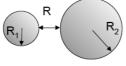
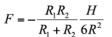
Summerschool 2013 Nanophysics exam


C. Winkelmann


For numerical applications we will (crudely) assume the following values: Reduced Planck constant hbar= $h/2\pi=10^{-34}$ S.I. Electron charge e= 10^{-19} C Boltzmann constant k_B= 10^{-23} J/K

Gravitational acceleration on earth g=10 m.s⁻²

- 1. In quantum mechanics, \hbar relates energy to the
 - a.) wave vector
 - b.) position
 - c.) momentum
 - d.) frequency
- 2. What are the standard international units of the orbital wave function of an electron? a.) $m^{\mbox{-}3/2}$
 - b.) m⁻³
 - c.) m.s⁻¹
 - d.) no units
- 3. For a given electronic orbital wave function $\psi(r)$, the physical meaning of $|\psi|^2$ is a.) the density of states at position r
 - b.) the density of charge at position r
 - c.) the density of probability of presence at position r
 - d.) the probability for the electron to exist
- 4. If a particle's position is defined with good precision around position r_0 , which other quantity is then necessarily poorly defined?
 - a.) mass
 - b.) energy
 - c.) time of residence around r_0
 - d.) momentum.
- 5. The Fermi-Dirac distribution in a solid conductor describes
 - a.) the spacing between adjacent energy levels
 - b.) the way electrons pile up in energy space
 - c.) the probability of presence in real space
 - d.) the density of states
- 6. An STM tip is placed 0.5 nm above a conductive surface, at a given bias voltage. The tunnel current is 10 nA. The tip is then moved away from the surface by 0.2 nm; the current drops to 1 nA. At what distance to the surface will the current go below 1 pA? a.) 1.7 nm
 - b.) 1.5 nm
 - c.) 1.3 nm
 - d.) 1.1 nm

- 7. A small cantilever is oscillating along direction z. As its approaches a surface exerting some conservative force F along, the oscillators resonant frequency changes proportionally to
 - a.) F²
 - b.) F
 - c.) 1/F
 - d.) dF/dz
- 8. Germanium has a semiconducting gap of 0.6 eV. Convert this energy into temperature.
 - a.) 5000 K
 - b.) 5 K
 - c.) 50000 K
 - d.) 500 K.
- 9. Why is atom manipulation by STM necessarily taking place at very low temperatures? a.) To avoid atom diffusion on surface
 - b.) To make sure the tip is in a quantum state
 - c.) To increase the charging energy of the atom
 - d.) To limit Casimir forces
- 10. The van der Waals force between two spheres is given by the following expression

 $R_1 + R_2 \ 6R^2$ Assume a vertically hanging chain of N adjacent spheres with radius 10 nm each, separated by 1 nm, and of mass 10^{-21} kg each. How big can N be before the first bond breaks due to gravity? (H = 1 eV)

a.) about 10,000

b.) about 10,000,000

c.) about 10,000,000,000

d.) about 10,000,000,000,000

11. The differential conductance of a tunnel barrier between a metallic tip and a semiconducting sample surface is a measure of

a.) the Fermi-Dirac distribution of the sample

b.) the density of states in the sample

- c.) the electronic density in the sample
- d.) the resistance of the sample

12. Two parallel mirrors separated by a distance R feel an attractive force proportional to $1/R^4$. This force is named

a.) van der Waals force

- b.) Casimir force
- c.) Debye force
- d.) the dark force.