green’s 
function) equations at the Fermi level.

The simulations show good qualitative and quantitative agree-
ment with the experimental results over the range of filling factor 
2 < νbulk < 10. At lower filling νbulk < 2, the edge velocity exhibits non-
monotonic behaviour. This behaviour may be due to the impact of 
electron–electron interactions, which become increasingly impor-
tant at high magnetic field. Non-monotonic behaviour at low filling 
was also reported in ref. 22. Our simulations employ a mean-field 
Hartree approximation that does not capture many-body effects.

Additionally, the edge velocities also exhibit non-monotonic 
behaviour at high filling νbulk > 10. A possible explanation for this is 
that at low fields when the magnetic length becomes comparable to 
the length scale of the confining potential at the edge, charge trans-
port may occur via skipping orbits, resulting in different behaviour 
than observed at higher fields21,28. It is reasonable for this to occur 
at νbulk = 10; here the magnetic length is approximately 39 nm, and 
simulations indicate that the length scale of the confining potential 
is approximately 40 nm (see Supplementary Fig. 3). This effect is not 
captured in the simulations as the magnetic length approaches the 
Debye length. An alternative possibility is that at high filling where 
the cyclotron gap is smaller, there may be partial equilibration 
between the edge modes facilitated by the applied VSD, which would 
make our assumption of interfering a single edge mode invalid.

Fractional quantum Hall regime
We turn now to results in the fractional quantum Hall regime. In 
previous experiments with small Fabry–Perot devices Coulomb-
dominated or Coulomb blockade oscillations have been observed 
in fractional states10,29–31. Willet et al.32,33 reported oscillations at 
ν = 5/2 consistent with Aharonov–Bohm interference of charge e/4 
and e/2 excitations. However, oscillations with negatively sloped 
lines of constant phase in the gate voltage–magnetic field plane  
(a distinctive sign of Aharonov–Bohm regime interference) have not 
been previously reported. Edge modes in the fractional quantum 
Hall regime are predicted to have remarkably different properties 
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oscillations as a function of magnetic field B and side-gate voltage δVgate (relative to −1.4!V) showing clear Aharonov–Bohm interference. For this 
measurement the QPCs are biased to achieve approximately 25% reflection. c, Oscillations in conductance through the device, δG, divided by the QPC 
backscattering amplitude, r2, at 13!mK (red), 105!mK (blue) and 220!mK (black). For these measurements each QPC is tuned to approximately 97% 
transmission and 3% reflection (r2!=!0.03). The amplitude of the oscillations clearly decreases as the cryostat temperature is increased. d, Coherence 
factor η versus temperature; η shows an approximately exponential dependence on temperature with a characteristic decay scale of 206!mK.

NATURE PHYSICS | VOL 15 | JUNE 2019 | 563–569 | www.nature.com/naturephysics566

Measuring a fractional charge with AB oscillations

Nakamura et al., Nature Phys. (2019) 



Transport through a single quantum level
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Figure 2. (a) Tunneling spectroscopies of the superconducting gap of Ga using a normal PtIr tip, at various cryostat
temperatures varying from 50 to 970 mK (GN = 625 nS). The dashed line is a fit of the lowest temperature dataset with BCS
theory, yielding �Ga(0) = 163µeV and Tnoise = 80 mK (see text). (b) Tunneling conductance between the Ga surface and a
Pb-coated tip at T = 617 mK (GN = 1.1µS, Vac = 15µV). A weak zero-bias Josephson peak as well as thermally activated
subgap conductance peaks at Vb = ±(�Pb - �Ga)/e are observed. The inset shows the Ga density of states obtained by
deconvolution, yielding a gap of 151 µeV at this temperature. The BCS fit (grey dashed) was obtained assuming an electrical
noise level as found from Tnoise in (a). (c) Temperature dependence of �Ga: Comparison of the gap determined from NIS
(bullets) and SIS’ (circles) spectroscopies, with �Ga(0) = 163µeV and Tc = 1.08 K. The dashed line is the BCS prediction.

unit cell on the (110) facet, known to be 9.0 Å [22]. The
striped structure is due to a 4 ⇥ 1 surface reconstruc-
tion, consisting of three rows which are separated by two
deeper lying ones. On the atomic scale, the unit cell is
observed to be tilted by 70??? degrees with respect to the
stripe, which is in the [11̄0] direction, in good agreement
with the expected crystallographic angle of 64.5 degrees.
The rows resemble knitwear due to Ga2-molecules lying
at higher levels, which were explained by a missing-row
model [22].

We perform tunneling spectroscopies of the super-
conducting ↵-Ga surface using the lock-in technique to
measure the di↵erential junction conductance G(Vb) =
dI/dVb, which we normalize to its value GN at large bias
voltage Vb. With the pristine PtIr tip on superconduct-
ing Ga, we are thus in the situation of a normal metal-
insulator-superconductor (NIS) tunnel junction, whereas
with the superconducting tip an SIS’-type junction con-
nects two distinct superconductors. The tunneling spec-
troscopies obtained using the normal tip reveal the su-
perconducting density of states in Ga and can be nicely
fitted at all temperatures using Fermi’s golden rule and
assuming a density of states in ↵-Ga described by the
BCS theory (Fig. 2a). We find a gap �Ga(0) = 163µeV
in the low-temperature limit, without recurring to any
broadening parameter except for an e↵ective tempera-
ture of the tip Te↵ =

p
T 2 + T 2

noise. We find that a
Tnoise = 80 mK, imputable to residual electronic noise,
provides excellent agreement between our experimental
temperature scale and the observed spectroscopic broad-
ening, such that Te↵ reaches about 140 mK at the STM
base temperature of 115 mK.

The experimental temperature dependence of �Ga(T )

is shown in Fig. 2c, and follows very closely the the-
oretical prediction from BCS theory. The gap can be
extrapolated to close at 1.08 ± 0.05 K, where the main
uncertainty stems from the thermometer accuracy, from
which we deduce eventually 2�Ga(0)/kBTc = 3.50± 0.2.
The combination of the above provides strong spectrop-
scopic evidence that the ↵ phase of Ga [11, 12] is indeed
a close-to-ideal weak-coupling BCS superconductor.

As a prerequisite for the Josephson experiments, and
because tunneling spectroscopies of a superconductor us-
ing a normal tip su↵er from significant thermal broad-
ening at temperatures near Tc, we have repeated the ex-
periment using a superconducting Pb tip. Even at in-
termediate temperatures, the SIS’ tunneling current be-
tween Pb and Ga displays very sharp di↵erential con-
ductance peaks at Vb = ±(�tip + �Ga)/e (Fig. 2b).
Because �tip � �Ga, a small error on the estimation
of �tip can lead to a much larger relative error on �Ga.
We therefore impose �Ga(0) = 163µeV, as found from
the NIS spectroscopies, which leads to �tip(0) = 1.34
meV, very close to the 1.35 meV bulk gap value for
Pb. In the temperature range of interest for studying
superconductivity in ↵-Ga, �tip can be considered con-
stant. However, at temperatures not significantly smaller
than the Tc of Ga, thermally activated additional peaks
at Vb = ±(�tip � �Ga)/e are also visible (Fig. 2b).
These features are completely absent at lower temper-
atures. Here again, the tunneling characteristics can be
very well fitted using a Fermi golden rule transport in-
tegral between two superconductors, in which we impose
the Pb tip DOS as a known input. As seen in the inset,
this allows deconvoluting the data and retrieving the Ga
density of states even near its Tc with very high reso-
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Superconducting condensate and quasiparticles
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Fig. 4.16: Relations de dispersion du superfluide dans un référentiel immobile (a) ou en mouvement (b).

F1+2 =

Z 1

�

d(E) P �p dE . (4.39)

P est ici la probabilité par unité de temps pour une particule donnée de rencontrer la

paroi. Celle-ci vaut, indépendamment de la vitesse de la paroi tant que celle-ci reste petite

devant la vitesse de groupe v̄g de la particule, P = 2 a n v̄g. �p est le transfert d’impulsion

au cours de la collision. Nous supposerons dans ce modèle simple unidimensionel que

�p = ±2pF pour une réflexion classique. Enfin d(E) est la densité de quasi-particules par

unité d’énergie. On a

d(E) = g(E) exp(�E/kBT ), (4.40)

où g(E) est la densité d’états sur la courbe de dispersion considérée et où nous avons

supposé que les quasi-particules balistiques obéissent à une statistique de Boltzmann.

Lorsque la paroi est à l’arrêt il va de soi que F1+2 + F3+4 = 0, cependant F1+2 est

toujours di↵érent de 0 parce que les particules (1) ”poussent” d’un côté de la paroi alors

que les trous (2) ”tirent” de l’autre.

Considérons maintenant la situation où la paroi est en mouvement. Les di↵usions ont

lieu à énergie constante dans le référentiel de la paroi si celle-ci a une inertie infiniment

supérieure à celle des particules incidentes. Dans le référentiel de la paroi, la courbe de

dispersion est donc modifiée et les états de quasi-particules sont représentés par la courbe

Quasiparticle spectrum 

ρs(E)
ρn

= ℛe ( ∣ E ∣

E2 − Δ2 ) E = ξ2 + Δ2 ξ = ℏvF (k − kF)

Condensate
ψ(r) = N eiφ at energy   E = EF



The Josephson effect
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Capacitive shunt
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φ
H =
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V → ·x
C → m

M. Devoret, Quantum circuits and signals, Lectures at Collège de France (2008-09).



Biasing the Josephson junction
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Friction: the resistively shunted junction

17

φ

I

φ → x
n → px

V ∝ ·φ → ·x
C → m

R−1 → friction

1.1. Josephson e�ect

C JJ RV

Idc
Icsinϕ

UJ UJ

ϕ

(a) (b) (c)

Idc	<	Ic Idc	>	Ic
ϕ0 π 2π 3π 4π 0 π 2π 3π 4π

Figure 1.1: (a) Schematics of a Josephson junction in the RCSJ model; (b,c) Tilted washboard
potential UJ („) for (b) Idc < Ic and (c) Idc > Ic.

with Êp = 1
~
Ô

8EJEC =
Ò

2fiIc
�0C plasma frequency. Since the phase is constant in average

(
e
„̇

f
= 0), there is no voltage drop across the junction (ÈV Í = 0), meaning that the

system is in the superconducting state (Fig. 1.1b).
In a purely classical view, the particle can escape from a minimum of the potential

when Idc = Ic, i. e. when the height of the barrier nulls (Fig. 1.1c). In fact, the escape of
the particle can be induced, as we will see, either by thermal fluctuation or by quantum
tunnelling, so that the e�ective escape current is reduced. Once the particle has moved,
the phase varies in time and a voltage appears across the junction, making the junction
switch to a resistive state.

Similarly to the case of a linear oscillator, it is possible to define a quality factor
Q © ÊpRC. Depending on the value of Q, one can distinguish two di�erent regimes for
Josephson junctions.

Underdamped junctions. For Q ∫ 1, the friction is small: once the critical current
Ic is reached, the particle starts rolling down the potential at a roughly constant speed
ˆ„
ˆt > 0, resulting in a mean voltage ÈV Í ”= 0. By decreasing the current bias just below
Ic, the inertia of the particle is so high that the damping is not su�cient to stop it in
one of the minima of the potential. The particle gets trapped only when the current is
lowered below the value Ir ƒ 4Ic

fiQ Ã
Ô

Ic, known as retrapping current, much lower than
the critical current. The V (I) characteristics shows then an hysteretic behaviour. In this
case (Q ∫ 1), the escape rate can be expressed in terms of the plasma frequency Êp (1.8)
and the barrier height �U = 4

3
Ic�0
2fi

1
1 ≠ I

Ic

23/2
[50–52]. The escape is dictated, at low

temperatures (T < ~Êp/(2fikB)), by quantum tunneling

�Q ≥
Ò

Êp�Ue
≠�U/(~Êp) �Ic Ã I

3/5
c , (1.9)

whereas, at high temperatures (T > ~Êp/(2fikB)), by thermal activation:

�T ≥ Êpe
≠�U/(kBT ) �Ic Ã I

1/3
c (kBT )2/3

. (1.10)

Overdamped junctions: Current-bias case. For Q π 1, the capacitive contri-
bution can be neglected (C ¥ 0) and the phase dynamics is described by a first-order
di�erential equation. This approach is the one that better describes vanishing-capacitance
di�usive SNS junctions, and it will be deeply used in the following, by referring to it as
RSJ model. In the case of a dc current bias, Eqs. (1.5) and (1.6) simplify to

Idc = Ic sin „ + V

R
(1.11)

9

φ

Tunnel junction 
• Large shunt resistance and 

capacitance 
• Underdamped phase dynamics 
• Hysteresis

SNS junction 
• Small shunt resistance and 

capacitance 
• Overdamped phase dynamics 
• No hysteresis (?)

R(
ω

)

CHAPTER 3. RADIO-FREQUENCY THERMOMETRY 62

Figure 3.14: a. V - Ibias curves of the SNS junction taken between T = 100 mK and T =

575 mK. The forward (reverse) sweeps are marked in the shades of blue (red). b. Ic (T) curve

extracted from the data shown in a.

Figure 3.15: a. The transmission spectra of the system between T = 100 mK and T = 600 mK

for three di↵erent input powers: Pin = �100 dBm (green), -110 dBm (red) and -120 dBm (black)

sampled at fs = 10 kHz during 1 s. b. The calibration curves extracted from the transmission

spectra at the resonant frequency
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Andreev reflection

ψ̃(x) ∝ e− x
ℏvF

Δ2 − E2

θ = − arccos ( E
Δ ) − φe-h scattering phase

Evanescent wave

Andreev, Sov. Phys. JETP (1964) 

Blonder, Tinkham, Klapwijk, PRB 
(1982) 

Pt-Ga Andreev point contact spectroscopy 
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Andreev bound states

E
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= 1 − τp sin2(φ/2)

Pillet et al., Nature Phys. (2010) 



Back to the supercurrent

I =
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formula

Murani et al., Nature 
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small drifting offsets, the experimental curves had to be
shifted in both directions by an arbitrary amount in order to
compare them with the theoretical predictions. Note, how-
ever, that the vertical shift corresponds essentially to the
average value hs!"’#i, which is very close to the switching
current s0 of the junction alone under the same conditions.
Figure 3 also shows, as dashed lines, the calculated
current-phase relations If!ig"’$ "=2# for the correspond-
ing sets f!ig. There is an overall qualitative agreement
between the experimental data and these simple predic-
tions. The discrepancies are significant only for contacts
AC2 and AC3, which both contain a highly transmitted
channel, and arise mainly around a phase # % ". These
differences can be understood almost completely by taking
into account the phase fluctuations imposed by the dissi-
pative elements of the electromagnetic environment in
which the SQUID is embedded. It is well known that in
such a dissipative biasing circuit the phase across the
SQUID is a dynamical variable governed by a Langevin
equation, equivalent to the one obeyed by the position of a
massive particle evolving in a ‘‘tilted washboard potential’’
in the presence of friction [26]. Assuming that only the
ground Andreev state of each channel of the atomic contact
is occupied, the total potential of the SQUID is given by

 U&"$# % &EJ cos$& EJs$&
X
i
E&!i "$$ ’; !i#; (1)

where the first term is the Josephson energy of the tunnel
junction, with EJ % %0I0=2", the second one is the energy
arising from the coupling to the current source, and the last

term is the Josephson coupling introduced by the atomic
contact. Figure 4 shows U&"$# for a SQUID with a single
channel contact (! % 0:99), and for comparison the poten-
tial of the tunnel junction alone (dashed line).

The overall shape of the potentials is qualitatively the
same but for very highly transmitted channels (!> 0:999),
and the physics is therefore similar to the well-known case
of tunnel junctions. For the actual parameters of the setup,
one can neglect quantum fluctuations and treat $ as a
classical variable. For 0< s< 1, the equivalent particle
oscillates around a local minimum of the potential at the
plasma frequency !p"s# % !0"1& s2#1=4, with !0 ’
"2"I0=%0C#1=2 [27]. The tilt of the potential increases
with s, and the thermal energy kBT becomes eventually
comparable to the potential barrier height !U"$# %
U&"$max# &U&"$min#, where $min ($max) is the phase at
which the potential presents a local minimum (maximum).
The particle can then be thermally activated over the
barrier and escape from the well at a rate

 ""s; ’# ’ !p"s#
2"

e&!U"s;’#=kBT; (2)

before the current actually reaches the critical current. The
biasing circuit is such that, once escaped, the particle runs
away indefinitely and a voltage suddenly develops at the
edge of the SQUID, according to V % %0 _$=2". This
corresponds to the ‘‘switching’’ detected in the
experiments.

We first performed switching measurements of the
Josephson junction alone, which is a well-known case
[26]. The reduced bias current corresponding to the im-
posed escape rate is of the order of s0 % 0:87, correspond-
ing to a phase $min % $0 % arcsin"s0# ’ 0:67""=2#. The s
dependence of the switching rate agrees precisely with
Eq. (2), and yields the escape temperature Tesc '
125 mK. Although it is significantly higher than the refrig-

FIG. 4 (color online). Solid line: washboard potential of a
SQUID with a single channel contact for ! % 0:99, s % 0:87
and ’ % 0, as function of the Josephson junction phase $.
Thermal activation allows the phase to escape at a rate " above
the barrier of height !U. Dashed line: washboard potential of
Josephson tunnel junction alone for the same parameters.

FIG. 3 (color online). Symbols: measured switching current
(s!"’# & s0)I0 as a function of applied flux %=%0, for the three
SQUIDS corresponding to the contacts of Fig. 2. Curves AC3
and AC1 shifted for clarity. Dashed curves: predicted ground
state current-phase relation I&f!ig"##. Full lines: predictions of
resistively shunted SQUID theory at Tesc % 130 mK on the basis
of Eq. (1). The transmission sets indicated in Fig. 2 caption have
been used for both theories.
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ators placed at low temperatures, and a discrete macro-
scopic resistor R mounted at the same temperature as the
sample. Voltage and current in the SQUID are both mea-
sured with low-noise voltage amplifiers, the latter from the
voltage drop across the resistor R.

The idea behind this setup is twofold [16]. On the one
hand, it allows us to obtain the dissipative part of the
current-voltage characteristic of the contact If!ig!V" #
ISQUID!V" $ IJ!V", as the difference between the one of
the SQUID ISQUID!V" and the one of the tunnel junction
IJ!V" alone, as shown in the lower panel of Fig. 2. The
latter is measured after fully opening the break junction
[20]. One then determines the transmission probabilities
f!ig and the gap ! ’ 180 "eV, by fitting If!ig!V" with
MAR theory [15,21–23], as shown in the upper panel of
Fig. 2 for three different contacts. On the other hand, on the
supercurrent branch of the SQUID (see inset in Fig. 2), it is
possible to impose a phase difference on the contact using
both the external flux and the current bias as control knobs,
and to use the tunnel junction as a threshold detector to
measure the current flowing in the loop [24]. Indeed, the
loop is designed to be small enough [25] so that, to a very
good approximation, the two phases are linked by the

magnetic flux # threading the loop, according to $$ % #
’ # 2&#=#0 and, therefore, Ib # I0 sin%% If!ig!%% ’".
In the limit I0 & I0

f!ig the critical current Ic of the SQUID
should be reached when %' &=2, and therefore its varia-
tions with the external flux are Ic!’" ' I0 % If!ig!’%
&=2". Therefore, the periodic modulations of Ic!’" around
the critical current of the junction probe directly the
current-phase relation of the atomic contact. It is, however,
important to note that in practice, due to fluctuations, both
quantum and thermal, the system ‘‘switches’’ stochasti-
cally from the supercurrent branch to the dissipative branch
before the bias current reaches Ic. This switching process is
characterized by a rate ". It is nevertheless still possible, as
we show hereafter, to probe the current-phase relation of
the contact from measurements of the switching current of
the whole device as a function of the magnetic flux.

Typically, we apply 104 bias current pulses of amplitude
s # Ib=I0 and duration !p ' 40 "s, and measure the
switching probability P!s" # 1$ e$"!s"!p as the ratio be-
tween the number of switching events and the total number
of pulses. For each value of ’ we adjust the current
pulse amplitude s(!’" so as to keep a constant switching
probability P!s(" # 0:6 (corresponding to a rate "( #
23:3 kHz), which leads to the best sensitivity with respect
to the flux response. The s(!’" curves measured in this way
for the three contacts of Fig. 2 are shown as symbols in
Fig. 3. As the absolute value of the flux through the loop is
not known, and the current measurements suffer from

FIG. 2 (color online). Upper panel: Experimental current-
voltage curves for three atomic contacts (symbols) for 0< eV <
2!, compared to best fits If!ig!V" using MAR (full lines). Fits
provide gap ! ’ 180 "eV and set f!ig of transmission coeffi-
cients for each contact: AC1! f0:62; 0:22; 0:07g; AC2!
f0:957; 0:19g; AC3! f0:993; 0:14g. Lower panel: I!V" curve
for contact AC3, obtained as the difference between ISQUID!V"
and IJ!V". Inset: Large scale characteristic of SQUID, displaying
supercurrent branch at V # 0.
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FIG. 1 (color online). (a) Schematic experimental setup:
dc SQUID formed by an atomic contact (phase $) and a tunnel
junction (phase %). The on-chip capacitor C ) 21 pF is formed
between the metallic substrate and a 100 nm-thick gold electrode
(1:3 mm2), with a 1:6 "m-thick dielectric polyimide layer. The
resistor r ) 0:6 #, corresponds to the sheet resistance of the
capacitor gold electrode. The bias current Ib is governed by
voltage source U and discrete macroscopic resistor R ) 25 #
mounted close to sample, at base temperature (20 mK) of
dilution refrigerator. (b) SEM image of SQUID loop. The tunnel
junction is fabricated using double-angle evaporation of alumi-
num through a suspended mask. This results in a parasitic
structure of no practical importance. Bright regions on the left
corners correspond to the gold thin films that connect the super-
conducting loop to the rest of the circuit, and provide the top
plate of the capacitor. These normal regions also act as quasi-
particle traps.
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ators placed at low temperatures, and a discrete macro-
scopic resistor R mounted at the same temperature as the
sample. Voltage and current in the SQUID are both mea-
sured with low-noise voltage amplifiers, the latter from the
voltage drop across the resistor R.

The idea behind this setup is twofold [16]. On the one
hand, it allows us to obtain the dissipative part of the
current-voltage characteristic of the contact If!ig!V" #
ISQUID!V" $ IJ!V", as the difference between the one of
the SQUID ISQUID!V" and the one of the tunnel junction
IJ!V" alone, as shown in the lower panel of Fig. 2. The
latter is measured after fully opening the break junction
[20]. One then determines the transmission probabilities
f!ig and the gap ! ’ 180 "eV, by fitting If!ig!V" with
MAR theory [15,21–23], as shown in the upper panel of
Fig. 2 for three different contacts. On the other hand, on the
supercurrent branch of the SQUID (see inset in Fig. 2), it is
possible to impose a phase difference on the contact using
both the external flux and the current bias as control knobs,
and to use the tunnel junction as a threshold detector to
measure the current flowing in the loop [24]. Indeed, the
loop is designed to be small enough [25] so that, to a very
good approximation, the two phases are linked by the

magnetic flux # threading the loop, according to $$ % #
’ # 2&#=#0 and, therefore, Ib # I0 sin%% If!ig!%% ’".
In the limit I0 & I0

f!ig the critical current Ic of the SQUID
should be reached when %' &=2, and therefore its varia-
tions with the external flux are Ic!’" ' I0 % If!ig!’%
&=2". Therefore, the periodic modulations of Ic!’" around
the critical current of the junction probe directly the
current-phase relation of the atomic contact. It is, however,
important to note that in practice, due to fluctuations, both
quantum and thermal, the system ‘‘switches’’ stochasti-
cally from the supercurrent branch to the dissipative branch
before the bias current reaches Ic. This switching process is
characterized by a rate ". It is nevertheless still possible, as
we show hereafter, to probe the current-phase relation of
the contact from measurements of the switching current of
the whole device as a function of the magnetic flux.

Typically, we apply 104 bias current pulses of amplitude
s # Ib=I0 and duration !p ' 40 "s, and measure the
switching probability P!s" # 1$ e$"!s"!p as the ratio be-
tween the number of switching events and the total number
of pulses. For each value of ’ we adjust the current
pulse amplitude s(!’" so as to keep a constant switching
probability P!s(" # 0:6 (corresponding to a rate "( #
23:3 kHz), which leads to the best sensitivity with respect
to the flux response. The s(!’" curves measured in this way
for the three contacts of Fig. 2 are shown as symbols in
Fig. 3. As the absolute value of the flux through the loop is
not known, and the current measurements suffer from

FIG. 2 (color online). Upper panel: Experimental current-
voltage curves for three atomic contacts (symbols) for 0< eV <
2!, compared to best fits If!ig!V" using MAR (full lines). Fits
provide gap ! ’ 180 "eV and set f!ig of transmission coeffi-
cients for each contact: AC1! f0:62; 0:22; 0:07g; AC2!
f0:957; 0:19g; AC3! f0:993; 0:14g. Lower panel: I!V" curve
for contact AC3, obtained as the difference between ISQUID!V"
and IJ!V". Inset: Large scale characteristic of SQUID, displaying
supercurrent branch at V # 0.
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FIG. 1 (color online). (a) Schematic experimental setup:
dc SQUID formed by an atomic contact (phase $) and a tunnel
junction (phase %). The on-chip capacitor C ) 21 pF is formed
between the metallic substrate and a 100 nm-thick gold electrode
(1:3 mm2), with a 1:6 "m-thick dielectric polyimide layer. The
resistor r ) 0:6 #, corresponds to the sheet resistance of the
capacitor gold electrode. The bias current Ib is governed by
voltage source U and discrete macroscopic resistor R ) 25 #
mounted close to sample, at base temperature (20 mK) of
dilution refrigerator. (b) SEM image of SQUID loop. The tunnel
junction is fabricated using double-angle evaporation of alumi-
num through a suspended mask. This results in a parasitic
structure of no practical importance. Bright regions on the left
corners correspond to the gold thin films that connect the super-
conducting loop to the rest of the circuit, and provide the top
plate of the capacitor. These normal regions also act as quasi-
particle traps.
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Heat transport 
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Friction and dissipation in Josephson devices
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