Physics at the Nanoscale and applications

Grenoble INP

Crants

Clemens.Winkelmann@grenoble.cnrs.fr Phelma / Grenoble INP and Institut Néel / CNRS

Physics at the Nanoscale

- I Basics of quantum mechanics
- **II** Statistical Physics
- III Forces at the nanoscale
- **IV** Electron tunneling and applications
- V Quantum electronic transport

Outline

- Electronic interferences
- 2D electron systems
- Mesoscopic transport in a ballistic conductor
- Imaging ballistic electron flow

Quantum Electronic Transport Interference of propagating waves

Young's double slit experiment for photons

Quantum Electronic Transport 2D Electron Gases

n-AlGaAs

Mobilities higher than $10^7 \text{cm}^2/\text{v/s}$ at 4K in modulationdoped GaAs; 2D concentrations in the 10^{11}cm^{-2} range.

Quantum Electronic Transport Mesoscopic transport in a ballistic conductor

In a macroscopic conductor and at low electric field, the conductance is *ohmic*:

$$G = \sigma \frac{W}{L}$$

A conductor is ohmic if its dimensions are much larger than

1/ the Fermi wavelength λ_F . 2/ the momentum mean free path λ_m . 3/ the phase relaxation length λ_{Φ} .

When the device dimensions get small enough for this law to break down, the device is called mesoscopic.

→ Depending on the device materials and conditions (temperature), from a few nanometers up to mm!

Characteristics physical lengths

- Fermi wavelength λ_{F} : electron wavelength at the Fermi energy:
- Mean free path λ_{M} : distance that an electron travels before loosing its initial momentum

Degenerate electron gas: $\lambda_m = v_F \tau_m$

- Phase-relaxation length $\lambda \phi$: distance that an electron travels before loosing its initial phase.

Example

• Today MOS transistors actually get close to the ballistic regime

Typical length scales

Resistance of a narrow ballistic channel : towards the quantum of resistance

Ballistic conductors : a classical analogy

Contact resistance: quantum of resistance

If T=0K and the number of open channels is constant in the range $\mu_1 < E < \mu_2$:

$$I = \frac{2e^2}{h}M\frac{\mu_1 - \mu_2}{e}$$

$$G_C = M \frac{2e^2}{h} \qquad R_C = \frac{h}{2e^2M} = \frac{12.9k\Omega}{M}$$

K. J. Thomas *et al*. Phys. Rev. B <u>58</u>, 4846 (1998)

First observation in 1988

Absence of voltage drop in a ballistic conductor: Experimental verification with carbon nanotubes

non -ballistic multi-wa nanotube ballistic single wall nanotube: potential is constant inside the nanotube.

Quantum Electronic Transport Imaging ballistic electron flow

Scanning Gate Microscopy close to a Quantum Point Contact

Experiment: Topinka et al. Science (2000)

Double slit experiment with electrons : The Aharonov-Bohm effect

Electrons are waves !

3 length scales:

- 1/ the Fermi wavelength λF .
- 2/ the momentum mean free path λm .
- 3/ the phase relaxation length $\lambda \Phi$.

Interference between two paths under magnetic field

$$S \times \Delta B = \frac{h}{e} = \Phi_0$$

Partial Local DOS

MIN

SQUID

Superconducting quantum interference device

Superconductivity (celebrating 100 years) : coherent macroscopic quantum state

Very sensitive magnetometers

Scanning µ-squid Force Microscope