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Magnetic tetrastability in a spin chain
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Bistability in magnetism is extensively used, in particular for information storage. Here an alternative approach
using tetrastable magnetic domains in one-dimensional (1D) spin systems is presented. Using numerical and
analytical calculations, we show that a spin chain with a canting angle of π /4 possesses four energy-equivalent
states. We discuss the static properties of this canted 1D system such as the profile and the energy of the domain
walls as they govern the dynamics of the magnetization. The realization of this π /4 canted spin chain could enable
the encoding of the information on four bits, which is a potential alternative toward the increase of storage density.
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I. INTRODUCTION

Spintronics using magnetic materials in electronic devices
has made considerable progress from fundamental studies
to practical applications [1]. This technology is based on
the discovery of magnetoresistive effects, such as the giant
magnetoresistance in ferromagnetic conductors. Nowadays
these properties are mainly used for reading information
encoded in the magnetic domains of a hard drive disk [2].
Depending on the relative magnetization orientation of the
domains (either up or down), a drastic change of the electrical
resistance is observed in the read head. The constant reduction
of the domain size, which slightly approaches the domain wall
thickness, has almost reached its limit in standard inorganic
magnetic materials. Moreover, as the domain size reduces,
the anisotropy and therefore the bistability of these systems
decreases [3]. Hence, the challenge resides in finding new
ways to store information on magnetic media. One of the
approaches consists in using an alternative magnetic object
such as molecular nanomagnets [4,5] or single atoms [6],
which are the smallest magnetic domains that one can create.

Here, going beyond the traditional bistable storage of
magnetic information, a strategy relying on spin chains
exhibiting a magnetic tetrastability is presented. This approach
allows the encoding of information on four states and thus
offers an unprecedented opportunity to extend the storage
density. Numerical and analytical calculations demonstrate
that the so-called π/4 canted spin chain presents four stable
magnetic domains with orthogonal magnetizations separated
by π/2 domain walls. The profile of these domain walls in
the weak and strong anisotropy limits is reported emphasizing
the finite energy of the domain walls, that should prevent their
nucleation at low temperature (and thus the relaxation of the
magnetization, i.e., loss of information) and therefore preserve
the encoded information.

Among the variety of low dimensional magnets, single-
chain magnets (SCMs) [7,8] have been extensively studied as
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they present a slow relaxation of magnetization, promising
for information storage [7–11]. SCMs are generally made
by assembling together molecular building blocks [9–11] that
own a strong uniaxial anisotropy [12]. A SCM can be simply
described by a chain of spins, as depicted in Fig. 1(a), with the
following parameters: S is the amplitude of each spin, D is the
on-site magnetic anisotropy, α is the canting angle between
the local easy direction of magnetization and the normal to
the chain axis, J is the exchange interaction between two
neighboring spins, and θn and φn are the orientation of two
consecutive spins at the site n with canting angle +α and −α.
We consider here only a uniaxial anisotropy [D > 0 in the
convention of Hamiltonian (1)] that is the most common case
in SCM systems for which the transverse anisotropy term is
usually negligible [9,10,13].

In the simple case where the anisotropy axis of different
sites are collinear (α = 0), the SCM presents a classical mag-
netic bistability: two kinds of magnetic domains exist with the
same energy but opposite magnetizations [see Fig. 1(b)] [9,10].
These magnetic domains are constituted of a given number of
spins, which align along the unique easy axis of magnetization
of the system [8–10]. Therefore, the domains are separated by
domain walls (DWs) in which the magnetization is rotated by
π , and are quoted as π DWs [14,15]. It is important to note that
the width of these DWs depends on the ratio D/J . The spin
chains can be treated considering classical anisotropic spins in
the following Heisenberg Hamiltonian [9]:

Hα=0 = −2JS2
+∞∑
−∞

�un · �un+1 − DS2
+∞∑
−∞

u2
n,z, (1)

where �un is the unitary vector that gives the orientation of the
nth spin of the chain and z is the direction of the anisotropy axis
(α = 0). As shown by Barbara using this spin Hamiltonian, the
DWs become strictly narrow for D/J > 4/3 (a DW is located
between two antiparallel spins) [14]. This case corresponds to
the so-called Ising limit.

However, the magnetic topology of SCMs is generally
more complex than the α = 0 regular case. Indeed, a large
number of synthesized SCMs possess two anisotropic axes
with different orientations, which alternate along the spin chain
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FIG. 1. Scheme of principle for information storage in a spin
chain. (a) Representation of the spin orientations θ and φ associated
to the easy axis, +α and −α (red and blue lines). The θn and φn angles
measure the orientation of the θ and φ spins relatively to the normal
to the chain axis (dashed line). The J and D parameters describe,
respectively, the magnetic interaction between two neighboring spins
and the magnetic anisotropy of a given spin. (b) Representation of
the two energy-equivalent domains in the classical SCM with α = 0.
(c) Representation of the four energy-equivalent domains for an α =
π/4 canted SCM for a finite θe.

[16–20]. These one-dimensional (1D) systems, possessing a
finite angle α, are called canted SCMs. In these chains, due
to a competition between the exchange interaction and the
magnetic anisotropy, the equilibrium spin configuration in the
magnetic domains (for which the chain energy is minimum)
is different from the α = 0 case [10]. In the case of canted
SCMs, the corresponding Hamiltonian is

Hα �=0 = −2JS2
+∞∑
−∞

cos (φn − θn) + cos (θn − φn+1)

+DS2
+∞∑
−∞

sin2(φn + α) + sin2(θn − α), (2)

where θn and φn are the spin orientation associated to the easy
axis at +α and −α. If several references already described the
static properties of canted SCMs [16,21–25], the theoretical
study of a chain in the particular case of a π/4 canting
angle has never been reported so far. However, its promising
magnetic properties described below should motivate chemists
to rationally synthesize this novel kind of SCM.

II. RESULTS AND DISCUSSION

Using Eq. (2) in the particular case of α = π/4, the energy
of the chain is given by Eq. (3) (see Appendix A):

E

2JS2
=

+∞∑
−∞

− cos (φn − θn) − cos (θn − φn+1)

+ D

4J

+∞∑
−∞

2 + sin (2φn) − sin (2θn). (3)

)b()a(
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FIG. 2. Scheme of the four equilibrium configurations in the
magnetic domains for a D/J finite value. Configuration of the (a)
“up”, (b) “right”, (c) “down,” and (d) “left” magnetization.

In order to find the spin configuration along the chain at the
equilibrium, the derivative of the chain energy with respect to
θn and φn must be calculated leading to a system of angular
equations:

∂E

∂θn

= sin(θn − φn) + sin(θn − φn+1) − D

2J
cos(2θn) = 0,

(4)
∂E

∂φn

= sin(φn − θn) + sin(φn − θn−1) + D

2J
cos(2φn) = 0.

At the equilibrium, the θn and φn angles are independent
of the site number, n, and are labeled θe and φe. In these
conditions, the summation of the equations given in Eq. (4)
leads to the relation cos(2θe) = cos(2φe). Four solutions of
lowest energy to this equation are found inducing the presence
of four domain orientations described as follows:

θu
n = θe, φu

n = −θe,

θr
n = π/2 − θe, φr

n = π/2 + θe,

θd
n = π + θe, φd

n = π − θe,

θ l
n = −π/2 − θe, φl

n = −π/2 + θe. (5)

The equilibrium angle, θe, can be deduced from Eqs. (4),
allowing direct access to a solution of Eq. (5):

tan(2θe) = D

4J
. (6)

These four configurations correspond to four domains with
the same energy but different magnetizations, “up,” “down,”
“right,” and “left” as described in Fig. 2. Therefore, the
α = π/4 canted spin chain can be viewed as a four-state
system where each state corresponds to a magnetic domain
with a specific magnetization orientation [Fig. 1(c)]. In the
following, we will describe the π/2 DW that separates two of
these magnetic domains with orthogonal magnetization (e.g.,
“right” and “up”), as their profile and energy govern the static
[26,27] and dynamic [28,29] properties of SCMs.

For any value of the D/J ratio, the profile of this π/2
DW can be obtained numerically by solving Eq. (4) using
a Newton-Raphson refinement [30]. The convergence of the
refinement is reached when the energy of the DW [as defined
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FIG. 3. Profiles of a π/2 domain wall in the broad [D < J ; (a)]
and sharp [D > J ; (b)] limits for the α = π/4 canted spin chain. The
insets represent the “right” and “up” magnetization domains linked
by the DW. The dashed line in (b) shows that the π/2 DW center is
pinned on a single spin.

in Eq. (7)] is minimized (see Appendix A).

�E

2JS2
=

+∞∑
−∞

2 cos (2θe) − cos (φn − θn) − cos (θn − φn+1)

+ D

4J

+∞∑
−∞

2 sin(2θe) + sin (2φn) − sin(2θn). (7)

Figures 3(a) and 3(b) show typical π/2 DW profiles for
D < J and D > J , respectively.

In both cases, the DW links the “right” and “up” magnetiza-
tion domains. Its center is pinned on a θ site and corresponds to
a spin perfectly aligned with its easy axis (θ0 = π/4). The DWs
are broad in the D < J limit as described in the α = 0 case
[9,10]. However, for increasing D/J ratio, the DW thickness
decreases but stays always greater than the distance between
two sites. As a consequence, and in contrast with the α = 0
case, strictly sharp DWs (i.e., Ising-like) are forbidden even in
the D � J limit.

In order to complete these numerical results, the DW profile
was derived analytically using Eq. (4) and the DW energy
[Eq. (7)] in the two limit cases. In the broad profile case
(D < J ), neighboring spins inside a DW possess very close
orientations. This fact leads us to introduce a continuous
description of the DW profile, by defining the variables ωn

and γn:

ωn = φn + θn

2
, γn = φn − θn

2
. (8)

Thanks to these new variables, the continuous calculation
of Eq. (7) can be carried out and the profile can be expressed
as a function of the ratio D/J (see Appendix B):

tan[ω(u)] = exp

(
−u

D

J

)
,

γ (u) = D

8J

[
1 + exp

(−uD
J

)]
cosh

(
uD

J

) − θe (9)

with u being the continuous variable describing the distance
to the DW’s center. In the sharp profile case (D > J ), the
orientations of the spins inside the DW are very close to their
equilibrium values due to the dominant magnetic anisotropy.
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FIG. 4. Comparison of the analytical expressions, Eqs. (9) and
(11), with the numerical profile of the π/2 domain walls presented in
Fig. 3 in the broad [D < J ; (a)] and sharp [D > J ; (b)] limits. The
dots are the numerical values of the profile variables and the lines
are the fits of the same data with the analytical profile expressions.
The analytical profile (a) leads to a D/J value of 0.104 735 in
good agreement with the value obtained numerically of 0.104 737.
Similarly, the fit of DW profile (b) gives a D/J value of 5.103 in good
agreement with the numerical value of 5.111.

Therefore, the equation system (4) can be linearized with
respect to the angles δθn and δφn:

δθn = θn − θe , δφn = φn + θe. (10)

Considering a π/2 DW between “right” and “up” domains
for which the spin orientation θ0 is exactly equal to π/4, the
profile can be calculated as an exponential decrease from the
first spin after the DW’s center (see Appendix C):

δθn = δφ1 exp
[−(

n − 1
2

)
ψ

]
,

δφn = δφ1 exp[−(n − 1)ψ] (11)

with ψ the parameter defined by cosh(ψ/2) = D2/8J 2 + 1.
Figures 4(a) and 4(b) present the numerical calculation of

DW profiles in the broad and sharp limits, respectively, fitted
with the analytical expressions, Eq. (9) and Eq. (11). For both
broad and sharp limits, the fitting of the variables, ωn,γn and
δθn, δφn, respectively, are in good agreement with the values
extracted from numerical computation.

The perfect agreement between the numerical profiles and
their analytical expressions in the two limits confirms the
validity of our numerical method. As a consequence, this
numerical approach appears perfectly reliable to extrapolate
the DW profiles between the two limits.

Following the description of the spin profile, the DW
energy, which is also the energy barrier that separates two
orthogonal ground states, has been determined. Indeed, if
the DW has no energetic cost, its nucleation will relax the
total magnetization of the SCM and therefore the encoded
information will be lost. Using the DW profile obtained from
the Newton-Raphson refinement and Eq. (7), the energy of the
π/2 DW has been calculated as shown in Fig. 5.

In both D < J and D > J limits, the normalized energy
follows simple power laws of the ratio D/J :

�ED�J,α=π/4

4JS2
= D

8J
, (12)

�ED�J,α=π/4

4JS2
= J

D
. (13)
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FIG. 5. Energy of a π/2 domain wall as a function of the
D/J ratio. The dashed line represents the analytical limits of the
normalized DW energy in the broad and sharp limits.

Using the analytical profile expression obtained previously
[Eqs. (9) and (11)], these two expressions can also be obtained
analytically by solving Eq. (7) in the continuous limit for
D � J (see Appendix B), and using its Landau development
for D � J (see Appendix C). Between these two limits, the
normalized DW energy exhibits a maximum of the order of
JS2. As a consequence, the DW has a finite energy which
precludes its nucleation at sufficiently low temperature.

By analogy with the ferromagnetic chain, we can conclude
that the relaxation time of the magnetization will be large
as soon as the DW energy becomes much larger than kBT .
In this temperature range, the α = π/4 canted chain will
be operational for information storage. According to our
numerical and analytical results, the tetrastability of the
α = π/4 canted spin chain is realized for kBT � DS2/2
and kBT � 4J 2S2/D in the D � J and D � J limits,
respectively. Finally, when the D/J ratio is of the order of 1,
the energy barrier between orthogonal ground states reaches its
maximum and is of the order of 4JS2/5. This is the optimum
situation for information storage as soon as kBT � JS2.

III. CONCLUDING REMARKS

In this work, the existence of four energy-equivalent states
has been demonstrated and theoretically studied in an α = π/4
canted spin chain. These magnetic states are associated to four
kinds of magnetic domains, which bear magnetization with
different orientations along the chain. This unique property
reinforces the potential interest of SCMs for data storage
applications with the possibility to code information on these
four states. At the same time, we emphasized the fact that these
magnetic domains are linked by π/2 DWs instead of the more
traditional π DWs usually described in the α �= π/4 case. The
physical ingredients that describe the crossover from π to π/2
DWs when the canting angle gets close to π/4 are currently
being investigated and will be described elsewhere. Moreover,
the spin profile and energy of the π/2 DWs have been described
thanks to combined numerical and analytical approaches.
These theoretical results establish that the highest DW energy
is obtained when the D/J ratio ranges between 1 and 10.
Overall, the remarkable properties of the α = π/4 canted

SCMs predicted in this work should encourage chemists in
the fields of coordination chemistry and molecular magnetism
to obtain experimental α = π/4 canted SCM materials and to
verify their applicability toward storage devices.
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APPENDIX A: CHAIN AND DOMAIN WALL ENERGIES

In order to calculate the energies of spin chain and domain
wall, we use a classical Heisenberg Hamiltonian composed of
spin-exchange interaction and anisotropic terms. These two
components can be expressed with angles describing the spin
orientations (Fig. 1):

Hexchange = −2JS2
+∞∑
−∞

�un,φ · �un,θ + �un,θ · �un+1,φ

= −2JS2
+∞∑
−∞

cos(φn − θn) + cos(θn − φn+1), (A1)

Hanisotropy = −DS2
+∞∑
−∞

u2
n,z,φ/−α + u2

n,z,θ/+α

≡ DS2
+∞∑
−∞

sin2(φn + α) + sin2(θn − α), (A2)

where �un,φ and �un,θ are the unitary vectors describing the
orientation of the nth spins, and un,z,φ/−α and un,z,θ/+α are
their projection amplitude along their respective easy axis.
Thus the energy of the spin chain can be deduced from
the total Hamiltonian Htotal = Hexchange + Hanisotropy. In the
α = π/4 case, the chain energy is written as follows [using
sin2(x ± π/4) = 1/2[1 ± sin(2x)]:

E

2JS2
=

+∞∑
−∞

− cos(φn − θn) − cos(θn − φn+1)

+ D

4J

+∞∑
−∞

2 + sin(2φn) − sin(2θn). (A3)

At the equilibrium, i.e., for an infinite chain without any
domain wall, θn and φn angles are equal to their equilibrium
values θe and φe. As an illustration and for simplicity, we
consider here the case where the chain at equilibrium is in its
“up” configuration leading to φe = −θe. Therefore, the energy
of the infinite chain at equilibrium Eeq can be deduced from
Eq. (A3):

Eeq

2JS2
=

+∞∑
−∞

−2 cos(2θe) + D

4J

+∞∑
−∞

2 − 2 sin(2θe). (A4)

Finally, the energy �E of a domain wall is defined as
the difference between the chain energy [Eq. (A3)] and the
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equilibrium energy [Eq. (A4)]:

�E

2JS2
=

+∞∑
−∞

2 cos(2θe) − cos(φn − θn) − cos(θn − φn+1)

+ D

4J

+∞∑
−∞

2 sin (2θe) + sin(2φn) − sin(2θn). (A5)

APPENDIX B: THE D � J LIMIT

The DW profile in the D � J limit is broad, meaning that neighboring spins have close orientations. Therefore, the spin
profile is given by the ωn and γn variables:

ωn = φn + θn

2
= δφn + δθn

2
, γn = φn − θn

2
= δφn − δθn

2
− θe = γ̄n − θe. (B1)

With these new variables, the DW profile and energy determination can be achieved through the continuous approximation.
In this approach, each term of the DW energy [Eq. (7)] is expressed with the ωn and γn variables at the third order in ψ [this
parameter is defined by cosh(ψ/2) = D2/8J 2 + 1]:

cos(φn − θn) = cos(2θe)(1 − 2γ̄ 2) + sin(2θe)2γ̄ , (B2)

cos(θn − φn+1) = cos(ωn − γ̄n − γ̄n+1 − ωn+1 + 2θe)

= cos(2θe)

{
1 − 1

2

[(
dω

du
+ 2γ̄

)2

+
(

d2ω

du2
+ 2

dγ̄

du

)(
dω

du
+ 2γ̄

)]}
+ sin(2θe)

(
dω

du
+ 2γ̄

)
, (B3)

sin(2φn) − sin(2θn) = −2sin(2θe) + 4 sin(2θe)sin2(ω) + 4 cos(2θe)γ̄ [1 − 2sin2(ω)] (B4)

with u being the continuous variable describing the distance to the DW center. Therefore, the DW energy [Eq. (7)] can be written
as integrals over the DW size:

�E

4JS2cos(2θe)
=

∫ {
γ̄ 2 +

(
1

2

dω

du
+ γ̄

)2

+
(

1

2

d2ω

du2
+ dγ̄

du

)(
1

2

dω

du
+ γ̄

)}
du

+ 2sinh2

(
ψ

4

)∫
{sin2ω}du − tan(2θe)

∫ {
4γ̄ sin2ω + 1

2

dω

du

}
du. (B5)

Two integrals can be directly evaluated considering a π/2 DW between “right” and “up” domains as represented in Fig. 3(a):∫
dω

du
du = [ω]u=+∞

u=−∞ = −π

2
,

∫ (
1

2

d2ω

du2
+ dγ̄

du

)(
1

2

dω

du
+ γ̄

)
du =

[
1

2

(
1

2

dω

du
+ γ̄

)2]u=+∞

u=−∞
= −2θe

2. (B6)

Then, the DW energy in the continuous approximation can be simplified:

�E

4JS2cos(2θe)
=

∫ {
γ̄ 2 +

(
1

2

dω

du
+ γ̄

)2}
du + D2

8J 2

∫
{sin2ω}du

− D

J

∫
{γ̄ sin2ω}du − 2θe

2 + D

4J

π

4
. (B7)

Therefore, the DW energy is minimized with respect to ω and γ̄ :

γ̄ = −1

4

dω

du
+ D

4J
sin2(ω),

d2ω

du2
= D2

2J 2
sin (2ω) − D2

J 2
sin2(ω) sin (2ω) (B8)

and the solution of this system gives the DW profile described by the ω and γ̄ variables:

tan(ω) = exp

(
−u

D

J

)
, γ̄ = D

8J

[
1 + exp

(−uD
J

)]
cosh

(
uD

J

) . (B9)
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PIANET, URDAMPILLETA, COLIN, CLÉRAC, AND COULON PHYSICAL REVIEW B 94, 054431 (2016)

With these profile equations, the DW energy [Eq. (B7)] is written as an integral over ω:

�E

4JS2cos(2θe)
= D2

4J 2

∫ +∞

−∞
{sin2ω − sin4ω − sin3ω cos ω}du − 2θe

2 + D

4J

π

4
(B10)

and then, the energy can be evaluated as a function of the ratio D/J and the θe angle:

�E

4JS2cos(2θe)
= D

8J
− 2θ2

e . (B11)

Finally, the DW energy in the asymptotic limit D � J is deduced neglecting θe:

�ED�J,α=π/4

4JS2
= D

8J
. (B12)

APPENDIX C: THE D � J LIMIT

The system of angular equation [Eq. (4)] can be linearized in the D � J limit with respect to the δθn and δφn angles
(δθn = θn − θe, δφn = φn + θe ):[

D2

4J 2
+ 2

]
δθn = δφn + δφn+1,

[
D2

4J 2
+ 2

]
δφn = δθn + δθn−1. (C1)

By symmetry argument, the spin at the DW center is aligned with its associated easy axis. Then, the spin profile satisfying
the Eq. (C1) is described by an exponential decrease of the δθn and δφn values starting from the first spin after the DW center.
Considering the DW between the “right” and “up” domains, the center angle is then θ0 = π/4 and the DW profile can be described
only by the δφ1 angle and the ψ parameter [cosh(ψ/2) = D2/8J 2 + 1]:

δθn = δφ1 exp

[
−

(
n − 1

2

)
ψ

]
, δφn = δφ1 exp [−(n − 1)ψ]. (C2)

From this profile, the DW energy can be written at the second order with respect to δφ1:

�E

4JS2
=

{
cos (2θe) −

√
2

2
[cos (θe) − sin (θe)] + D

8J
[sin (2θe) − 1]

}
− δφ1

{√
2

2
[cos (θe) + sin (θe)] − sin (2θe)

}

+ δφ1
2

2

{√
2

2
[cos (θe) − sin (θe)] + cos (2θe) tanh

(
ψ

4

)[
1 + exp

(
ψ

2

)]}
(C3)

with the three terms enclosed in square brackets being positive. The δφ1 value is estimated from the minimization of the DW
energy [Eq. (7)] . δφ1 does not cancel exactly for a given D/J ratio, indicating that there is no strictly sharp DWs in the α = π/4
case:

δφ1 =
√

2
2 [cos(θe) + sin(θe)] − sin(2θe)

√
2

2 [cos(θe) − sin(θe)] + cos(2θe) tanh
(

ψ

4

)
(1 + eψ/2)

. (C4)

The DW energy in the D � J limit can be deduced from the term independent of δφ1 thanks to the linearization of cos(2θe)
and sin(2θe):

cos (2θe) = 1√
1 + tan2(2θe)

= 1√
1 + D2

16J 2

≈ 4J

D
,

sin (2θe) = tan (2θe)√
1 + tan2(2θe)

= 1√
1 + 16J 2

D2

≈ 1 − 8J 2

D2
. (C5)

Therefore, the asymptotical limit of the DW energy at the zeroth order with respect to δφ1 is obtained:

�ED�J,α=π/4

4JS2
= J

D
. (C6)
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