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The topology and creation energy of domain walls in different magnetic chains (called Single-Chain Magnets
or SCMs) are discussed. As these domain walls, that can be seen as “defects”, are known to control both static
and dynamic properties of these one-dimensional systems, their study and understanding are necessary first steps
before a deeper discussion of the SCM properties at finite temperature. The starting point of the paper is the
simple regular ferromagnetic chain for which the characteristics of the domain walls are well known. Then two
cases will be discussed (i) the “mixed chains” in which isotropic and anisotropic classical spins alternate, and
(ii) the so-called “canted chains” where two different easy axis directions are present. In particular, we show that
“strictly narrow” domain walls no longer exist in these more complex cases, while a cascade of phase transitions
is found for canted chains as the canting angle approaches 45◦. The consequence for thermodynamic properties
is briefly discussed in the last part of the paper.
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I. INTRODUCTION

Single-chain magnets (SCMs) are one-dimensional (1D)
molecule-based systems well known to exhibit slow relaxation
of their magnetization [1]. For this reason, they are poten-
tial candidates for information storage and they have been
intensively studied since their discovery in the beginning of
the 2000s [2,3]. In these systems, the dynamic properties are
explained by the conjugated effect of the magnetic anisotropy
of chain repeating units and of the magnetic interactions
between these units. As a result, these 1D systems only
exhibit short-range magnetic order at low enough temperature.
The corresponding equilibrium state of a chain consists of
large magnetic domains separated by narrow domain walls
(DWs), which are nonlinear excitations of the chain at T = 0.
DWs, or more often called π solitons [4,5], are spontaneously
created at finite temperature. Although they compete with other
spin excitations [6,7], they play a crucial role in statistical
mechanics (i.e., equilibrium properties) [8–10] as well as
for dynamic properties of classical anisotropic ferromagnetic
chains [11,12].

In these simple chains, all the magnetic units have the same
anisotropy axis direction as well as a unique ferromagnetic
exchange interaction between them. The size and shape of
the DWs along these chains are then the key ingredients to
understand their thermodynamic properties as well as the slow
relaxation of their magnetization. A pioneering work to discuss
the shape and energy of the DWs in a classical ferromagnetic
chain has been already published by Barbara [13,14]. However,
many SCMs present more complicated chain geometries.
For example, some chains are built with an alternation of
anisotropic and isotropic spins [15–24], called “mixed chains.”
In many other systems, two different orientations of the
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anisotropy axes alternate along the chain. These systems are
usually labeled as “canted chains” [25–37]. In a previous work,
we have shown that a canted chain with a specific canting angle
of 45◦ is expected to have a singular behavior with π/2 DWs
(instead of π DWs for the ferromagnetic chain) thus exhibiting
a tetrastability and therefore would be a good candidate for
four-bits-information storage [38]. In the present paper, we
will focus on the description of the DW characteristics, namely
their profile and their creation energy, in order to understand
the static and dynamic properties of SCMs.

In a first part of this paper, the main results for the textbook
ferromagnetic chain will be summarized together with a brief
description of the numerical technique used to estimate the
characteristics of the DWs. The following parts will be devoted
to the mixed chains and then to the case of the canted chains
for any value of the canting angle. The crossover towards the
45◦ canted chain will be also specifically discussed. Finally,
concluding remarks will be given in the last part of the paper,
in particular to discuss the implication of our results on the
thermodynamic SCM properties at finite temperature.

II. REGULAR FERROMAGNETIC CHAIN

In this section, main characteristics of the regular ferromag-
netic chain are summarized. Some of these results have already
been obtained by Barbara [13,14]. This simple case will also
be used to check the validity of our numerical method applied
to more complicated chains as described in the following
sections.

The structure of the regular ferromagnetic chain is depicted
in Fig. 1. At T = 0, two equivalent equilibrium states coexist;
see Figs. 1(a) and 1(b). A DW represents a spin configuration
that links these two equivalent solutions [Fig. 1(c)]. In this
case, the spin orientation varies from 0 to 180◦ and these DWs
are therefore labeled as π DWs.

For a quantitative analysis, the starting Hamiltonian is the
anisotropic Heisenberg Hamiltonian, given in Eq. (1) with
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FIG. 1. Panels (a) and (b) show the two equivalent ground states of the chain at T = 0 K; (c) chain with a domain wall connecting the two
equivalent ground states.

classical anisotropic spins:

HHA = −2JS2
+∞∑

n=−∞
�un · �un+1 − DS2

+∞∑
n=−∞

un,z
2. (1)

The first term describes the exchange energy (assuming
only the first-neighbor interaction) with J > 0 in the ferromag-
netic case, while the second part of Eq. (1) is the anisotropy
term (�un is the unitary vector for the spin n). Considering a
uniaxial anisotropy, the presence of an easy axis z implies
D > 0. Introducing θn, the angle between the spin n and the z
axis, the energy of the chain deduced from Eq. (1) is given by
Eq. (2),

E = −2JS2
+∞∑

n=−∞
cos(θn − θn+1) + DS2

+∞∑
n=−∞

sin2(θn). (2)

The energy of a DW [Eq. (3)] is obtained from Eq. (2) after
removing the contribution of the chain without defect,

�E

2JS2
=

+∞∑
n=−∞

[1 − cos(θn − θn+1)] + D

2J

+∞∑
n=−∞

sin2(θn).

(3)

The profile of the DW is obtained by minimization of this
energy with respect to the spin angles. This implies solving
the set of Eqs. (4), in order to determine θ̄n, the equilibrium
value for each θn,

∂�E

∂θn

= sin(θ̄n − θ̄n+1) + sin(θ̄n − θ̄n−1)

+ D

2J
sin(2θ̄n) = 0. (4)

The chosen boundary conditions are respectively θ̄i = 180◦
and θ̄f = 0◦ on the left and right chain ends. The DW
characteristics result from the competition between the two
terms in Eq. (2). As a consequence, their static properties only
depend on the D/J ratio. There are therefore two simple limits
for D � J and D � J .

When the anisotropy is much larger than the exchange
interaction, all the spins are close to their easy axis, i.e., θ̄n

is either close to 0 or to 180◦. The DW profile is narrow
and symmetric relative to its center located between two
consecutive spins. Its position can be defined as n = −1/2
between the spin n = −1 and n = 0, leading to the angular
relation: θ̄−n−1 = π − θ̄n [13,14]. For positive values of n,
where the equilibrium angles are small, the linearization of

Eq. (4) gives Eq. (5):

2

(
1 + D

2J

)
θ̄n = θ̄n−1 + θ̄n+1. (5)

The solution of Eq. (5) is an exponential profile [Eq. (6)].

θ̄n = θ0e
−nψ, with cosh(ψ) = (D/2J ) + 1. (6)

In order to fully describe the DW profile θ̄0, the equilibrium
value of θ0 must be determined. Assuming a small value of
the orientation angles and the exponential profile Eq. (6), the
energy of the DW given by Eq. (3) can be developed up to
the fourth order as shown by Eq. (7) (details are given in
Appendix A):

�ED�J

4JS2
= 1 + (eψ − 3)

2
θ0

2 + 1

10
θ0

4. (7)

It is worth noting that Eq. (7) is reminiscent of a Landau
development close to a second-order phase transition [39]. The
equilibrium value θ̄0 is obtained by minimizing this expression.
When D/J > 4/3 (i.e. ψ > ln(3)), the minimum value is zero,
indicating that “strictly narrow domain walls” are found for any
value of D/J above 4/3. The spin orientation is either 180 or
0◦ and the width of the DW is only one unit cell. On the other
hand, a broader profile, with the DW spread over several unit
cells, is found below the critical value D/J = 4/3. Close to
this critical point, minimizing Eq. (7) gives the approximate
expression of θ̄0 [Eq. (8)],

θ̄0 =
√

5(3 − eψ )

2
. (8)

This expression of θ̄0 is similar to the one obtained for a second-
order phase transition treated in the frame of the mean-field
approximation (here a classical model at T = 0 K is discussed
and fluctuations are not expected). If this result is introduced
in Eq. (7), a cusp of the DW energy is predicted at the critical
point. Note that this energy remains constant and equal to 4JS2

above this point.
When the exchange energy is larger than the anisotropy,

the first term of Eq. (2) dominates and is minimum when
the orientation of two neighboring spins is very close. As a
consequence, the DWs are broad and contain a finite number
of unit cells. In order to determine the DW profile and energy,
Eqs. (4) can be simplified into Eqs. (9):

2θ̄n − θ̄n+1 − θ̄n−1 + D

2J
sin(2θ̄n) = 0. (9)
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FIG. 2. DW profile obtained numerically for the ferromagnetic chain: (a) when D/J is small; (b) D/J close to or slightly smaller than
4/3; (c) D/J > 4/3. The colored lines are the parametrizations of the numerical profiles by their analytic expressions Eqs. (11) and (6). As
the DW center is located at n = −1/2, the right part of the profile begins with the spin labeled n = 0.

Considering the orientation angle as a continuous function of
n, Eq. (9) becomes

d2θ̄

dn2
= D

2J
sin(2θ̄ ). (10)

A double integration of Eq. (10) gives Eq. (11) and thus the
DW profile in this limit (D � J ),

tan

(
θ̄

2

)
= e−n

√
D
J . (11)

The corresponding DW energy can be estimated from Eq. (3)
at the continuous approximation [Eq. (12)].

�E

2JS2
= 1

2

∫ (
dθ̄

dn

)2

dn + D

2J

∫
sin2(θ )dn, (12)

and in the D � J limit,

�ED�J

4JS2
=

√
D

J
. (13)

In the general case between the two above limits, numerical
calculations are necessary [40]. The resolution of Eqs. (4)
can be performed using an iterative Newton-Raphson method
(details are given in Appendix B). With this numerical
approach, the DW profile and its corresponding energy can
be determined for any D/J value. Typical profiles are given in
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FIG. 3. (a) Orientation angle of the first spin after the DW center
(n = 0) as a function of D/J for the ferromagnetic chain, and (b) the
corresponding normalized energy.

Fig. 2. An excellent agreement is found between the numerical
result and the profile given by Eq. (11) in Fig. 2(a) or by Eq. (6)
in Figs. 2(b) and 2(c) close to the critical value of D/J = 4/3.
As expected, a strictly narrow DW is found in the last case
while the DW is spread over a few unit cells in Fig. 2(b).
To illustrate the type of DW stabilized depending on D/J ,
Fig. 3(a) gives the orientation of the first spin of the DW right
part (n = 0) as a function of D/J . Our numerical data are
consistent with the scaling law [Eq. (8)] obtained close to the
critical point. Finally, Fig. 3(b) gives the normalized energy
of the DW as a function of D/J . The two extreme regimes
together with the crossover at D/J = 4/3 are clearly visible.

III. “MIXED CHAIN” CASE

In this paper and as illustrated by Fig. 4, a “mixed chain”
refers to a chain composed of an alternation of anisotropic clas-
sical spins S and isotropic spins s (not necessarily classical).
Experimental examples of such chains are known [15–24], in
particular, when the isotropic spin is a radical. Interactions
between s and S are in most of the cases antiferromagnetic
(J < 0) and thus this common situation will be considered in
the following. The Fig. 4 illustrates two unit cells to describe
this type of chain, each comprising one spin of each kind,
associated to the different orientation angles (θn and κn).

In the following, we will consider the spins s as clas-
sical, the particular case of quantum spins being described
in Appendix C. Starting from the anisotropic Heisenberg

FIG. 4. Scheme and labeling of the spins and angles along the
mixed chain.
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FIG. 5. DW profile for the mixed chain when (a) DS/|J |s is small, (b) DS/|J |s is close to 1; (c) DS/|J |s is large. The colored lines are
the parametrizations of the numerical profiles by their analytic expressions Eqs. (25) and (20).

Hamiltonian, the chain energy is given by Eq. (14),

E = 2|J |Ss

+∞∑
n=−∞

[cos(θn − κn) + cos (κn − θn+1)]

+DS2
+∞∑

n=−∞
sin2(θn). (14)

The minimization of this energy with respect to the orientation
of the isotropic spins gives an angular relation [Eq. (15)]
between the adjacent spins,

κ̄n = θn + θn+1

2
+ π. (15)

Substitution of Eq. (15) into Eq. (14) gives an effective energy
[Eq. (16)], which depends only on the orientations of the
anisotropic spins,

Ē = −4|J |Ss

+∞∑
n=−∞

cos

(
θn − θn+1

2

)
+ DS2

+∞∑
n=−∞

sin2(θn).

(16)

Remarkably, the same expression is obtained if the isotropic
quantum spins are considered (see Appendix C) or if the
interactions between s and S spins are assumed to be
ferromagnetic.

The normalized energy of a domain wall is given by Eq. (17)
considering the difference between the chain energy [Eq. (16)]
and the energy of the chain without DW. The minimization of
Eq. (17) leads to a series of equations [Eqs. (18)] establishing
the angular relation between neighboring spins,

�Ē

4|J |Ss
=

+∞∑
n=−∞

[
1 − cos

(
θn − θn+1

2

)]

+ DS

4|J |s
+∞∑

n=−∞
sin2(θn), (17)

∂Ē

∂θn

= sin

(
θ̄n − θ̄n+1

2

)
+ sin

(
θ̄n − θ̄n−1

2

)

+ DS

2|J |s sin(2θ̄n) = 0. (18)

As discussed in the ferromagnetic chain case, these relations
[Eqs. (17) and (18)] can be simplified in the different limits.

In the narrow DW limit (DS � |J |s), the orientation
angles for the right part of the DW are small and a linearization
of Eq. (18) is possible as shown by Eq. (19):

2

(
1 + DS

|J |s
)

θ̄n = θ̄n−1 + θ̄n+1. (19)

Again in this case, this equation can be solved by an
exponential profile [Eq. (20)],

θ̄n = θ0e
−nψ, with cosh(ψ) = DS/|J |s + 1. (20)

As in the previous section, the full determination of the
profile is obtained from a development of Eq. (17). After
introducing the exponential profile [Eq. (20)] an expression
of �Ē depending only on θ0 is obtained [Eq. (21)],

�ĒD�|J |
4|J |Ss

= 1 − θ0 +
(

eψ − 1

2

)
θ0

2

2
. (21)

The minimization of Eq. (21) gives an approximation of the
equilibrium value of θ0 [Eq. (22)],

θ̄0 = 2

eψ − 1
. (22)

This result underlines that θ̄0 is always finite, i.e., has a
nonzero value, for any positive value of D/|J | since ψ remains
in this case strictly positive. This implies that strictly narrow
DWs no longer exist. Moreover, the coefficient of the quadratic
term in Eq. (21) remains positive for any positive value of
D/|J | which means that the critical point found for the regular
chain is pushed at D/|J | = 0 (i.e., for ψ = 0).

In the broad DW limit (DS � |J |s), as in the previous
section, Eqs. (23) take advantage of the small variation of
the orientation angles with n to simplify Eqs. (18) and in the
continuous limit Eq. (24) is obtained:

θ̄n − θ̄n+1 + θ̄n−1

2
+ DS

2|J |s sin(2θ̄n) = 0, (23)

d2θ̄

dn2
= DS

|J |s sin(2θ̄). (24)
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FIG. 6. (a) Orientation of the first spin after the DW center as
a function of DS/|J |s for the mixed chain. The black line is the
analytical expression of θ̄0 given by Eq. (22) in the DS � |J |s
limit; (b) corresponding normalized energy (the comparison is made
with the regular ferromagnetic chain). x is DS/2|J |s or D/J for the
mixed or regular chain cases respectively. �Enorm is �Ē/4|J |Ss or
�E/4JS2 for the mixed or regular chain systems respectively.

Double integration of Eq. (24) gives Eq. (25) and the DW
profile in the (DS � |J |s) limit,

tan

(
θ̄

2

)
= e−n

√
2DS/|J |s . (25)

The corresponding DW energy, Eq. (26), can also be deduced
from Eq. (17) at the continuous approximation.

�Ē

4|J |Ss
= 1

8

∫ (
dθ̄

du

)2

dn + DS

4|J |s
∫

sin2(θ̄)dn (26)

In the broad DW limit, Eq. (26) simplifies to Eq. (27),

�ĒDS�|J |s = 4Ss

√
D|J |S

2s
. (27)

It worth noticing that the scaling law in
√

D|J | of the DW
energy of the regular ferromagnetic chain in the broad DW
limit is preserved in the mixed case.

In the general case, the numerical approach is the only one
accessible. As for the regular chain, the DW profile can be
deduced for any value of DS/|J |s. Typical results are given in
Fig. 5, in the broad [Fig. 5(a)] and narrow [Figs. 5(b) and 5(c)]
DW limits.

When DS/|J |s is small [Fig. 5(a)], an excellent agreement
is found between the numerical result and the profile given
by Eq. (25). As expected, a strictly narrow DW (i.e., on one
site) is never found when DS � |J |s as shown in Fig. 5(c).
This is also illustrated by Fig. 6(a) which gives the evolution

of the n = 0 spin orientation as a function of DS/|J |s. These
numerical data are consistent with the analytical expression
obtained when DS � |J |s [Eq. (22), Fig. 6(a)]. The absence
of critical point in the mixed chain case is clearly established
when the normalized energy of the DW is plotted as a function
of DS/|J |s and compared with the analogous energy found
in the ferromagnetic regular chain case (vide supra) as shown
in Fig. 6(b).

IV. CANTED CHAIN CASE

In the present work, a canted chain refers to a 1D spin
system with at least two different orientations of the easy axis
along the chain [41]. The case of two different orientations is
commonly realized experimentally and is thus the focus of the
following discussion with spin and angle definitions given in
Fig. 7.

In a previous paper [38], the specific case where α = 45◦
was analyzed in great detail, showing that π/2 DWs are found
instead of the regular π DWs (see Sec. I). In this section,
this theoretical approach is generalized for any canting angle
comprised between 0 and 45◦. Starting from the ferromagnetic
solution [Eq. (2)] and taking into account a canting angle, the
chain energy is given by Eq. (28):

E = −2JS2
+∞∑

n=−∞
[cos(φn − θn) + cos(θn − φn+1)]

+DS2
+∞∑

n=−∞
[sin2(φn + α) + sin2(θn − α)]. (28)

Minimization of this energy gives two sets of equations
[Eqs. (29)],

∂Ē

∂θn

= sin(θ̄n − φ̄n) + sin(θ̄n − φ̄n+1)

+ D

2J
sin(2θ̄n − 2α) = 0,

∂Ē

∂φn

= sin(φ̄n − θ̄n) + sin(φ̄n − θ̄n−1)

+ D

2J
sin(2φ̄n + 2α) = 0. (29)

Equations (29) are used to estimate the equilibrium values
of the orientation angles (θ̄n and φ̄n) in the absence of
DWs. In this case, the spin orientations are independent of
n (θ̄n = θe and φ̄n = φe). When introduced in Eqs. (29), only

FIG. 7. Labeling the spins and angles for the canted chain. The red dashed lines and blue dot-dashed lines represent the two easy-axis
orientations and the two equilibrium orientations respectively. The angle between the z axis and the easy axes are respectively –α and +α (the
so-called canting angle is therefore 2α). The corresponding orientation angles will be labeled respectively φn and θn. As in the previous section,
each unit cell contains one spin of each kind.
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two absolute minima of the energy are found for any value of the canting angle smaller than 45◦. The first solution
corresponds to φe = −θe with 0 < θe < α. The second one is deduced adding 180◦ to each of the equilibrium angles. As
for the ferromagnetic chain, the two domains corresponding to these two solutions will be connected by π DWs. Moreover,
Eqs. (29) also imply Eqs. (30), which link θe, α, D, and J parameters:

sin(2θe)

sin(2α − 2θe)
= D

4J
or tan(2θe) = D

4J

sin(2α)

1 + D
4J

cos(2α)
. (30)

As in the previous sections, the energy of the DW is obtained subtracting the energy of the chain without DWs [Eq. (31)]. In
the following, we will discuss the different DW profiles according to the value of D/J :

�E

2JS2
=

+∞∑
n=−∞

[2 cos(2θe) − cos(φn − θn) − cos(θn − φn+1)] + D

2J

+∞∑
n=−∞

[sin2(φn + α) + sin2(θn − α) − 2sin2(θe − α)]. (31)

In the case of narrow DWs (D � J ), Eq. (31) can be linearized [Eqs. (32)] with small angular variables, δθ̄n and δφ̄n, obtained
by considering the deviation from the equilibrium angles θe and φe(φe = −θe): δθ̄n = θ̄n − θe and δφ̄n = φ̄n + θe,[

D

J

cos (2θe − 2α)

cos (2θe)
+ 2

]
δθ̄n = δφ̄n + δφ̄n+1,

[
D

J

cos (2θe − 2α)

cos (2θe)
+ 2

]
δφ̄n = δθ̄n + δθ̄n−1. (32)

As for the ferromagnetic chain case, an exponential DW profile [Eqs. (33)] is found (the center of the DW being between φ0 and
θ0):

δθ̄n = δθ0e
−nψ ′

for n � 0
δφ̄n = δθ0e

−(n− 1
2 )ψ ′

for n � 1
, with cosh

(
ψ ′

2

)
= D

2J

cos (2θe − 2α)

cos (2θe)
+ 1. (33)

This result [Eqs. (33)] is a generalization of Eq. (6) which
corresponds to the case α = 0◦ and ψ ′ = 2ψ (reflecting the
fact that the chain unit cell contains two spins in the canted
case). This exponential profile can be introduced in Eq. (31)
to obtain an effective energy [Eq. (34)] only dependent on δθ0

up to the second order,

�E

4JS2
= cos (2θe)

[
1 + e

ψ ′
/2 − 3

2
δθ0

2

]
− 2 sin (2θe)δθ0. (34)

Again, as in the ferromagnetic case, the coefficient of the
quadratic term vanishes at a finite value of D/J corresponding
to exp(ψ ′/2) = 3. This result is reminiscent of the critical
point found for the ferromagnetic case. However, the last
term of Eq. (34) implies that sin(2θe) acts as an external field
linearly coupled to the order parameter δθ0. As shown by
Eq. (30), this external field is finite as soon as the canting
angle is nonzero. As a consequence, strictly narrow DWs do
not exist in canted chains.

In order to calculate the energy of DWs, Eq. (34) was
minimized to estimate δθ̄0 (the equilibrium value of δθ0) in
the narrow DW limit, for exp(ψ ′/2) > 3. Introducing δθ̄0 in
Eq. (34) then gives Eq. (35a) the corresponding creation energy
of the DW.

�ED�J

4JS2
= cos (2θe)

[
1 − 2tan2(2θe)

e
ψ ′

/2 − 3

]
. (35a)

Using Eqs. (30) and (33), a simplified expression of Eq. (35a),
valid when D/J is large and α close to 45◦, is obtained
[Eq (35b)].

�ED�J

4JS2
≈ 2J

D
+ cos (2α) (35b)

This energy expression shows a crossover between a lin-
ear law (�ED�J /4JS2 ≈ 2J/D) and a saturation regime
[�ED�J /4JS2 ≈ cos(2α)] depending on the competition
between two reduced parameters: J/D and 45 –α. Although
the “Ising limit,” where the normalized energy becomes
cos(2α), is finally reached when D/J is large enough, it should
be noticed that very large values of D/J are required to reach
this limit when α is close to 45◦. For example, in the case
α = 44◦, the crossover occurs for D/J = 57.

As in the previous section, the problem can be simplified
in the broad DWs case (D � J ), taking profit of the
small variation of the orientation angles. The details of the
calculation are given in Appendix D and the essential steps are
summarized in the following paragraph.

In order to easily describe the DW’s profile, we introduce
the variables, ωn and γn [Eq. (36)]

ωn = δφn + δθn

2
, γn = δφn − δθn

2
. (36)

The energy of the DW [see Eq. (31)] can be developed
[Eq. (37)] in power of the small parameters γ and dω/dn

(where ω and γ are the variables corresponding to ωn and γn

in the continuous limit),

�E

4JS2cos(2θe)
=

∫ {
γ 2 +

(
1

2

dω

dn
+ γ

)2
}

dn

+ 2sinh2

(
ψ ′

4

) ∫
{sin2ω}dn

− tan(2θe)
∫ {

4γ sin2ω + 1

2

dω

dn

}
dn. (37)
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Successive minimizations with respect to γ , first, and then to
ω, gives Eq. (38) with a = 4 sinh(ψ ′/4) and tan(2θe) = ka/4:

d2ω̄

dn2
= a2

2
sin(2ω̄)[1 − 2k2sin2(ω̄)]. (38)

An exact double integration of this equation is possible and
gives ω̄ and γ̄ [Eqs. (39)]:

tan(ω̄) = 1√
1 − k2

1

sinh(an)
, (39a)

γ̄ = a cosh(an)
√

1 − k2 + ka

4[1 + (1 − k2)sinh2(an)]
. (39b)

After a rather technical but straightforward calculation, the
DW energy [Eq. (40)] is deduced introducing ω̄ and γ̄

[Eqs. (39)] in Eq. (37):

�E

4JS2 cos(2θe)
= a

4
F (k) with

F (k) = 1 +
(

k2 − 1

2k

)
ln

(
1 − k

1 + k

)
. (40)

It is worth noting that the function F (k), which varies
between 1 and 2, acts as a simple numerical factor. For
small D/J and α close to 45◦, the parameter a can be
approximated by Eq. (41), and thus Eq. (40) can be simpli-
fied as Eq. (42). Again, a crossover between two different

regimes [omitting F (k)], namely �E/4JS2 ≈ D/4J , and

�E/4JS2 ≈ √
D cos(2α)/J/2, is identified depending on the

competition between two small parameters D/J and 45 − α,

a ≈ 2

√
D

J

(
D

4J
+ cos (2α)

)
, (41)

�E

4JS2
≈ F (k)

2

√
D

J

√
cos (2α) + D

4J
. (42)

As in the previous cases, numerical calculations were per-
formed to extrapolate between the above two limits.

Figure 8(a) gives examples of numerical DW profiles in the
limit D/J > 1. These numerical results are in agreement with
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FIG. 8. DWs profiles for the canted chain for D/J = 4.98 with
(a) a moderate canting angle, α = 10◦, and with (b) a larger canting
angle of 30°. Consistent with the unit cell (see Fig. 7), δφ̄n values are
positioned at the abscisse n + 1/2 on the figures. The continuous lines
give the parametrization of the numerical profile by the analytical
expressions, Eqs. (33).
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FIG. 9. Examples of DWs profiles for the canted chain with
D/J = 0.6 and for α values of 42.78° (red circles), 44.29° (blue
triangles), and 44.65° (green squares). The definition of the ω̄ (a) and
γ̄ (b) angles is given in the text. The continuous lines give the result
of the analytical calculation [Eqs. (39)] without adjustable parameter.

the analytical conclusions, and confirm that strictly narrow
DWs no longer exist when any finite value of the canting
angle is introduced. At D/J = 0.6, which is already in the
broad DW limit, the numerical DWs are shown in Fig. 9’s
profiles for selected α values. The continuous lines are fits
using analytical equations [Eqs. (39)], which show a very good
agreement with the numerical data. The evolution of δθ̄0 as a
function of D/J for different canting angles (Fig. 10) is also
consistent with the analytical results obtained in the simple
limits. This result emphasizes the fact that the canting angle
simply induces an external field linearly coupled to the order
parameter δθ̄0.

The energy of the DWs as a function of D/J for different
canting angles was also calculated as shown in Fig. 11. The
two crossovers described analytically before are clearly seen
in the D � J and the D � J limits when the canting angle
approaches 45◦.

The different equations deduced in the previous subsections
are also consistent with the results obtained for the specific
α = 45◦ case [38]. For example, Eqs. (35b) and (42) give

0
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δθ
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D/J

increasing α

FIG. 10. Orientation of the first spin after the DW center as a
function of D/J for a chain with different canting angles [α = 0,
in red, corresponding to the regular ferromagnetic chain, α = 10◦

(blue), α = 20◦ (green), and α = 30◦ (orange)].
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FIG. 11. Normalized creation energy of a domain wall for the
canted chain considering several values of the canting angle from 1◦

to 45°. The comparison is also made with twice the creation energy
of a π/2 DW in the singular α = 45◦ case (see text).

the scaling laws deduced in this special limit. However, the
energy of a DW is twice the one obtained for the α = 45◦
case. Indeed, for any value of the canting angle smaller than
45◦, π DWs are found in contrast to the π/2 DWs stabilized
when the canting angle is exactly equal to 45◦. Then, as done
in Fig. 11, the energy for two π/2 DWs in the α = 45◦ case
should be compared with the one of a single π DW for smaller
canting angles. Moreover, the different characteristics of the
DWs mean that there is a qualitative difference between these
cases. Therefore, the evolution of the DW’s profile while the
canting angle approaches α = 45◦ should be discussed in more
detail. The following discussion mostly relies on numerical
results, although some analytical results will be presented for
comparison and verification of the limit cases.

Figure 12 that gives the evolution of the numerical profiles
for D/J = 4 when the canting angle increases close to 45◦
is a good starting point. A careful examination of these DW
profiles shows qualitative differences. In Fig. 12(a), the shape
of the DW for α = 44◦ is representative of the results obtained

for smaller canting angles. As D/J is large (D/J = 4 in the
present case), the DW is narrow; i.e., the first spin after the DW
center, θ0, is close to α, while the first spin before this center,
φ0, is close to 180 − α. The situation is different for α = 44.5◦
[Fig. 12(b)]. θ0 is now located just before the DW center and
the first spin after the DW center is φ1. It is now θ1 which
is close to α. The comparison between Figs. 12(a) and 12(b)
shows clearly that a couple of spins have been introduced in
the center of the DW profile for α = 44.5◦. The size of this
spin core further increases when the canting angle approaches
45◦. For example, the core is composed of two couples of
spins for α = 44.99◦ as shown in Fig. 12(c). In the following,
these different characteristic profiles will be labeled using a
parameter p giving the number of couples of spins present in
the central core of the DW. Thus, Figs. 12(a)–12(c) respectively
correspond to p = 0, 1, and 2. It should be noted that profiles
for odd and even p values are qualitatively different as the
role of a θ and a φ spin are interchanged. Then, a phase
transition occurs between p = 0 and p = 1, as between p = 1
and p = 2 or more generally between odd and even profiles. As
a consequence, a cascade of phase transitions is observed as α

approaches 45◦. In the limit where p goes to infinity (as α goes
to 45◦), the core size increases as well and the profile becomes
equivalent to two spatially separated π/2 DWs, in agreement
with the situation already described when the canting angle is
exactly equal to 45◦ [38].

The DW energy for different p values can be obtained
by numerical calculations as shown in Fig. 13 for D/J = 4
comparing p = 0, 1, and 2 profiles. This figure illustrates,
for large D/J values, that the p = 0 phase is stable until
canting angles very close to 45◦ are reached. However, this
result doesn’t hold when D/J is close to 1 for which the
p = 0/p = 1 transition occurs for a canting angle close to 38◦
(vide infra).

Because of the qualitative difference between odd and even
solutions, a cascade of phase transitions is still expected to exist
for smaller D/J values. To illustrate this regime, Fig. 14 gives
typical results obtained for D/J = 0.2. For α = 33 or 40°
[Figs. 14(a) and 14(c)], the first spin after the center of the DW
is a “θ” one. In fact, these DW profiles correspond respectively
to p = 0 and 2. On the other hand, the first spin after the center
of the DW is a “φ” one for α = 36◦ [Fig. 14(b)] corresponding
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FIG. 12. Evolution of the DW profile as the canting angle approaches 45° for D/J = 4, i.e., in the large D/J limit. The parameter p
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FIG. 13. Creation energy of a domain wall as a function of the
canting angle for D/J = 4 to evidence the crossing between the
different p solutions. The stable solution is also mentioned in purple
at the bottom of the figure.

to p = 1. For this small D/J value, the existence of a spin
core is less visible and it is useful to focus the discussion
on the difference between even and odd solutions. The stable
DW profile corresponds to p = 0 for small canting angles. At
the introduced approximation, this calculation also describes
other even values of p. To describe DW profiles with odd
values of p, the role of θ and φ should be interchanged. In
other words θe and k should be changed respectively into –θe

and –k. Therefore, the generalized version of the DW energy
in the D � J limit [Eq. (37)] is now given by Eq. (43) (with
ε = 1 or −1 for even or odd profiles respectively, and ω and
γ being the reduced variable introduced earlier in Sec. III):

�E

4JS2cos(2θe)
=

∫ {
γ 2 +

(
1

2

dω

dn
+ γ

)2
}

dn

+ 2sinh2

(
ψ ′

4

)∫
{sin2ω}dn

− ε tan(2θe)
∫ {

4γ sin2ω + 1

2

dω

dn

}
dn.

(43)

Minimizing this expression [Eq. (43)] with respect to γ ,
an effective energy depending only on ω̄ is obtained
[Eq. (44)]:

�Ẽ

4JS2cos(2θe)
=

∫ (
1

8

(
dω̄

dn

)2

+ a2

8
sin2(ω̄)[1 − k2sin2(ω̄)]

− ε
ka

4

(
1

2
− sin2(ω̄)

)
dω̄

dn

)
dn. (44)

However, since the last term in this integral does not give
any contribution to the energy, the equilibrium energy is
independent of ε at this approximation. The minimization of
the first two terms in Eq. (44) gives the same expression of ω̄

for ε = 1 or −1, and is still given by Eq. (39a). On the other
hand, the expression of γ̄ [Eq. (39b)] should be generalized
leading to Eq. (45):

γ̄ = a cosh(an)
√

1 − k2 + εka

4[1 + (1 − k2)sinh2(an)]
. (45)

In this case, numerical results can be used again to probe
the accuracy of this analytical profile (see Fig. 15). The
comparison of the results at D/J = 0.6, shown in Figs. 9
and 15, highlights that increasing α gives an alternation of
even and odd profiles, both of them being consistent with
Eqs. (39) and (45). The same conclusion is true for other
values of D/J in the broad DW limit. Note that the fit with
Eq. (45) becomes better as α approaches 45° probably because
D/J is not small enough or because the profile is not exactly
the one given by the analytical approach when k is too small
(see Appendix E).

Besides the determination of the profiles, the numerical
calculations also give the energy of the DWs. Consistent
with a cascade of phase transitions when increasing α for
a given value of D/J , even and odd profiles have alternatively
the lowest energy. In other words, although very small, a
finite-energy difference exists between even and odd profiles
while this energy difference vanishes when a phase transition
occurs between two successive p values. This finding is well
illustrated by Fig. 16 where the absolute value of this difference
is shown on a log scale.

Returning to Eq. (44), the result of the integral being
independent of ε as the last term does not contribute, even
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FIG. 15. Additional examples of DW profiles for the canted chain
with D/J = 0.6 and for α values of 40.78° (red circles), 43.76° (blue
triangles), and 44.59° (green squares). The definition of ω̄ and γ̄ are
given in the text. The continuous lines give the result of the analytical
calculation [Eqs. (39a) and (45) with no adjustable parameter]. For
these values of the canting angle, odd values of p correspond to
the stable solution (p = 1, 3, 5 respectively as α increases for the
selected data).

and odd profiles have always the same energy and hence this
calculation does not lift the degeneracy between the two kinds
of DW profiles. However, the starting expression of the energy
[Eq. (31)] relies on a discrete sum rather than an integral. The
small difference between the two formulations is the key to
understanding the cascade of phase transitions in the small
D/J limit. This argument is developed in Appendix E where
the discrete sum for the last term of Eq. (44) is estimated from
the analytical profile. The calculation predicts the existence
of a master curve when reduced variables, x = πλ/a and
y = (�E1/−1/4JS2)eπ2/a with λ = ln[(1 + k)/(1 − k)], are
used. Numerical results confirm this finding as shown by
Fig. 17. Remarkably, the analytical results [Eq. (E11)] even
quantitatively reproduce the numerical data in the simple
limit where k � a (or x � 2π when D/J is small; see
Appendix E). To follow the numerical results for smaller k
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FIG. 16. Normalized absolute value of the creation energy dif-
ference between even and odd solutions as a function of the canting
angle for D/J = 0.2. The p value of the stable solution is also given
in purple.
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FIG. 17. Master curve plot deduced from numerical data intro-
ducing the reduced variables defined in Appendix E. The black dashed
and red continuous curves correspond respectively to the simple
expression obtained analytically [Eq. (E11)] [y = −2π 2 sin(x)] and
to the empirical expression [Eq. (E12)] given in Appendix E. The
simple expression is in fact an excellent approximation when x � 2π .

values, an empirical expression [Eq. (E12)] has been used (see
Appendix E). This allows an extrapolation of the numerical
results when D/J goes to zero. The whole set of data
summarizing the deduced phase diagram is given in Fig. 18
with a zoom in Fig. 19 to show the extrapolation for D/J = 0.
The labeling of the different phases is given by specifying the p

parameter. Finally, it should be noted that the energy difference
between even and odd solutions, proportional to exp(−π2/a),
becomes very small for small D/J values. Then, the energy
given in Fig. 11 remains an excellent approximation to estimate
the DW energy in the broad DW limit.
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FIG. 18. Phase diagram for the canted spin chain case. The dots
correspond to points on the transition lines that are extracted from
numerical calculations. The extrapolation to D/J = 0 is given by
the dashed lines. The different p values for the stable solution are
also given. The black line recalls the existence of second-order phase
transition which ends with the critical point (black dot) for α = 0 and
D/J = 4/3.
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V. CONCLUDING REMARKS

As emphasized in this work, the existence of DWs is the
key ingredient to understanding the physics of anisotropic spin
chains. In all cases, the D/J ratio is the relevant parameter
to describe the different simple limits. On one hand, narrow
DWs are found when the anisotropy is strong compare to
the exchange energy (D � J ). In particular, the existence of
“strictly narrow” DWs, when D/J > 4/3, is a characteristic
of the ferromagnetic chain but more complex DW profiles
are always found for mixed or canted spin chains. On the
other hand, broad DWs are found when the anisotropy is small
(D � J ) and a continuous approximation has been used to
deduce an analytical expression of their profile. In this work,
we went one step further by using a numerical method to
obtain the characteristics (profile and energy) of the DWs in
the general case.

A particularly rich discussion has emerged in the canted
spin chain case, where a cascade of phase transitions has been
described when the canting angle increases. Although confined
to canting angles very close to 45° when the anisotropy is
strong, the transition lines appear in a much broader window of
canting angles for D < J . Subtle modifications of the profiles
are found going through the observed transition lines. We
have found, both numerically and analytically, that the energy
difference between the different profiles is very small, typically
of the order 2π2JS2 exp(−π2/a) (see Appendix E). Even
when D and J are comparable, this energy difference remains
small, of the order of JS2/1000, and is therefore smaller than
kBT for experimentally relevant temperatures. This remark
suggests that the thermodynamic properties of these canted
chains may be affected. Quite generally, the equilibrium state
of a spin chain consists of large domains of oriented spins
separated by DWs. At low temperature, when kBT is much
smaller than the energy of a DW, the correlation length is
large and shows an activated behavior. In a simple description,
valid in the Ising limit, the corresponding activation energy is
simply the creation energy of the DW. However, it has been
shown that this activation energy can be renormalized by the
existence of spin waves, which add new fluctuations in the
calculation of the free energy [42,43]. Although this argument
should be still valid in the canted case, one may imagine

that fluctuations of the DW core may bring an additional
contribution to the renormalization of the activation energy.
Therefore, thermodynamic and dynamic properties of canted
chains must eventually be revisited in the light of the present
results.

Finally, our work suggests that further experimental and
theoretical studies on more complex chains may be useful and
lead to unique physical properties. For example, “mixed canted
spin chains” (as defined in Secs. II and III) and their magnetic
properties have been already reported in the literature [44–48].
These 1D systems could exhibit a combination of the results
found for the mixed and canted spin chains and in particular a
cascade of phase transitions might be experimentally observed.
As illustrated by this work, these one-dimensional spin
systems and their experimental realization thanks to advanced
coordination chemistry offer to physicists a unique playground
to discover interesting phenomena and exotic physics.
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APPENDIX A: DETAILS ON THE CRITICAL
POINT AT D/J = 4/3

The starting expression of the energy, directly deduced from
Eq. (3), is

�E

4JS2
= cosh(ψ)

2
+ 2 − cosh(ψ)

2
cos (2θ0)

+
∞∑

n=0

[1 − cos(θn − θn+1)] + [cosh(ψ) − 1]

×
∞∑

n=1

sin2(θn). (A1)
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Equation (A1) can be developed up to fourth order:

�E

4JS2
= 1 + (cosh(ψ) − 2)θ2

0 − cosh(ψ) − 3

3
θ4

0

+
∞∑

n=0

(
(θn − θn+1)2

2
− (θn − θn+1)4

24

)

+ [cosh(ψ) − 1]
∞∑

n=1

(
θ2
n − θ4

n

3

)
. (A2)

Introducing the exponential profile [Eq. (6)],

�E

4JS2
= 1 + (eψ − 3)

θ0
2

2

+
(

1 − (eψ − 1)4 + 4e3ψ (eψ − 1)2

8(e4ψ − 1)

)
θ0

4

3
. (A3)

This development describes a second-order phase transition
located for exp(ψ) = 3, or D/J = 4/3. Close to the critical
point, the coefficient of the forth order term can be taken at the
critical value and the development approximated to:

�E

4JS2
≈ 1 + (eψ − 3)

θ2
0

2
+ θ4

0

10
(A4)

Consistent with the numerical result (if the angle is
expressed in radians), this gives the equilibrium θ0 value:

θ̄0 =
√

5

2
(3 − eψ ). (A5)

APPENDIX B: NUMERICAL METHOD

Our numerical approach consists of the resolution of a
system of equations found at equilibrium thanks to an iterative
Newton-Raphson method for a given D/J value. Taking the
example of the regular ferromagnetic chain, this method refines
a starting DW’s profile of (2N + 2) spins by increasing N

until the result becomes independent of the chain size. The
p-times-refined profile is contained in the vector xp given in
Eq. (B1):

xp =

⎛
⎜⎝

θ−N−1
...

θN

⎞
⎟⎠. (B1)

To access to the xp vector, each equation to solve is noted fn

as explicated in Eq. (B2):

fn = sin(θn − θn+1) + sin(θn − θn−1) + D

2J
sin(2θn). (B2)

These equations are gathered in the vector Fp [Eq. (B3)]:

Fp =

⎛
⎜⎝

f−N−1
...

fN

⎞
⎟⎠. (B3)

The pth and (p + 1)th steps are linked by Eq. (B4):

Fp+1 = Fp + F ′
p(xp+1 − xp). (B4)

The refinement process consists of computing the vector
Xp = xp+1 − xp for which the condition Fp+1 = 0 is satisfied

[Eq. (B5)], with F ′
p being the Jacobian matrix defined as

F ′
p(i,j ) = ∂Fp(i)/∂xp(j ),

Xp = −(F ′
p)−1Fp. (B5)

The matrix inversion is generally an expensive calculation in
term of computational time. Therefore, alternatively, the linear
system given in Eq. (B6) has been solved to obtain the Xp

vector,

F ′
pXp = −Fp. (B6)

Following these steps, the DW profile was refined until each
|fn| values becomes smaller than the convergence criterion
εF = 1×10−4. Then �EN , the energy of the DW composed
of (2N + 2) spins, was calculated by substituting the refined
profile in the Eq. (3). In order to avoid any finite-size effect
in the determination for the DW’s profile and energy, the
procedure was repeated for larger N values. We considered that
the finite number of spins involved in the calculation does not
affect the DW properties as soon as the convergence criterion
ε�E = |�EN − �EN−1|/�EN is less than 1×10−3. To ensure
a quick convergence of the numerical method, each calculation
starts from a D/J value where the DW’s profile is analytically
known. Then small variations of D/J were applied and we
used the previous solution profile as the starting one for these
new conditions. In this way, we took benefit of the continuous
evolution of the DW’s profile with the D/J ratio to perform
calculations between the two limits.

APPENDIX C: MIXED CHAIN WITH QUANTUM SPINS

Considering the isotropic spins as quantum and interspin
antiferromagnetic interactions, the Hamiltonian of the mixed
chain is given by Eq. (C1), where �en is the unitary vector
parallel to (�Sn + �Sn+1), which represents the quantification
direction to diagonalize the independent Hamiltonians Hn,

H =
+∞∑
−∞

Hn = 2|J |
+∞∑
−∞

|�Sn + �Sn+1|�en.�sn − DS2
+∞∑
−∞

sin2(θn).

(C1)

Moreover, as discussed by Seiden [49],

| �Sn + �Sn+1| = 2S cos

(
θn − θn+1

2

)
. (C2)

Then, the corresponding lowest eigenenergy for Hn is

εn = −4|J |Ss cos

(
θn − θn+1

2

)
+ DS2sin2(θn) (C3)

Therefore, the chain energy expressed as a function of θn is
the same [Eqs. (16) and (C3)] when considering classical or
quantum si spins.

APPENDIX D: SMALL D/J LIMIT FOR THE CANTED
CHAIN, THE CONTINUOUS APPROXIMATION

The starting point for this discussion is Eq. (31), in which
variables ωn and γn [Eq. (D1)] can be introduced in order to
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obtain Eq. (D2) considering Eqs. (30) and (35),

ωn = φn + θn

2
= δφn + δθn

2
, γn = δφn − δθn

2
, (D1)

�E

4JS2 cos(2θe)
=

+∞∑
n=−∞

(
1 − cos (2γn) + cos (ωn+1 − ωn + γn+1 + γn)

2
+ 2sinh2

(
ψ ′

4

)
[sin2(ωn) + sin2(γn) cos (2ωn)]

− tan (2θe)

2
[sin(2γn) + sin(ωn+1 − ωn + γn+1 + γn) − 2 cos(2ωn) sin(2γn)]

)
. (D2)

This expression [Eq. (D2)] can be simplified, introducing a = 4 sinh(ψ ′/4) and tan(2θe) = ka/4. Selecting the terms up to the
second order in a gives Eq. (D3), in which a and k are independent parameters (close to α = 45◦, k is much larger than a),

�E

4JS2 cos(2θe)
=

+∞∑
n=−∞

[
γ̄ 2

n +
(

1

2

dωn

dn
+ γ̄n

)2

+ a2

8
sin2(ωn) − ka

4

(
4γ̄nsin2(ωn) + 1

2

dωn

dn

)]
. (D3)

For small values of D/J , the profile becomes very broad and the discrete sum of Eq. (D3) can be approximated by a sum of
integrals to give Eq. (D4) (where ω and γ are the variables corresponding to ωn and γn in the continuous limit):

�E

4JS2cos(2θe)
=

∫ {
γ 2 +

(
1

2

dω

dn
+ γ

)2}
dn + a2

8

∫
{sin2ω}dn − ka

4

∫ {
4γ sin2ω + 1

2

dω

dn

}
dn. (D4)

At this approximation, an exact determination of the DW profile and its associated energy can be obtained. Minimization of
Eq. (D4) with respect to γ gives Eq. (D5):

γ̄ = −1

4

dω

du
+ ka

4
sin2(ω). (D5)

Thus γ̄ can be introduced in Eq. (D4) to obtain an effective energy, Eq. (D6), depending only on ω:

�Ẽ

4JS2cos(2θe)
=

∫ (
1

8

(
dω

dn

)2

+ a2

8
sin2(ω)[1 − k2sin2(ω)] − ka

4

(
1

2
− sin2(ω)

)
dω

dn

)
dn. (D6)

The two a and k parameters allow a simplification of the
calculations, as they are independent and directly related to
D/J and α. For example, for small D/J and α values close
to 45◦, a and k can be approximated to Eqs. (D7) and (D8):

a ≈ 2

√
D

J

(
D

4J
+ cos (2α)

)
, (D7)

k ≈
√√√√ D

4J

D
4J

+ cos (2α)
. (D8)

These results show the existence of a crossover due to
the competition between two small parameters: D/J and
(45 − α). When D/J � cos(2α), k remains close to 1 and
therefore much larger than a for small values of D/J .
Equation (D6) can be even more simplified noting that the
integral of the last term (proportional to ka) cancels due to
the boundary conditions. Minimization of the remaining terms
with respect to ω is straightforward and leads to Eq. (D9):

d2ω̄

dn2
= a2

2
sin(2ω̄)[1 − 2k2sin2(ω̄)]. (D9)

An exact double integration of Eq. (D9) is possible and, using
Eq. (D5), gives:

tan(ω̄) = 1√
1 − k2

1

sinh(an)

γ̄ =
√

1 − k2 cosh(an) + k

4[1 + (1 − k2)sinh2(an)]
a. (D10)

APPENDIX E: SMALL D/J LIMIT FOR THE CANTED
CHAIN CONSIDERING THE TWO KINDS

OF DW PROFILES

As seen from numerical results, two kinds of equilibrium
profiles are obtained. In the first case, later called “odd
solution” (already discussed in Appendix D), the first spin after
the center of the DW is a θ one. In the second one, later called
“even solution,” this spin is a φ one. In other words, going
from odd to even solutions is realized changing θe into −θe

or k into −k. Then, a general description of the DWs energy,
after minimization with respect to γ , is given by Eq. (44), with
ε = 1 or −1 for odd or even solutions respectively. Returning
to the initial expression of the energy in terms of a discrete
sum, the energy difference between the ε = 1 and −1 profiles
is given by Eq. (E1):

�E1/−1

4JS2 cos (2θe)
= −ka

2

+∞∑
n=−∞

(
1

2
− sin2(ωn)

)
dωn

dn
. (E1)

As the function to be summed is slowly varying with
n, a standard approximation consists in considering n as a
continuous function in order to replace the discrete sum by an
integral. However, the corresponding integral is null and this
approximation fails to describe the existence of a cascade of
phase transitions with an alternation of odd and even profiles
as shown by numerical results.

To go beyond the continuous approximation, a mathemati-
cal identity called Poisson summation can be used [50]. For an
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real function f (n), the Poisson identity is given by Eq. (E2):

+∞∑
n=−∞

f (n) =
∫ +∞

−∞
f (u)du

+ 2
+∞∑
s=1

∫ +∞

−∞
f (u) cos(2πsu)du. (E2)

When f (n) is varying slowly with n, the Fourier transform
of f , which appears in the right part of Eq. (E2), varies quickly
with s and the sum on s quickly converges. Thus the expression
can be simplified, keeping only the s = 0 and s = 1 terms. The
s = 0 term, which is the integral of the standard approximation
[first term in the right part of Eq. (E2)], gives in our case no
contribution. Then, simple expressions [Eqs. (E3) or E4] are
obtained for the energy difference between ε = +1 and −1:

�Ē1/−1

4JS2 cos(2θe)
= −ka

∫ +∞

−∞

(
1

2
− sin2(ω)

)

× dω

du
cos(2πu)du, (E3)

�Ē1/−1

4JS2 cos(2θe)
= −ka

2

∫ +∞

−∞
cos(2ω)

dω

du
cos(2πu)du. (E4)

To estimate the above integral, the analytical profile, given
by Eq. (39a), is introduced in order to express sin(2ω)
[Eq. (E5)] and thus − cos(2ω)dω/du [Eq. (E6)] with C =
k2/(1 − k2):

sin(2ω) = 2
√

1 − k2 sinh(au)

cosh2(au) − k2sinh2(au)

= 2 sinh(au)√
1 − k2[cosh2(au) + C]

, (E5)

− cos(2ω)
dω

du
= a cosh(au)√

1 − k2[cosh2(au) + C]

×
(

1 − 2(1 + C)

[cosh2(au) + C]

)
. (E6)

The energy difference is thus given by Eq. (E7):

�Ē1/−1

4JS2 cos(2θe)
= ka2

2
√

1 − k2

∫ +∞

−∞

cosh(au) cos(2πu)

cosh2(au) + C

×
(

1 − 2(1 + C)

[cosh2(au) + C]

)
du. (E7)

The obtained integrals are readily calculated [Eqs. (E8) and
(E9)] from tabulated integrals [51] for a � π2 and with
C = sinh2(λ/2). Thus, Eq. (E7) can be simplified to Eq. (E10):

I =
∫ +∞

−∞

cosh(au) cos (2πu)

cosh2(au) + C
du

≈ 2π

a cosh (λ/2)
cos

(
πλ

a

)
e−π2/a, (E8)

− dI

dC
=

∫ +∞

−∞

cosh(au) cos (2πu)

[cosh2(au) + C]2
du

= − 2

sinh (λ)

dI

dλ

≈ 4πe− π2

a

a cosh (λ/2) sinh (λ)

(
π

a
sin

(
πλ

a

)

+ 1

2
tanh (λ/2) cos

(
πλ

a

))
, (E9)

�Ē1/−1

4JS2 cos (2θe)
≈ −2π2e−π2

/
a sin

(
πλ

a

)
. (E10)

It should be noted that k and λ are related by k = tanh(λ/2) or
λ = ln[(1 + k)/(1 − k)]. For small values of D/J , θe remains
small and an equivalent expression of Eq. (E10) is given in
Eq. (E11):

�Ē1/−1

4JS2
≈ −2π2e−π2

/
a sin

(
πλ

a

)
. (E11)

This result suggests to plot numerical results in a reduced
form, to probe the existence of a master curve, namely to
plot y = (�Ē1/−1/4JS2)eπ2/a as a function of x = πλ/a.
The result is given in the main text. A master curve, shown
in Fig. 17, is in fact obtained for D/J values up to 0.6.
Remarkably, the above simple result y ≈ −2π2 sin(x) is even
able to quantitatively reproduce the numerical data for large
values of x, when k � a. An empirical function [Eq. (E12)]
has been used to simulate the numerical data for any values
of x:

y = −2π2

(
sin (x) + 1.25

sin (x) − x cos (x)

x2

)
. (E12)

This expression is equivalent to the calculated simple result
[Eq. (E11)] for large values of x. It should be noted that the
analytical determination of the DW profile [Eqs. (39a) and
(45)] is fully consistent when k2a2 can be considered as a
second-order term in a in Eq. (38), i.e., when k � a. This
limit is effectively reached when k is close to 1, i.e., when
x is large. Small departures in the profile expression may
be present to explain that the above simple result may then
be approximate when x is not large enough. Either with the
simple limit or with the more general empirical expression, an
oscillating function y(x) is obtained. This describes a cascade
of phase transitions, which takes place when y = 0. In the limit
where D/J goes to zero, λ becomes close to 2k and x goes to
2πk/a, which reduces to π tan(2α)/2. Introduced in the above
expression of y [Eq. (E12)], the extrapolation of the canting
angle values is possible at the transition lines, when D/J goes
to zero. These extrapolations are also shown in Figs. 18 and
19. For example, for the p = 0/p = 1 phase transition, the
canting angle extrapolates at about 33◦.

More generally, the above analysis can be used to deduce
the equation of the transition lines (α,D/J ). The existence of
a y(x) master curve implies that the transition lines correspond
to x = cst , where the x values correspond to the zeros of the
above empirical expression [Eq. (E12)]. This conclusion was
checked to be consistent with the numerical results.
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