Physics at the Nanoscale and applications

Grenoble INP

Crants

Clemens.Winkelmann@grenoble.cnrs.fr Phelma / Grenoble INP and Institut Néel / CNRS

Physics at the Nanoscale

- I Basics of quantum mechanics
- II Statistical physics
- III Forces at the nanoscale
- **IV** Electron tunneling and applications
- V Quantum electronic transport

Statistical Physics Large numbers and fluctuations

Macroscopic world: ensembles of $N \approx 10^{23}$ particles

Fluctuations concern ≈√N particles

Relative fluctuations amount to $VN/N=1/VN\approx 10^{-11}$

« In a big group, you only care about the mainstream »

In nanoscience, there's room for fluctuations.

Statistical Physics Large numbers and fluctuations

Macroscopic world: ensembles of $N \approx 10^{23}$ particles

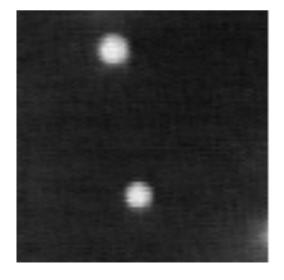
Fluctuations concern ≈√N particles

Relative fluctuations amount to $\sqrt{N/N}=1/\sqrt{N}\approx 10^{-11}$

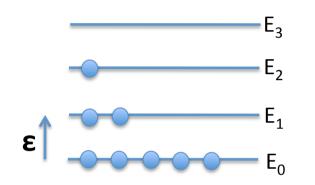
« In a big group, you only care about the mainstream »

In nanoscience, there's room for fluctuations.

Brownian motion of 2 μm spheres in water. Courtesy Professor Eric Weeks, Emory University



Statistical Physics Boltzmann distribution



At fixed temperature, probability of a given particle to be in a given state of energy E

$$P(E) = \frac{1}{Z} \exp(-\frac{E}{k_B T})$$

Exercise:

In the above drawing, assume T=300K and ϵ =100 meV. How much more is state 0 populated than state 1 ? How about if ϵ =1 eV ?

Boltzmann constant k_B=1.38 10⁻²³ J/K

At room temperature (300K)

k_BT = 4.1 10⁻²¹ J = 26 meV = 4.1 pN.nm

Statistical Physics Quantum statistics

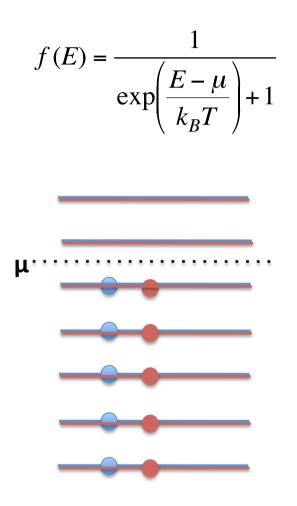
Quantum particles are entirely described by their quantum state

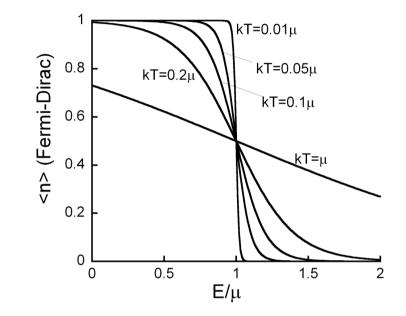
- -classically, 5 ways of realizing
- in the quantum world, they're one and the same thing
- How many particles can be in the same quantum state?
- Pauli exclusion principle: Two fermions cannot be in the same quantum state.

$$\rightarrow$$

Fermi-Dirac distribution
$$n(E) = \frac{1}{\exp\left(\frac{E-\mu}{k_BT}\right) + 1}$$

Statistical Physics Fermi-Dirac distribution

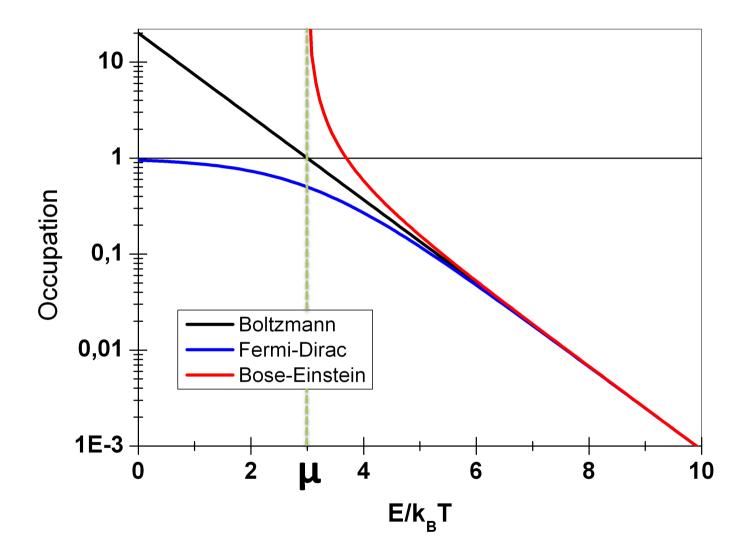




 \circ Low-energy states are filled with probability \approx 1.

 \circ For E > μ , occupation probility decays similarly to Boltzmann distribution.

 \circ Orbital states may be spin degenerate.



Statistical Physics Thermal distribution of fermionic ensembles

• Fermions: electron, proton, neutron, ³He, ...

 \circ At T = 0, all states below μ are filled, all above are empty.

 \circ At T > 0, thermal excitations around E= μ .

States filled with finite probability 0 .

Thermal smearing: df/dE Full width at half hight ≈3.5k_BT

 \circ At high T ≈ µ/k_B, recover Boltzmann statistics.