SUMMERSCHOOL OF NANOSCIENCE 2017 EXAM

Chose one correct answer per question (except last question)

NANOPHYSICS

1. In an energetically forbidden region, an incoming electronic plane wave function

- a) Is continued as a plane wave of smaller amplitude
- b) Is continued as an evanescent wave
- c) Cannot penetrate
- d) Is either continued as a plane wave or as an evanescent wave, as a result of a probabilistic process

2. A freely propagating electron wave packet tends to

- a) Spread in real space and in reciprocal (i.e. momentum) space
- b) Spread in real space and narrow in reciprocal space
- c) Narrow in real space and in reciprocal space
- d) Narrow in real space and spread in reciprocal space

3. The temperature of the surface of a star can be determined

- a) From its luminosity
- b) From the energy of the emitted photons
- c) From the relative weight of electronic transitions from higher energy levels
- d) From the amount of hydrogen determined from the emission spectra

4. Kelvin probe force microscopy is a measurement of

- a) The work function
- b) The electronic density of states
- c) The van der Walls force
- d) The Casimir force

5. In an STM experiment, the tunneling current is seen to decay exponentially over a characteristic length z₀=0.8 Angström. While measuring an average tunnel current of 1 nA at a constant position, the signal is seen to fluctuate by 50 pA because of vibrations. What is the associated relative tip-sample vibration level?

- a) About 1 % of the size of a single atom
- b) About 10 % of the size of a single atom
- c) About the size of a single atom
- d) More than the size of a single atom

6. The left side of a sample is copper, the right side is germanium. The whole sample, including the interface, is perfectly flat as seen from the top. A STM tip, using a tip-sample bias voltage of 10 mV, is scanning over the interface, from left to right, with a fixed set-point tunnel current. As the Cu-Ge interface is reached,

- a) the observed atomic lattice changes
- b) current noise increases
- c) the tip crashes into the surface
- d) Germanium atoms are picked up in a controlled way by the tip

7. Which quantity is quantized in a Coulomb blockaded single-electron transistor ?

- a) energy
- b) momentum
- c) density of states
- d) charge

MICROELECTRONICS

- 1. In ALD process, precursor and reactant are introduced simultaneously:
 - a. yes
 - b. no

2. In Plasma enhanced ALD process, cold plasma is used for:

- a. The dissociation of the precursor
- b. The dissociation of the reactant
- c. The dissociation of the precursor and the reactant
- 3. For the deposition of a thin Al₂O₃ barrier layer on plastic, you should buy:
 - a. An ALD Roll to Roll process
 - b. An ALD stand-alone process
 - c. An ALD batch process
- 4. Using a wet oxidation (with water) instead of a dry oxidation (with O₂) gives:
 - a. Faster oxidation rate and higher oxide quality
 - b. Slower oxidation rate and higher oxide quality
 - c. Faster oxidation rate and lower oxide quality
 - d. Slower oxidation rate and lower oxide quality

5. A silicon wafer has a green oxide color on its 2 faces. The oxide has been obtained by:

- a. a thermal oxidation process
- b. A CVD deposition process

- 6. For the reduction of the interconnect delay we are using a low K dielectric SiOCH. In this material the CH_x groups are:
 - a. Bonded to O atoms
 - b. Bonded to Si atoms

7. Whatever the deposition process, a key to increase the conformality is to:

- a. Increase the deposition rate
- b. Decrease the deposition rate

8. The working pressure of a PVD process is:

- a. 10^{-6} mbar
- b. 1 mbar
- c. Atmospheric pressure

9. The definition of plasma etching should be:

- a. Sputtering etching
- b. Chemical etching
- c. Ion beam etching
- d. Chemical etching assisted by ions

10. For a gap-filling SiO₂ PECVD process, best results can be obtained with:

- a. SiH₄ + O₂
- b. TEOS (Si(OC₂H₅)₄) + O₂
- c. Both, the precursor has no influence

NANOBIOLOGY

- 1. What is the usual size range of a Eucaryotic cell?
- A. 1-2 nm
- B. 1-2 μm
- C. 10-20 μm
- D. 100-200 μm

2. What is the diameter of a DNA double helix?

- A. 2 nm
- B. 20 nm
- C. 200 nm
- D. 2 µm

3. Which DNA function(s) is(are) found in Nature?

- A. small drug recognition (aptamers)
- B. data storage
- C. nanometric self-folding involving staples (origamis)
- D. nanovehicle

4. Holliday junction conformation (extended X-form or stacked X-form) of DNA structures can be tunned with...

- A. Copper
- B. Gold
- C. Magnesium

D. Sodium

5. DNA based metallized nanowires (with copper) can be as thin as...

- A. 0.5 nm in diameter
- B. 5 nm in diameter
- C. 500 nm in diameter
- D. 5 μm in diameter

6. DNA might be used for positive or negative SiO₂ etching by adjusting...

- A. the temperature
- B. the DNA length
- C. the humidity level
- D. the nature of DNA counter-ion

MICROSYSTEMS

- 1. In the Injection Moulding technique ...
 - a. Thermoplastics are heated up to their melting point
 - b. Thermoplastic are kept cold
 - c. Thermoplastics are heated up to their glass transition temperature
 - d. Thermoplastics cannot be employed
- 2. Surface Micromachining is based on:
 - a. Alternation of polymeric materials
 - b. Etching of the silicon bulk substrate
 - c. Alternation of thin films of structural and sacrificial materials
 - d. Patterning of high aspect ratio feature
- 3. In a positive photoresist ...
 - a. Light induces cross-linking of the polymer chains to make them less soluble in the developing solution
 - b. They are not sensitive to light
 - c. Light etches the photoresist
 - d. Light breaks the polymer chains to make them more soluble in the developing solution
- 4. The aim of DRIE (Deep Reactive Ion Etching) is to ...
 - a. Deposit high aspect ratio features on the substrate
 - b. Etch high aspect ratio trenches in the substrate
 - c. Eliminate contamination from the substrate
 - d. Etch low aspect ratio trenches in the substrate
- 5. A SAW (Surface Acoustic Wave) device is fabricated by ...
 - a. A magnetic material
 - b. A piezoresistive material
 - c. A piezoelectric material
 - d. A shape memory alloy
- 6. The Force Balance approach for capacitive accelerometers is applied to ...
 - a. Improve the trade-off between sensitivity and linearity range
 - b. Improve the trade-off between accuracy and linearity range

- c. Improve the trade-off between sensitivity and robustness
- d. Improve the trade-off between cost and performance
- 7. A microfluidic mixer works thanks to ...
 - a. Turbulence between two liquids
 - b. Increase of temperature of the two liquids
 - c. Diffusion between two liquids
 - d. Difference of viscosity between the two liquids
- 8. Reciprocating micropumps consist of:
 - a. 3 pressure chambers with a flexible diaphragms driven by a sequence of 3 actuators
 - b. Micropumps without moving parts
 - c. A pressure chamber with a flexible diaphragm driven by a sequence of 3 actuators
 - d. A pressure chamber with a flexible diaphragm driven by an actuator and passive microvalves
- 9. A Point-Of-Care is ...
 - a. A device for the clinical tests performed outside a standard laboratory for clinical analysis
 - b. A miniaturised sensor
 - c. A device for the clinical tests performed inside a standard laboratory for clinical analysis to minimize costs
 - d. A device for the clinical tests performed inside a standard laboratory for clinical analysis to improve the sensitivity

NANOFUNCTIONAL MATERIALS

- 1. The graphene sheet is very strong mechanically in plane due to ...
- *a*. σ -bonding of sp^2 hybridized orbitals
- *b.* σ -bonding of sp^3 hybridized orbitals
- c. $\pi\text{-bonding}$ of unhybridized s-orbitals
- d. $\pi\text{-bonding}$ of unhybridized p-orbitals

2. The carrier transport along the armchair direction of a single layer graphene ribbon is semiconducting, and the bandgap scales with ...

- a. the value of ribbon width, \boldsymbol{w}
- b. the square value of ribbon width, w^2
- c. the reciprocal value of ribbon width, 1/w
- d. the reciprocal square value of ribbon width, $1/w^2$

3. The kinetic energy of electrons in single-layer graphene is proportional to ...

- a. the reciprocal square value of electron effective mass, $1/(m^*)^2$
- b. the reciprocal value of electron effective mass, $1/m^*$
- c. the square value of wavevector, k^2
- d. the value of wavevector, *k*

4. A (9,6) carbon nanotube is ...

- a. superconductive
- b. metallic
- c. semiconducting

d. insulating

5. Carbon nanotubes are usually produced by...

- a. mechanical exfoliation of a large graphite crystal
- b. physical vapor deposition
- c. chemical vapor deposition
- d. electro-deposition

6. As a possible solution for future CMOS technology, graphene FETs are highly interesting, because ...

- a. graphene is mechanically very strong for manufacturing nm-sized devices
- b. graphene is highly conductive with a larger current handing capability
- c. graphene has excellent thermal properties for efficient power dissipation
- d. graphene channel can easily be controlled for a higher on/off current ratio

7. The conductance of a graphene ribbon is very sensitive to any additional charged gas molecules, because of ...

- a. strong molecule absorption on a uniform single atomic sheet
- b. active interaction with $\pi\, {\rm electrons}$
- c. very high carrier mobility in graphene
- d. low density of states near the Dirac point is very due to linear energy dispersion

8. CN_x fullerene-like molecule and film materials are super elastic, because ... a. $4 sp^3 \sigma$ -

bonds of carbon atoms that equally share stress in any directions

- b. a perfect construction in tubular form
- c. sp^2 bonding of a spherical shell to recover the bond-angle deformation, but no bond breaking
- d. delocalized π -electrons that travel across several carbon atoms to increase strength

9.Draw the chiral vector C_h of a CNT with (n,m) = (6,9) on the lattice shown on the answer sheet

Summerschool Exam Solutions

	Nanophysics	Microelectronics	Nanobiology	Microsystems	Nanofunct. mat.
1	b	b	С	а	а
2	b	b	а	С	С
3	С	а	b	d	d
4	а	С	С	b	b
5	а	а	b	С	С
6	С	b	с	а	b
7	d	b		С	d
8		b		d	С
9		d		а	
10		b			

