Physics at the Nanoscale and applications

Grenoble INP

Crants

Clemens.Winkelmann@grenoble.cnrs.fr Phelma / Grenoble INP and Institut Néel / CNRS

Physics at the Nanoscale

- I Basics of quantum mechanics
- II Statistical Physics
- **III** Forces at the nanoscale and applications to AFM
- **IV** Electron tunneling and applications
- V Quantum electronic transport

Forces at the nanoscale

1/ Introduction.

- 2/ Capacitive forces.
- 3/ van der Waals forces.
- 4/ Casimir Force.

5/ Application to Scanning Probe Microscopy.

Thanks to Thierry Ouisse for providing his lecture on the subject

General equation of a first-order mechanical system

The only noticeable modification imposed by a small interaction is a variation of the spring constant equal to the gradient of the force.

1.1 Introduction : Why study forces at the nanoscale ?

Accelerometry

Applications : airbag (but no real need for miniaturisation), Ipod, videogames, minidrones, etc.

Micro-accelerometer

Nano-accelerometer

SEM images of micro and nano-systems fabricated at LETI-CEA (Grenoble)

Measuring small weight changes

Atomic force microscopy

nc-AFM image of a carbon nanotube junction Institut Néel

nc-AFM on pentacene IBM Zürich

1.2 Capacitive forces

Capacitive forces often prevail when objects are conducting, but this depends on the applied voltage and surface areas.

Samaddar et al. (I. Néel)

1.3 van der Waals forces

van der Waals forces : dipole or induced-dipole interactions

three possible contributions:

- Interaction between permanent and orientable dipoles (Keesom interaction).
- Interaction between polar and polarisable molecules (Debye interaction).
- Instantaneous dipolar interaction even between initially neutral atoms or molecules (**Dispersion** or **London forces**).

Keesom contribution :

Interaction between polar molecules with permanent and orientable dipoles.

Debye contribution :

Interaction between a polar molecule and a neutral but polarisable atom

2

equivalent to

Extension of Van der Waals forces to 3D objects

Hamaker constant (material dependent)

$$H = \pi^2 C \rho_1 \rho_2 \approx 1 eV$$

14

Van der Waals forces

A gecko sticking its legs onto a perfectly hydrophobic GaAs surface.

Source: Nature publishing group

Imitating the Gecko with nanostructures

Murphy *et al* (Pittsburgh University 2009)

1.4 Casimir force: a classical analogy

Le Calme plat.

SORSQUE deux bâtiments sont en calme, ils tendent toujours à se rapprocher et finissent par s'aborder, étant attirés l'un vers l'autre par une certaine force attractive; dans ce cas, on se sert des canots pour s'éloi-

gner, et on y parvient plus promptement en faisant remorquer l'un des bàtiments par les canots des deux. Les petits bâtiments ont de plus la ressource de leurs avirons de galère.

From J.C.Caussée, « l'album du Marin » (1836)

Casimir pressure between two plates

Interpretation :

• Quantum fluctuations create a radiation pressure.

• Two plates form an optical cavity:

The number of electromagnetic modes and the energy density are not the same as outside.

→ difference in the radiation pressure from quantum fluctuations inside and outside.

→ force which makes the plates get closer

Casimir force between a sphere and a plane

Mohideen et al., Phys. Rev. Lett. 1999

Careful AFM measurements show the transition between the Van der Waals and Casimir regime.

Casimir : Relevance to NEMS

Casimir force can be rendered repulsive by changing the geometry or surface structure at the nanoscale

 \rightarrow frictionless motion.

HKUST & MIT

1.6 Scanning Probe Microscopy

Diffraction limit to optical microscopy

$$d = \frac{\lambda}{2n\sin\alpha}$$

Two strategies:

Smaller wavelength « bullets »

Scanning electron microscopy

Avoid propagating information

Scanning probe microscopy

Requirements

• Sensing

Evaluate the force between the tip and sample.

 \rightarrow measure the deflection of the cantilever.

Actuating

control the force between the tip and the sample

• Feed-back loop

Track the sample topography using a feed-back loop ensuring a constant deflection of the cantilever.

Contact forces

Just for 2 atoms: Lennard-Jones potential

$$F(r) = -\frac{\partial U}{\partial r}$$

AFM cantilevers and tips

Silicon nitride (« harder »)

Silicon («more fragile »)

Diamond-coated tip (really hard)

- Probes can be metallized.
- Geometry designed for a given spring constant (= force), or a given resonant frequency.
- Tip geometry determined by the etching procedure and the material properties.

AFM

What is a good image ?

Contact mode with deflection as the setpoint variable

Height

Deflection

1/ Why do we obtain a contrast in the deflection image?2/ How can we assess the image quality?

Correcting the raw data

• Imperfect parallelism between the sample and the scanning plane

• For large x and y there is also a variation in z which has to be compensated by an additional dilatation of the piezotube.

Real profile

• The measured topography is a convolution of the real topography by the shape of the tip.

To obtain good results the first condition is to use a sharp tip!

Artefacts related to the shape of the tip

After Veeco handbook manual

Capillary forces

Atomic resolution requires ultra-high vacuum so as to get rid of the adsorbed water molecules.

Atomic scale imaging

Au(111) on a glass observed in contact mode AFM.

Image credit: Omicron

Requires ultra-high vacuum (UHV) conditions

Tapping mode AFM

•The cantilever is excited by a piezo-electric actuator close to its mechanical resonance.

• Detect the modification of the forced oscillations by the small interaction between the tip and sample.

Feedback parameter: cantilever oscillation amplitude

Images in non contact mode

Graphene on a silicon carbide substrate

Feedback parameter: frequency shift

Si(111) 7x7

Image credit: Omicron

Electric Force Microscopy (EFM)

Operates even in the absence of topographic variations

Electric Force Microscopy (EFM)

Subsurface imaging of carbon nanotubes in a polymer composite (Zhao, Nanotechnology, 2010)

EFM phase imaging of a thin layer made from a blend of polyfluorene and molten salt. Sample topography is totally flat (from T. Ouisse/ LMGP Grenoble)

Fermi level and work function

Kelvin probe force microscopy

Kelvin probe force microscopy

Force vs. bias curve of W tip on graphene: Contact potential difference

$$V_{\rm CPD} = W_{sample} - W_{tip}$$

Graphene delaminations from Iridium substrate Samaddar *et al.,* Nanoscale 2016