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ABSTRACT

The ability to manipulate coherently individual quantum objects organized in arrays is a prerequisite to any scalable quantum
information platform. For electron spin qubits, it requires the fine tuning of large arrays of tunnel-coupled quantum dots.
The cumulated efforts in linear dot arrays have permitted the recent realization of quantum simulators and multi-electron
spin coherent manipulation. However, the two-dimensional scaling of such implementations remains undemonstrated while
being compulsory to resolve complex quantum matter problems or process quantum information. Here, we demonstrate the
two-dimensional coherent control of individual electron spins in a 3×3 array of tunnel coupled quantum dots. More specifically,
we focus on several key quantum functionalities of such control: charge deterministic displacement, local spin readout, local
coherent exchange manipulation between two electron spins trapped in adjacent dots, and coherent multi-directional spin
shuttling over distances of several microns. This work lays the foundations for exploiting a two-dimensional array of electron
spins for quantum simulation and information processing.

Introduction
A natural way to address the scalability of quantum devices is to design and realize two dimensional (2D) arrays of individual
quantum objects with nearest neighbor interaction.1–4 Increasing the size of the array is the subject of an intense research
activity in many different quantum systems with the common objective to simulate the complex many-body problem5 and
explore quantum coherence at large scale. It is also an important intermediate step towards the hypothetical realization of
quantum information processors.2–4 In large-scale semiconductor quantum processors, the quantum bit is defined by the spin of
electrons trapped in an array of quantum dots (QDs).6, 7 Over the years, an increasing number of QDs have been successfully
controlled with demonstrations of individual spin quantum manipulation8, 9 and simulation of condensed matter problems such
as the Fermi-Hubbard model.10 However, all these experiments have been performed in linear arrays of tunnel-coupled quantum
dots. Important technological challenges remain to be addressed before reaching the required level of control in 2D quantum
manipulation.11, 12 In particular, identifying the gate layout of a 2D dot array compatible with a planar geometry, controlling the
electron filling of arrays and engineering the coherent control and readout of spins are among the basic procedures still lacking
for the control of 2D QD arrays.

In this article, we report on the coherent control of individual electrons in a 3×3 array of tunnel coupled quantum dots.
Thanks to the recent developments on isolated dot systems,13–15 we fix the number of electrons loaded in the QD array. After
tuning the system in the moderate tunnel coupling regime, all possible charge configurations of the QD array are identified. We
then implement several key procedures for the control of electron spins in quantum dot arrays. Firstly, the two-electron spin
readout at any location in the quantum dot array is demonstrated. Secondly, the local enhancement of the tunnel coupling is
implemented to reach the regime where the coherent exchange of a quantum of spin between two electrons sitting in adjacent
quantum dots is observable. This key control allows the observation of spin exchange oscillations at the detuning sweet spot.
Finally, coherent displacements within the array are investigated by separating two electrons which are initially prepared in the
singlet state. We demonstrate one- and two-spin coherent displacement in different directions as well as a hyperbolic increase
of the spin coherence time with the electron speed. All these results demonstrate an unprecedented control of electron spins
in 2D arrays, with demonstration of quantum functionalities on individual electron spins crucial in the prospect of quantum
simulation and quantum computation.
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Results
The 2D up-scaling of tunnel-coupled QDs requires a complex geometry of gates. For a 9 dot array, the simultaneous tuning of
28 different gate voltages was necessary (see Fig. 1a). The outer edges of the dot array are defined by the green, light blue and
blue gates. The inner square lattice is tuned by adjusting the red gate voltages. The couplings of the corner QDs TL, BL, BR
and TR with the electron reservoirs are controlled by the light blue and blue gates, and finally, the different QD potentials are
tuned using the blue and orange gates independently, or linear combinations of VL, B, R, T. As an example, we define two virtual
gates,10 δVX and δVY, to act similarly to the in-plane x- and y- electric dipoles of the sample: δVX(αL) = (δVR,−αLδVL)
and δVY(αB) = (δVT,−αBδVB), where αL and αB are specifically adjusted for different gate configurations to excite the two
dipoles.

To investigate the control of the electron filling in the dot array, the first step consists of loading the dot structure with a finite
number of electrons13–15 via the TL dot. Then, the array of QDs is isolated from the electron reservoir. The electron loading
and isolation sequence is overlaid on the TL QD charge stability diagram shown in Fig. 1b, and explained in the following:
the interruption of the degeneracy lines of the 0-1 and 1-2 electrons at VTL = −0.47 V and VTL = −0.53 V, respectively,
indicates that the tunnel barrier to the electron reservoir becomes thicker and thicker as VTL is more negative. It is therefore
possible, starting from a QD structure empty of electrons, to apply a voltage pulse on VL-TL and VTL to load either one (L1,
black sequence) or two electrons (LS, orange sequence). A rapid pulse back to the point I brings the QD system in a regime
isolated from the electron reservoir. Figure 1c, d shows the time frame of the potential cut along the top row of QDs and
corresponding VL-TL and VTL voltage pulse sequence.

Charge control of a single electron
In the following paragraph, we describe the systematic investigation of increasingly larger subsets of QDs (Fig. 2) explored by
a single electron in the QD array. We start with the charge stability of a linear triple QD system (L, C, R). The corresponding
diagram is shown in Fig. 2a. In this experiment, VT and δVX are used to control the potential of the C dot and the energy
detuning between L and R, respectively. Three different charge sectors are identified corresponding to the three possible
charge configurations of the triple dot system. The topology of the charge stability diagram is in excellent agreement with
previously measured triple QDs.14 It is important to note that, in the case of an array not decoupled from the electron reservoir,
other charge configurations with different total charge numbers would be observed.11 As a result, keeping the total number of
electrons constant allows a drastic simplification of the charge stability diagrams, and thus of the charge manipulation. Next,
we probe the charge stability of four QDs in a square configuration, using VT and VR (Fig. 2b). Similarly with the previous
case, we can clearly identify the four expected charge sectors. Similar topologies of charge stability regions are observed for
the three other rotational permutations (see Extended Data Fig. 1). We now explore the different charge configurations of a
single electron in five QDs in a cross geometry, and in the 3×3 array of nine QDs, shown in Fig. 2c and Fig. 2d, respectively.
The qualitative comparison of the experimental data with theoretical simulations (respectively shown in the insets) allows the
accurate assignment of the different charge configurations. This demonstrates the ability to deterministically control a single
electron in a two-dimensional 3×3 array of QDs. In the following, we will demonstrate that when two electrons are loaded,
the measurement of their spin at different positions in the array is also an efficient probe of the spatial charge configuration.

Spin initialization, readout and displacement of two electron spins within the array
To explore the spin dynamics of two electrons inside the 2D array of QDs, it is compulsory to initialize and read out the spin
state of the electrons at any position in the array. Our implementation of such functionalities requires i) spin initialization, ii)
spin preserving transfer of the electrons through the dot array, and iii) spin readout.15–17 Both initialization and readout are
performed in the TL dot. The initialization procedure is presented in Fig. 3a and consists of loading two electrons, and let the
two-electron spin relax to the spin singlet ground state for tinit = 1ms� T1 at the point LS in Fig. 1b.18 The spin readout is
performed by measuring the singlet probability of the two-electron spin using a single-shot tunnel-rate selective spin readout
(point R in Fig. 1b).15, 19, 20 To read out the spin states at any dot location, the electrons are brought together to the TL dot with
a spin-preserving transfer procedure. Considering the characteristics of the dot array, we demonstrate that the spin states can be
transferred in two configurations, either between TL and L dots or within the L-B-R-T-C cross bar geometry.

In order to achieve spin-preserving electron displacement, it is important to control the tunnel barrier between the TL and L
dots using VL-TL (see Methods). Indeed, the tunnel barrier controls the amplitude of the exchange interaction as illustrated
in Fig. 3b. For large VL-TL, the exchange interaction is large enough to keep the singlet unaltered at any detuning position,
except at the S-T+ avoided crossing where mixing can occur. For lower transfer value of VL-TL, and at low detuning, the
exchange interaction can be dominated by the hyperfine coupling with the nuclear spins from the substrate. As a result, spin
mixing can occur and the singlet is lost. Figure 3c represents the spin-mixing map where the singlet probability is plotted as a
function of VL-TL and detuning between the TL and L dots (the external magnetic field is set to 120 mT). In this experiment, the
electron spins are initialized in singlet in TL, and the tunnel coupling between TL and L is tuned using VL-TL (x-axis). Then, a
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50-ns long voltage pulse VL (y-axis) changes the energy detuning between TL and L. Finally, the spin readout is performed
at the point R in Fig. 1b. The spin map shows that the two-electron spin singlet is preserved when the exchange interaction
is dominant, i.e. when the two electrons remain in the same quantum dot (VL >−0.3 V or VL <−0.36 V), or when they are
separated in a highly-coupled double QD (VL-TL >−0.3). On the contrary, singlet-triplet mixing occurs when the exchange
interaction becomes negligible compared to hyperfine coupling (L-TL region for VL-TL <−0.3 V), or at the S-T+ crossing (thin
curved line of low singlet probability in Fig. 3c). Theoretical calculations plotted in Fig. 3d and experimental data are very well
correlated. This result highlights the unique capability to control the neighboring qubit interactions in situ. For instance, the
control of the VL-TL gate voltage allows the tuning of the tunnel coupling over at least two orders of magnitude on nanosecond
timescales. Thus, we have the ability to tailor the coupling of two adjacent dots on demand, from a spin preserving regime with
a high exchange interaction to a decoupled regime, and to transfer the electron spin from the TL to the L dot.

Once in the L dot, we want to demonstrate that the two electron spins can be displaced within the L-B-R-T-C cross bar
geometry. To achieve this, we use the four gate voltages VL, B, R, T that control the four energy detunings of that subset of five
QDs. Similarly to Fig. 3c, Fig. 4a represents the five QDs spin-mixing map, starting with the two electrons in the C dot and
finishing in the TL dot for spin readout. The high singlet probability regions (blue) correspond therefore to the configurations
where the electrons are in the singlet state in one of the five dots after spin preserving transfer. The lower singlet probability
regions (red) are signature of singlet-triplet mixing after transfer with the two electrons separated in two different dots. Out
of the C5

2 = 10 possible separated charge configurations, only 8 are identified by comparing the experimental data with the
simulation of Fig. 4d. The two remaining L-R or B-T configurations cannot be accessed using (δVX(1), δVY(1)) (abbreviated
in the following as δVX and δVY), but by (δVX(1), δVY(−1)) (Fig. 4b, e) and (δVX(−1), δVY(1)) (Fig. 4c, f), respectively.
We therefore demonstrate that the two-electron spin can readily be initialized and read out at any position of the (TL, L, B, R, T,
C) dot array.

Local coherent exchange oscillations of two-electron spin states within the array
The results of charge and spin characterization presented in Figs. 2 and 3 have been achieved with relatively moderate inter-dot
couplings. This regime does not allow direct implementation of controlled interaction between two electron spins sitting in
adjacent dots. However, the tunability and the fast control of the dot array nevertheless permits locally larger tunnel couplings
and to reach the regime where coherent exchange of a quantum of spin between two electrons in antiparallel spin states is
implemented. It requires, for each couple of adjacent dots, control of both tunnel coupling and detuning on fast timescales
using appropriate virtual gates. As an example, we demonstrate it when the two electrons are located in the TL and L dots (see
Fig. 5b). The relevant gates are then δV ε

L-TL and δV J
L-TL (see caption of Fig. 5), and the voltage sequence and the procedure are

depicted in Fig. 5a. At relatively large tunnel coupling, a change in detuning first permits the creation of a singlet state with one
electron in each dot. The lowest energy antiparallel spin state |↑↓〉 with one electron in each dot is prepared by decreasing the
tunnel coupling with a microsecond ramp. Fast branching of the exchange interaction by pulsing the tunnel coupling13 then
allows activation of the coherent exchange interaction. The mirror sequence permits mapping of the |↑↓〉 probability onto the
singlet probability measured with the spin readout procedure. Oscillations of the |↑↓〉 probability are observed as a function of
the pulse duration and amplitude. The data points are fitted with a decaying cosine function cos(2πJexτE)e−(τE/Tdec)

2
where Jex

is the exchange energy in frequency unit, and Tdec the coherence time associated with the coherent exchange manipulation.
Coherence times as long as 124±27 ns and independent of Jex are observed and consistent with the relative protection of the
quantum operation pulsing the tunnel coupling.13, 21, 22 Such a procedure can be implemented for any pair of adjacent dots in
the array. As an example, we show in Fig. 5c the similar quantum manipulations when the electrons are positioned in the C-R
dots, one of the four symmetric combinations of adjacent dots in the C-T-B-L-R structure. It also exhibits a coherence time
independent of the exchange energy of 46±8 ns.

One- and two-electron coherent displacement
To further demonstrate control of the 2D quantum dot array, we investigate the two-electron spin coherence while the electrons
are continuously displaced within the C-T-B-L-R structure. The electrons are initially in a singlet state, and then are separated
to form a coherent superposition of antisymmetric spin states. By shuttling one or two electrons within the dot array, the
electrons will experience decoherence, resulting in the mixing with triplet states. The spin coherence along the displacement
is probed by bringing together the electrons in the TL dot and measuring the two-electron spin states. Up to 10 separated
charge configurations are explored, and multi-directional and complex one- and two-electron displacements are performed. Two
timescales are relevant to understand the spin dynamics during displacement:15 the first one is the so-called ‘displacement time’,
where the electrons are displaced because of the gate movement, and the second one, the ‘static time’, where the electrons
remain static in a given charge configuration. In the experiment, the displacement time is fixed and corresponds to the rise time
between two voltage settings and is equal to 0.8 ns. We can tune the static time by changing the duration τR of each voltage
pulses. In this way, we can explore the two regimes where the displacement time is either negligible or dominant compared to
static time.
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First, we investigate the situation where the displacement time is negligible compared to the static time. The two electrons
are controllably separated in an increasing number Ndots of separated charge configurations, each configuration being visited
only one time for a time τR (schematics of the electron displacement shown in Fig. 6a). The resulting singlet probabilities are
plotted (filled circles) in Fig. 6b as a function of the separated time τS = Ndots× τR. The coherence time is directly extracted by
fitting a Gaussian decay e−(τS/Tcoh)

2
(solid lines). The coherence time increases with

√
Ndots, as the separated electrons explore

a large ensemble of nuclear spins during the displacement, averaging the hyperfine interaction.15, 23, 24 We have repeated this set
of experiments for different permutations of QDs in order to extract a statistical dependence of Tcoh on Ndots and average out the
influence of the non-regular coupling between the different dots. For each size of visited subsets, the average and the standard
deviation of Tcoh is plotted in the inset of Fig. 6b as a function of Ndots. They show a good agreement with the expected square
root law (solid line) and confirm the successful coherent displacement within the dot array structure.

Second, we analyze the effect of the displacement time. In comparison with the previous electron movement, we study the
situation where the electrons explore each charge configuration many times and are displaced separately, in different directions.
To achieve this aim, we use a periodic pulse sequence engineered to maintain the two electrons separated in different QDs
(see Fig. 6c): the first electron (red) is first displaced in B, and then, the second electron (blue) in R. From this point, each
electron is sequentially displaced along a two-step trajectory, either vertically (red), or horizontally (blue). Thus, a total of eight
isochronous QD configurations are periodically visited with C the only dot visited by both electrons. By changing τR, we are
able to explore the different regimes in displacement time. The resulting singlet probability is plotted in Fig. 6d as a function of
τS = (8n+1)τR for different values of τR going from 1.7 ns to 13 ns. The experiment has been performed at zero magnetic
field. At τR longer than the static spin coherence time, no evolution is observed due to complete mixing between the singlet and
triplet states. By progressively reducing τR, we observe the emergence of a single exponential decay of the singlet probability,
demonstrating preservation of the spin coherence during displacement. The number of coherent spin displacement cycles
Ncoh is directly extracted from the fitting exponential decay e−(Ncycle/Ncoh) (solid lines). It is shown to be inversely proportional
to τR and therefore to the speed of the electron transfer as expected for a motional narrowing process (inset of Fig. 6d and
Discussion). For τR = 1 ns, Ncoh and Tcoh are respectively equal to 11 and 89 ns.

Finally, we investigate the two-electron spin coherence while only one electron is continuously displaced on multi-directional
path in a two-dimensional subset of four QDs. We execute, periodically, a pulse sequence similar to the one described in
Fig. 6a where the displaced electron is exploring the largest subset of QD (see Fig. 6e). We set the time spent in each charge
configuration to τR = 1.7 ns. The experimentally measured singlet probability is plotted against τS = (6n+1)τR in Fig. 6f.
The data point (blue circles) are fitted with an exponential decay (blue curve) e−τS/Tflip with a characteristic time equal to
57±3 ns. We compare this two-electron spin coherence of a single displaced electron to the case previously discussed where
both electrons are displaced (red circles). It is worth noting that both electron path and number of displaced electrons are in this
case different from the two-electron displacement previously discussed. Nevertheless, no drastic change in spin dynamics is
observed between the two situations (see comparison with the red circles in Fig. 6f) as the singlet probability decays with a
comparable time constant of 62±8 ns.

Discussion
Three important demonstrations for the control of 2D QD arrays are presented in the manuscript: the control of the charge in a
nine-dot structure with a single electron, the realization of local coherent exchange oscillations compatible with the geometry
of the quantum dot array, and the coherent displacement of the electron spins within the dot array.

As far as the charge control in large QD array is concerned, a widely acknowledged problematic stands on how to probe and
characterize charge stability. In our experiment, each relevant charge configuration could be highlighted with a specific selection
of two virtual gates. As an example, the set of two virtual gates used in the experiment was particularly suitable for the five
dots but not for the nine dots. Indeed, the four dots in the corner of the structure (TL, BL, TR, BR) were observed more easily
with the virtual gate selection of Fig. 2d. The same applies with the two-electron spin maps where specific virtual gates were
used to observe all the possible separated charge configurations (see Fig. 4). To have a complete picture, a multidimensional
characterization in gate space is needed and requires the choice of a proper set of virtual gates.10

The coherent exchange interaction is at the heart of the two spin-qubit gate.25–28 Its implementation in the array requires a
local increase of the tunnel coupling and is induced by bringing the two electrons closer. It is therefore based on displacing the
dot potential minima over short lengths with the help of the gate voltages. From the perspective of large-scale coherent control,
this approach is not compatible with electron spin qubits strongly coupled simultaneously with all their neighbors, and imposes
a partially sequential implementations of two-qubit gates in spin qubit arrays.

Finally, we have performed the one- and two-electron coherent displacements in a two-dimensional array. We have explored
many different displacement paths through different sets of quantum dots. We report an increase of the coherence time which
corresponds to a coherence length of five microns for both one- and two-electron displacement assuming an interdot distance
of 100 nm. Furthermore, we specifically study zero magnetic field regime where all the three components of the hyperfine
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interaction contributes equally to the decoherence of the two electron-spin singlet states. This hyperfine interaction is expected
to be averaged along the electron displacement. A signature of a motional narrowing process is observed with a decoherence
rate inversely proportional to the time spent in the static phase. Indeed, by reducing the time where the electrons are effectively
static, averaging faster than the spin dynamics over many nuclear spin configurations results in an increase of the observed
coherence time.14, 29 At the minimum static time, coherence times as long as in the non-zero magnetic regime are observed,
independent of the specificity of the displacement. Therefore, only the single electron displacement during the gate movement
from one dot to another is relevant to explain the increase in spin coherence time.

Conclusion
In the present manuscript, we demonstrate the control of one- and two-electron charge and spin properties in a 3×3 quantum
dot array. The tunability of the sample permits the exploration of the different charge configurations on fast timescales.
Two-electron spin initialization, spin readout and spin transfer enable exploration of the spin dynamics in the QDs array. We
demonstrate a procedure that permits local enhancement of the tunnel coupling between two dots of the array up to a range
where coherent exchange oscillations, the basis of the two-qubit gates for electron spin qubits, are observed. Taking advantage
of the tunability of the structure, we finally realize complex and multi-directional displacements of one and two electrons
through a sub-set of five quantum dots. At zero magnetic field, increase of the coherence length inversely proportional to the
speed of the transfer and characteristic of motional narrowing processes is reported. To increase even further the number of
dots under control, a more scalable architecture with gates shared between many dots for control30, 31 and with integrated local
electrometers for probing the electrons in the dot array would have to be considered.

Methods
Materials and set-up. Our device was fabricated using a Si doped AlGaAs/GaAs heterostructure grown by molecular beam
epitaxy, with a two-dimensional electron gas (2DEG) 100 nm below the crystal surface which has a carrier mobility of
106 cm2V−1s−1 and an electron density of 2.7× 1011 cm2. It is anchored to the cold finger, which is in turn mechanically
attached to the mixing chamber of a homemade dilution refrigerator with a base temperature of 60 mK. It is placed at the center
of a superconducting solenoid generating the static out-of-plane magnetic field. Quantum dots are defined and controlled by the
application of negative voltages on Ti/Au Schottky gates deposited on the surface of the crystal. Homemade electronics ensure
fast changes of both chemical potentials and tunnel couplings with voltage pulse rise times approaching 100 ns and refreshed
every 16 µs.

Three Tektronix 5014C with a typical channel voltage rise time (20% - 80%) of 0.9 ns are used to rapidly change the VL,
VB, VR, VT, VL-TL, VL-BL, VB-BL, VB-BR, VR-BR, VR-TR, VT-TR, and VT-TL gate voltages. The charge configurations can be read out
by four quantum point contacts, tuned to be sensitive local electrometers, and independently biased with 300 µV. The resulting
currents ITL, IBL, IBR and ITR are measured using current-to-voltage converters with a typical bandwidth of 10 kHz.
Simulations. The stability diagrams are simulated using a constant interaction model. The total energy Ui = QT

i C−1 Qi of
the one electron system is computed for each possible charge configuration and set of gate voltages (Qi), assuming a realistic
capacitance matrix C. The lowest energy state corresponds to the charge ground state computed for a given set of gate voltages.
For convenience, only the charge degeneracy lines are plotted.

The spin map simulations are performed with an initial singlet spin state. For each point in the energy detuning and
tunnel coupling space, the two-electron spin Hamiltonian is computed (e.g. for double quantum dot, the Hilbert space has
12 dimensions, whereas for five quantum dots, 60 dimensions are used). If the energy ground state corresponds to the two
electrons being in the same quantum dot, we assume that the spin singlet is conserved after a 50-ns time evolution. On the other
hand, if the two electrons are separated in different quantum dots, the numerical time-integration of the Schrödinger equation is
computed for 100 different hyperfine field vectors, following a centered Gaussian distribution with a standard deviation of
100 neV. Finally, the average singlet probability is calculated.
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Figure 1. Two-dimensional array of quantum dots in the isolated regime. a, Electron micrograph of a sample similar to
the one used in this work. The nine dashed circles indicate the 3×3 array of quantum dots (QDs) arising from the gate-induced
potential landscape (see text). The purple gates are used to define four quantum point contacts used as local electrometers,
whose conductances set the measured currents ITL, BL, BR, TR. Scale bar (white) is 200 nm. b, Typical charge stability diagram
of the TL QD. The derivative ∂VTL ITL of the recorded current is plotted as a function of the sweeping voltage VTL and VL-TL.
The electron occupation number is indicated at the top. The gate voltage configurations L1, LS, I, and R are respectively
employed to load one electron, two electrons in the singlet spin state, to isolate the QD system from the electron reservoirs and
to perform the spin readout (see Methods). c, Schematics of a potential cut along the top line of QDs in the isolated regime I
empty of electron (top), at the loading position L1 (middle) and back at the isolated position I with a single electron loaded
(bottom). d, Schematics of the pulse sequence applied on VTL (top) and VL-TL (bottom) used to load electrons and bring them in
the isolated configuration. The black and orange curves correspond respectively to the one- and two-electron pulse sequences.
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Figure 2. Single electron charge configurations in the 3×3 array of quantum dots. a, Charge stability diagram of one
electron in the linear triple (L, C, R) quantum dot (QD) system. The derivative ∂VT ITR of the recorded current is plotted as a
function of VT and δVX(1) (see text). The labels indicate the position of the isolated electron in the QD array. b, Charge
stability diagram of one electron in the four top right (T, TR, R, C) QDs. The derivative ∂VT ITL of the recorded current is
plotted as a function of VT and VTR. c, Charge stability diagram of one electron in five QDs (L, B, R, T, C) in a ‘cross’
geometry. The derivative ∂VY ITL of the recorded current is plotted as a function of δVY(0.64) and δVX(1). d, Charge stability
diagram of one electron in the 3×3 array of QDs. The current derivative ∂VY (ITR− ITL) is plotted as a function of δVY(0.62)
and δVX(0.97). The static potential landscape is tuned in slightly different configurations for all four experiments. The figure
insets show stability diagram simulations (see Methods). The qualitative agreement between the experiment and the simulation
topologies allows the charge configuration assignment. The virtual gates used to characterize the QD system are particularly
suitable to distinguish the five charge configurations of the quintuple dot in the cross geometry. The last four charge
configurations of the nine-dot structure with one loaded electron are not straightforwardly accessible with the choice of virtual
gates. Nevertheless, they are anticipated with the results on the four quantum dots previously described and are observed as
triangular regions around each triple point of the five-dot stability diagram.
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Figure 3. Spin initialization, readout and manipulation in the quantum dot array. a, Top, electron spin manipulations
used to initialize a singlet state in C: two-electron loading and spin relaxation in TL (left), coherent displacement in L (middle),
and then in C (right). Bottom, symmetric sequence executed to read out the final spin state: coherent displacement to L (right)
and then TL (middle), and spin readout (left) using the TL electron reservoir (see Extended Data Fig. 2). b, Energy diagram of
the relevant spin states for two electrons in the TL-L double dot as a function of the detuning between the two dots. When the
two electrons are either in L or TL dot, the singlet state is the ground state respectively indicated as S(0,2) and S(2,0). The
lowest energy state in the separated configuration is the triplet state T+, where the spins are aligned and which crosses the
singlet branch in two detuning points. At zero detuning and low tunnel coupling, the singlet state and the triplet T0 with
antiparallel spins mix together as a result of the different Zeeman energy in the two dots. c, Experimental spin-mixing map of
the double quantum dot L-TL performed under a 120 mT external magnetic field (see Methods). The singlet probability is
plotted as a function of the voltages VL and VL-TL. Two electrons in the singlet spin state initially located in TL are displaced
over 50 ns by a voltage pulse simultaneously applied on both VL and VL-TL. d, Simulated spin-mixing map realized using a
homogeneous charging energy of 1 meV, an on-site spin exchange energy of 100 µeV and a Zeeman energy of 3 µeV.
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Figure 4. Spin-mixing maps of the two-dimensional array of five quantum dots. a - c, Two electrons in the singlet spin
state initially located in C are displaced over 50 ns by a voltage pulse simultaneously applied on the four orange gates shown in
Fig. 1a. The resulting spin state is projected on the S-T0 spin basis and finally read out in a single shot manner (see Methods
and Extended Data Fig. 2). The resulting singlet probability is plotted for a voltage pulse applied using (δVX, δVY) in a, (δVX,
δVT = δVB) in b, and (δVL = δVR, δVY) in c. Each data point is averaged 150 times. In comparison of the spin mixing map
presented in Fig. 3, S-T+ mixing line are not present and are a signature of relatively small tunnel coupling. Moreover, we also
have indications that the interdot couplings are not symmetric, with for example a significant B-C tunnel coupling (see
Extended Data Figure 3). d - f, Simulated spin-mixing maps realized using a homogeneous charging energy of 1 meV and
tunnel coupling energy of 3 µeV. The external magnetic field is set to 0 and the local magnetic fields generated by the substrate
nuclear spins are assumed to follow a Gaussian distribution with standard deviation of 2.8 mT. The singlet probability
calculated after a 50-ns time evolution is plotted as a function of (δεX, δεY) in d, (δεX, δεT = δεB) in e, and (δεL = δεR,
δεY) in f.
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Figure 5. Local coherent exchange oscillations in the quantum dot array a, Schematic VL-TL(t) and VL(t) voltage
sequences applied to perform the coherent exchange oscillations presented in b, using the voltage points defined in Fig. 3c.
b, Coherent exchange oscillations realized with an initial spin in the TL dot and separated in TL-L charge configuration. The
singlet probability is plotted as a function of the pulse duration τE and amplitude δV J

L-TL. It is realized with a spin singlet
initially in TL (P0), transferred to the L-TL charge configuration (P1), then adiabatically rotated to the |↑↓〉 spin state (slow
voltage ramp from P1 to P2), and rapidly pulsed to E for a duration τE .18 A symmetric sequence is executed to projectively
readout the final spin state. We have defined for this experiment δV ε

L-TL and δV J
L-TL so that δV ε

L-TL = (δVL,−0.16δVL-TL) and
δV J

L-TL = (0.16δVL,δVL-TL) c, Similar coherent exchange oscillations realized with an initial spin in the C dot and separated
in C-R charge configuration and spin transfer to the TL dot for spin readout

(
δV ε

C-R = (−δVL,δVR), δV J
C-R = (δVB,δVT)

)
.
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Figure 6. Coherent electron spin displacement within a two-dimensional array. a, c, e, Schematic pictures of the
different electron spin displacements performed within the two-dimensional array of five quantum dots. b, Singlet probability
plotted as a function of the total electron separation time τS spent in one (R-C, black), two (R-C and R-T, blue), three (R-B,
R-C, and R-L, green), and four (R-C, R-T, R-L, and R-B, red) different charge configurations. The two electrons are initialized
in the singlet state in the C-dot. Then, one electron is first transferred to R, and the second electron visits each other dot only
once over an equal time τR. As a consequence, the second electron spends for the different sequences a total separation time
τS = 1× τR in C, τS = 2× τR in C and T, τS = 3× τR in B, C, and L, or τS = 4× τR in C, T, L, and B, where τR is in integer
value of the AWG clock period. The data are fitted with a Gaussian decay (solid lines) with a characteristic time T ?

2 equal to
10.0±0.6, 14.6±1.0, 25.5±2.4, and 36.6±2.5 ns, respectively. Inset, T ?

2 averaged over different possible charge
configurations plotted as a function Ndots. The data are fitted with a square-root function (solid red line). All experiments are
performed under a 120-mT magnetic field. d, Singlet probability as a function of the number of two-electron displacement
cycles presented in c and plotted for τR = 1 (black), 2 (blue), 3 (green), 5 (red), 7 (cyan), 9 (yellow), 11 (magenta), and 13 ns
(black) at 0 mT. During one period, the electron spends 3τR in C, and τR in each of the three other QDs. Inset, Coherent
number of cycles plotted against τR. f, Singlet probability as a function of the total electron separation time τS when one
electron is static in R, and the second electron is periodically displaced in C, L, C, T, C, and B (blue circles), and when the two
electrons (e1,e2) are first separated in R-C, and then periodically displaced in R-B, C-B, L-B, L-C, L-T, C-T, R-T, R-C (red
circles). The data points can be fitted by exponential decays, respectively characterized by the time constants of 57±3 and
62±8 ns. Both experiments are realized with τR = 1.7 ns, and under a magnetic field of 120 mT.
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Extended Data Figure 1. One electron displacement in the 3×3 array of quantum dots. a, Charge stability diagram
of one electron in the linear triple (T, C, B) quantum dot (QD) system. The sum of the recorded current calculated in different
directions (∂ ITL/∂VR, ∂ ITR/∂VR and ∂ IBR/∂VR) is plotted as a function of the VR and δVY(1). The labels indicate the position
of the isolated electron in the QD array. b, One electron charge stability diagram in the four BL, L, C, B QDs, recorded as a
linear combination of ∂ IBR/∂VL and ∂ ITR/∂VB plotted as a function of δVB and δVL. c, One electron charge stability diagram
in the four BR, B, C, R QDs recorded as a linear combination of ∂ ITL/∂VR, ∂ ITL/∂VB and ∂ ITR/∂VB plotted as a function of
δVB and δVR. d, One electron charge stability diagram in the four TL, L, C, T QDs recorded as ∂ ITR/∂VT plotted as a function
of δVT and δVL. The static potential landscape is tuned in slightly different configuration for all four experiments. The figure
insets show stability diagram simulations. Qualitative agreement between the experiment and the simulation topologies allow
the charge configuration assignment. e, Charge stability diagram simulation of the four T, TR, C, R QDs in the case where the
capacitive coupling of the gate T to the QDs T and TR are comparable (see schematic representation f). In this case, the
electron transfer from T to R has to be sequential via C or TR. g, Similar charge stability diagram simulation with a
significantly lower capacitive coupling between the gate T and the QD TR. Here, the electron transfer T to L may happen via a
non ground state of TR (top right charge degeneracy line).
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Extended Data Figure 2. Tunnel-rate dependent spin readout. a, Typical current traces recorded after execution of the
complete pulse sequence (initialization, spin manipulation, and tuning the QD system to the readout configuration). Two
current levels are assigned to either one (11.18 nA) or two (11.0 nA) electrons in the TL quantum dot. Assuming that the tunnel
rate to the electron reservoir of a triplet state is much faster than for a spin singlet, counting the number of rising edges after the
time threshold (purple dashed line) directly gives access to the probability of detecting singlet states. b, Representation of a
potential cut of the TL dot. At the readout position, the charge ground state corresponds to a single electron in the dot.
However, the tunnel rate of the extra electron depends on the spatial distribution of the electrons, which in turn depends on the
two-electron spin state. c, Singlet probability of a two-electron spin initially in C, and separated in C-T for a time τS, under a
120-mT (blue filled circles) or 0-mT (red filled circles) out-of-plane external magnetic field. The initial singlet probability is
0.72, and the final probabilities are 0.58 and 0.52, respectively. We deduce a spin readout fidelity of 0.62.

Extended Data Figure 3. Coherence decay in double quantum dots. Singlet probability of a two-electron spin initially
in C, and separated in either C-B (red), C-L (black), C-T (green), or C-R (blue) for a time τS. We observe similar Gaussian
decays (solid lines) with characteristic times of 8.8±0.8 ns (C-L), 9.5±0.6 ns (C-T), and 10.0±0.6 ns (C-R). The fourth set
of data points corresponding to C-B double quantum dot exhibits a non-Gaussian decaying behavior. Assuming a constant spin
exchange interaction of 77 MHz and a standard deviation of the gradient of magnetic field in the double dot of 7.2 MHz, we
calculated, using a Monte Carlo simulation, the expected time dependence of the singlet probability (purple solid curve). The
similarities between the simulation and the experimental results allow us to conclude a finite spin exchange interaction is
present for this configuration, and therefore a larger tunnel coupling.
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