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1 Univ. Grenoble Alpes, CNRS, Institut Néel, 38000 Grenoble, France
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Surface acoustic waves (SAWs) strongly modulate the shallow electric

potential in piezoelectric materials. In semiconductor heterostructures such

as GaAs/AlGaAs, SAWs can thus be employed to transfer individual electrons

between distant quantum dots1–3. This transfer mechanism makes SAW

technologies a promising candidate to convey quantum information through

a circuit of quantum logic gates4,5. Here we present two essential building

blocks of such a SAW-driven quantum circuit. First, we implement a triggered

single-electron source enabling synchronisation of SAW-driven transport along

parallel paths. Then, we couple a pair of transport channels via a tunnel

barrier to partition a flying electron arbitrarily into the two paths. All of the

presented single-shot experiments are performed with a transfer efficiency

exceeding 99 %. Our results open up the way to perform quantum logic

operations on the fly and show that a SAW-driven integrated circuit is feasible

with single electrons on a large scale.
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DiVincenzo’s criteria for realising a quantum computer address the transmission of

quantum information between stationary nodes6. Several approaches have demonstrated

successful transmission of quantum states in solid-state devices such as in

quantum dot (QD) arrays7–9 or microwave-coupled superconducting qubits10,11.

In semiconductor heterostructures, surface acoustic waves (SAWs) offer a particularly

interesting platform to transmit quantum information. Thanks to the shallow electric

potential modulation on a piezoelectric substrate, a SAW forms a train of moving QDs

along a depleted transport channel. This SAW train allows to drag single charge carriers

from one side of such a quantum rail to the other. Employing stationary QDs as electron

source and receiver, a single electron has been sent back and forth several micrometer

long tracks with a transfer efficiency of about 92 %1,2. Recently, SAW-driven transfer of

individual spin polarized electrons has been reported3. These advances support the idea

of a SAW-driven quantum circuit enabling the implementation of electron quantum optics

experiments5,12–14 and quantum computation schemes at the single-particle level15,16. The

central building block of such a quantum circuit is a tunable beam splitter permitting the

coupling and partitioning of single flying electrons. The experimental implementation of

such a device, however, is still missing.

In this work we investigate the feasibility of such a beam splitter setup for SAW-driven

single-electron transport. In order to realise quantum logic gates, where a pair of electrons

are made to interact in flight, it is necessary to synchronise transport. To achieve precise

control of the sending process, we realise a SAW-driven single-electron source that is

triggered by a voltage pulse on the timescale of picoseconds. To realise beam splitter

operation, we then couple a pair of quantum rails by a tunnel barrier and partition

an electron into the two output channels. Modeling the experimental results of this

directional-coupler operation with quantum mechanical simulations, we deliver insight

into the quantum state of the flying electron and discuss the remaining challenges to

implement quantum logic gates for SAW-transported flying charge qubits5,17,18.

The SAW-driven single-electron beam splitter is realised via surface electrodes forming

a depleted potential landscape in the two-dimensional electron gas (2DEG) of

a GaAs/AlGaAs heterostructure. An interdigital transducer (IDT) is used to send a

finite SAW train towards our single-electron circuit as shown schematically in Fig. 1a.

The SAW allows the transport of a single electron from one gate-defined QD (source) to

another stationary QD (receiver) through a circuit of quantum rails. Figure 1b shows a
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scanning-electron-microscopy (SEM) image of a source QD with a schematic description

of the electrical connections. To detect the presence of an electron, a quantum point

contact (QPC) is placed next to the QD. By biasing this QPC at a sensitive working

point, an electron leaving or entering the QD can be detected by a jump in the current,

IQPC
19. A SEM image of the whole single-electron circuit is shown in Fig. 1c. The device

consists of two quantum rails having a total length of 22 µm. The transport channels are

coupled along a region of 2 µm by a tunnel barrier defined by a 20-nm-wide surface gate.
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Fig. 1: Experimental setup. (a) Schematic showing an interdigital transducer (IDT)

launching a SAW train towards the single-electron circuit. (b) SEM image of the upper

source quantum dot (QD), which is coupled to the quantum rail (QR) with the schematically

indicated electrical connections. (c) SEM image showing the tunnel-coupled quantum rails with

schematically indicated transport paths, U and L.
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To quantify the efficiency of SAW-driven single-electron transfer, we decouple the

quantum rails by setting a high tunnel-barrier potential using a gate voltage of

VT = −1.2 V. We deduce the transfer efficiency based on the data from 70,000

SAW-driven single-electron transfer experiments – see Supplementary Section A. Thanks

to the low error rates of loading (0.07 %) and catching (0.18 %), we achieve a transfer

efficiency along our 22-µm-long quantum rail of 99.75 %.

The extremely high transfer efficiency makes SAW-driven single-electron transport

a promising candidate to couple a pair of electrons in such a beam-splitter setup.

In the long run, this coupling could enable entanglement of single flying

electron qubits5. To tread this path, electrons must be sent simultaneously from different

sources in a specific position of the SAW train. We accomplish this requirement using a

90 ps voltage pulse, which we employ to trigger electron transport. Figure 2a shows a

SEM image of a source QD with the pulsing gate highlighted in yellow. After loading an

electron from the reservoir, we bring the particle into an isolated configuration where it

cannot be picked up by the SAW. To load the electron into a specific minimum of the

SAW train, we apply a voltage pulse at the right moment to the plunger gate of the QD

as schematically shown in Fig. 2b. This pulse allows the electron to escape the stationary

source QD into a specific moving QD formed by the SAW along the quantum rail.

To demonstrate the feasibility of this trigger, we use an ultrashort voltage pulse of

90 ps20 corresponding to a quarter SAW period. Sweeping the delay of this pulse, τ ,

over the arrival window of the SAW at the source QD, we observe distinct fringes of

transfer probability as shown in Fig. 2c and more detailed in Fig. 2d. The data shows

that the fringes are exactly spaced by the SAW period. This periodicity indicates that

there is a particular phase along the SAW train where a picosecond pulse can efficiently

transfer an electron from the stationary source QD into a specific SAW minimum. As

the voltage pulse overlaps in time with this phase, transfer is activated and the efficiency

rapidly goes up to (99.0±0.4) %. By reduction of the pulse attenuation and improvement

of the QD structure, we anticipate further enhancements in the trigger efficiency. The

present pulsing approach allows us to synchronise the transport of single electrons along

parallel quantum rails and opens the way to couple single flying electrons.

4



0 5 10 15 20 25

Pulse delay (ns)

0

25

50

75

100

P
(%

)

c

da

SAWe

Time

�U
200 nm

QD

SAW e
QR

Pulse

0

25

50

75

100

P
(%

)

TSAW

b

Fig. 2: Pulse-triggered single-electron transfer. (a) SEM image of the source

quantum dot (QD) showing the pulsing gate highlighted in yellow. A fast voltage pulse on this

gate allows one to trigger SAW-driven single-electron transport along the quantum rail (QR).

(b) Measurement scheme showing the modulation, δU , of the electric potential at the stationary

source QD: the delay of a fast voltage pulse, τ , is swept along the arrival window of the SAW.

(c) Measurement of the probability, P , to transfer a single electron with the SAW from the

source to the receiver QD for different values of τ . (d) Zoom in on a time frame of four SAW

periods, TSAW.

Having established highly efficient single-electron transport, we couple the two channels

to partition an electron in flight between the two quantum rails. The aim of this tunnel

coupling is to prepare a superposition state of a flying qubit. We find that we can finely

control the partitioning of the electron, by detuning the voltages applied to the side

electrodes of the coupling region, VU and VL, while keeping VT constant. With a potential

detuning, ∆ = VU− VL = 0 V, the quantum rails are aligned in electric potential and the

device serves as a 50-50 beam splitter. Setting a voltage configuration where ∆ < 0, the

potential of the lower quantum rail (L) is decreased with respect to the upper path (U).

For ∆ > 0, the situation is reversed.
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Deducing the transfer probabilities to the receiver QDs from a thousand single-shot

experiments per data point, we measure the partitioning of the electron for different values

of ∆ as shown in Fig. 3a. Here we sweep VU and VL in opposite directions from −1.26 V

to −0.96 V while keeping VT = −0.75 V. The data shows a gradual transition of the

electron transfer probability from the upper (U) to the lower (L) detector QD while the

total transfer efficiency stays at (99.5±0.3) % – here we do not trigger the sending process.

To investigate the role of the tunnel barrier, we perform this measurement for different

values of VT. Figure 3b shows the width of the probability transition, σ, as function of

the tunnel-barrier voltage. Increasing the tunnel-barrier potential, we find a significant

narrowing of the probability transition.

To obtain a better understanding of our experimental observations, we calculate the

electrostatic potential along the tunnel-coupled quantum rails22,23. We superimpose

the dynamic SAW modulation with an amplitude estimated from Coulomb-blockade

measurements – for details see Supplementary Section B. Snapshots of the dynamic

potential landscape of the tunnel-coupled region are shown in Fig. 3c and Fig. 3d.

We investigate the partitioning process of the electron wave function in the double-well

potential by employing a very simple stationary model – for details see model A in

Supplementary Section C. When we assume pure ground state occupation in the

tunnel-coupled region, the model predicts an extremely abrupt probability transition

with potential detuning, ∆, that is much narrower than in our experimental observations.

Detaching our model from the assumption of pure ground state occupation, we find

a significant broadening of the probability transition with ∆. The prediction of the

simple stationary model is in remarkable agreement with the experimental data, if we

assume an occupation of excited eigenstates that is exponentially decreasing in energy –

see eigenstates in Fig. 3c. In this situation the eigenstate model provides a probability

transition (lines in Fig. 3a) that follows the course of a Fermi distribution. Keeping the

exponentially decreasing occupation of eigenstates constant, the simple partitioning model

predicts, as in our experimental observation, a narrowing of the transition with increased

tunnel-barrier potential (line in Fig. 3b). Here the raised tunnel-barrier potential increases

the confinement within the potential wells and causes a rearrangement of the eigenstates.

This effect is directly reflected in the width of the observed transfer probability transition.

In order to locate the source of electron excitation, we perform time-dependent

simulations of the SAW-driven quantum mechanical propagation of the electron along

6



different parts of our beam-splitter device – for details see model B in Supplementary

Section C. As in previous investigations of SAW-driven electron transport24, we find

transitions into excited states at the entrance to the tunnel-coupled region. The change

in the potential landscape at this position causes a rapid reconfiguration of the eigenstates

in the moving QD leading to Landau-Zener transitions into higher energy states. The

time-dependent simulations are in agreement with the stationary model and suggest an

excitation energy in the order of a few meV.
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Fig. 3: Partitioning the wave function of an electron in flight. (a) Probability, P ,

for a single electron to end up in the upper (U) or lower (L) quantum rail for different values

of potential detuning, ∆. The lines show the simulation result. (b) Transition width, σ, for

different values of the tunnel-barrier voltage, VT. The line indicates the stationary model of

electron partitioning. (c) Slices of the electric potential, U , along the double-well potential.

The horizontal lines indicate the eigenstates in the moving QD. The transparency indicates

the exponentially decreasing occupation of the states. (d) Landscape of the electric potential,

U , along the tunnel-coupled quantum rails with SAW modulation. The black spots represent

the moving QDs that are formed by the SAW. The vertical bar indicates the position of the

aforementioned slice of electric potential.
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A flying qubit architecture is an appealing idea to transfer and manipulate quantum

information between stationary nodes of computation4–6. Thanks to electron confinement

during transport and the availability of highly efficient single-electron sources and

receivers, SAWs represent a particularly promising candidate to deliver the first

quantum logic gate for electronic flying qubits5,17,18. Here we have presented two

important milestones to tread this path. Using a voltage-pulse trigger, we have

demonstrated a powerful tool to synchronise SAW-driven transport of single electrons

along parallel quantum rails on a large scale. With this achievement we fulfil an important

requirement to couple a pair of single electrons in a beam-splitter setup. Secondly, we have

investigated the capability of the present device to partition a single electron from one

quantum rail into the other. Employing quantum mechanical simulations, we identified

abrupt transitions in the potential landscape as source of charge excitation. We anticipate

that an optimised surface-gate geometry as well as stronger SAW confinement25 and novel

material implementations26,27 will allow coherent propagation of a single electron in a true

two-level state28–31. Our results pave the way for electron quantum optics experiments5

and quantum logic gates with flying electron qubits32 at the single-particle level.
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Experimental setup

The experiments are performed at a temperature of about 10 mK using a 3He/4He

dilution refrigerator. The present device is realised by a Schottky gate technique in a

two-dimensional electron gas (2DEG) of a GaAs/AlGaAs heterostructure. The 2DEG

is located at the GaAs/AlGaAs interface 100 nm below the surface and has an electron
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density of n ≈ 2.7 × 1011 cm−2 and a mobility of µ ≈ 106 cm2V−1s−1. It is introduced

by a Si-δ-doped layer that is located 55 nm below the surface. All nanostructures are

realised by Ti/Au electrodes (Ti: 5 nm; Au: 20 nm) that are written by electron-beam

lithography on the surface of the wafer. Applying a set of negative voltages on these

surface electrodes, we deplete the underlying 2DEG and form the potential landscape

defining our beam-splitter device. Along the quantum rails there are thus no electrons

present. The SAW-transported electron is thus completely decoupled from the Fermi sea.

As a SAW source we employ an interdigital transducer (IDT) that is placed outside of

the mesa – about 1.6 mm beside our beam splitter. It contains 120 interdigitated double

fingers with a finger spacing and width of 125 nm. The wavelength of the generated SAW

is thus 1 µm. The aperture of the IDT fingers is 50 µm. We operate the device with a

pulse-modulated, sinusoidal voltage signal oscillating at the IDT’s resonance frequency of

2.77 GHz. In all of the present experiments the duration of each oscillation pulse on the

IDT was set to 30 ns. The power on the signal generator was set to 25 dBm. The signal

for the IDT is attenuated by 8 dB attenuators along the transmission line and by 3 dB

along the bonding wire. The propagation of evanescent electromagnetic waves from the

IDT is suppressed by grounded metal shields. The jitter of the voltage pulse that we send

from an arbitrary-waveform-generator (AWG) to the plunger gate of the source QD was

deduced as about 6.6 ps (FWHM) with respect to a fixed phase of the SAW burst.

Time-dependent simulations

Knowing the sample geometry, the electron density in the 2DEG and the set of applied

voltages, we calculate the electrostatic potential of the gate-patterned device using the

commercial Poisson solver NextNano23 using a frozen charge layer and deep boundary

conditions22. We deduce a donor concentration of about 1.6 ·1010 cm−2 in the doping layer

and a surface charge concentration of about 1.3 · 1010 cm−2. Superposing the dynamic

SAW modulation on the electrostatic potential, we find the eigenstate decomposition of

a single electron trapped in a specific moving SAW minimum at a given time. Using

the finite-difference method we simulate the two-dimensional evolution of the electron

state in this dynamic potential3. See Supplementary Section C for more details on the

time-dependent solver and the simulations performed.
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Supplementary Information

I. SAW-DRIVEN SINGLE-ELECTRON TRANSPORT

Preparations. In each single-shot-transfer experiment, we perform three steps before

launching the SAW train: initialisation, loading and preparation to send. These steps are

executed by fast voltage changes on the quantum dot (QD) gates R and C as indicated

in the SEM image shown in Supplementary Fig. 4a. In between each step we go to a

protected measurement configuration (M) and read out the current through the quantum

point contact (QPC) as indicated in the charge stability diagram shown in Supplementary

Fig. 4b. Comparing the QPC current before and after each step, we can deduce if an

electron entered or left the QD.

To initialise the system, we remove possibly present electrons from all QDs by

visiting configuration I. We then load a single electron at the source QD by going to

configuration L. Supplementary Fig. 4c shows jumps in QPC current at different loading
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Fig. 4: Preparation of SAW-driven single-electron transfer.

(a) SEM image of a source QD with indication of surface electrodes. (b) Charge-stability

diagram showing example source-quantum-dot configurations for QPC measurement (M),

initialisation (I), single-electron loading (L) and sending (S). Here we plot ∂IQPC/∂VR. The

data show abrupt jumps in QPC current indicating charge-degeneracy lines of the QD.

(c) Loading map showing configurations I and L. Each pixel represents the difference in QPC

current, ∆IQPC, before and after visiting the respective loading configuration. The colourscale

reflects the electron number in the QD.
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configurations (L) that are visited after initialisation via voltage variations from the

measurement position, M. The data show that, depending on the voltage variations of the

reservoir (δVR) and coupling gate (δVC), different numbers of electrons can be efficiently

loaded into the source QD. Having accomplished the loading process, we go to a sending

configuration (S) where the electron can be picked up by the SAW. At the same time

as we prepare the source QD for sending, we bring the receiver QD into a configuration

allowing the electron to be caught. We then launch a SAW train to execute the transfer

of the loaded electron. Comparing the QPC currents before and after the SAW burst, we

can assess whether the electron was successfully transported.

Sending. In order to find a source QD configuration where the SAW can efficiently

pick up a loaded electron, we investigate so-called sending maps. In these maps we

compare the QPC currents after and before launching a SAW train. Typical examples are

shown in Supplementary Fig. 5. The jump in QPC current, ∆IQPC, is measured both at

the source and receiver QDs for various sending configurations that are visited via voltage

variation on the reservoir gate, δVR, and the coupling gate, δVC, of the source QD. Here

the greyscale is chosen such that a black pixel indicates the presence of an electron.

Supplementary Fig. 5a shows a sending map measured at the source QD where no

SAW is sent along the single-electron circuit. The plot shows that the loaded electron

can be simply removed from the source QD by the voltage variations, δVR and δVC.

The sending map basically shows two transitions: At the horizontal transition (see dashed

arrow) the loaded electron is pushed back into the electron reservoir. Trespassing the

vertical transition (see solid arrow) on the other hand, the electron is pushed into the

quantum rail. Tracing the QPC current at the receiver QD as shown in Supplementary

Fig. 5b, we observe no electrons entering, since there is so far no SAW involved.

These transitions shift as we launch a 60 ns long SAW train after bringing the electron

at the source QD in the sending configuration – see Supplementary Fig. 5c. This change

in the sending map occurs because the SAW allows the electron to overcome the respective

potential barriers easier. Investigating ∆IQPC at the receiver QD – see Supplementary

Fig. 5d –, we observe an electron entering whenever it was successfully transported by

the SAW. The sending position, S, is now chosen such that the electron is only sent to the

receiver when a SAW burst is applied. The sending threshold sensitively depends on the

SAW amplitude and the potential gradient between the QD and the transport channel1.
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Fig. 5: Exemplary set of sending maps. The plots show jumps in QPC current, ∆IQPC,

after a sending configuration is visited via the voltage variations δVR and δVC on the source

quantum dot (QD). The colourscale of the plots is chosen such that the black data points indicate

events where an electron is present after visiting this position. The voltage configurations S and

T indicate possible sending positions without (S) and with (T) additional voltage pulse applied

on the plunger gate. (a) ∆IQPC measured at source QD without any SAW launched during the

sending time frame. (b) ∆IQPC measured at receiver QD without SAW. (c) ∆IQPC measured

at source QD with a 60 ns SAW train launched during the sending time frame. (d) ∆IQPC

measured at receiver QD showing electron transport by SAW. (e) ∆IQPC measured at source

QD with additional 360 ps voltage pulse applied at the plunger gate in time with the SAW

arrival. (f) Corresponding measurements of ∆IQPC at the receiver QD.
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Sending with trigger. To send the electron in a specific moving QD of the SAW

train we use a picosecond voltage pulse applied on the plunger gate of the source QD.

Supplementary Fig. 5e and Supplementary Fig. 5f show measurements of ∆IQPC at

the source and receiver QD for the case where a 360 ps long voltage pulse is applied

on the plunger gate (P) of the source QD in time with the arrival window of the SAW.

For this pulse a clear shift of the sending transition is apparent. Applying the voltage

pulse, the potential barriers are further reduced. Consequently, we can choose a sending

position, T, where sending is triggered only by the voltage pulse. Reducing the pulse

length down to 90 ps we make the sending fringes visible, but also shrink the region

of possible pulse-triggered sending positions, T. As consequence, we find that the most

critical factors for the efficiency of this synchronisation approach are the abruptness of

the sending transition and the attenuation of the fast pulse along the transmission line.

Efficiency of single-electron transfer. In order to optimise single-electron transfer,

we characterise the errors of SAW-driven single-electron transport and specifically treat

the limiting factors. In this characterisation procedure we repeat each transfer experiment

twice – without and with loading at the source QD after initialisation. Doing so, we

can also observe events where the electron is stuck along the transport channel, since

in this case subsequent catching events occur when initially no electron was loaded.

Supplementary Fig. 6 shows the difference in QPC current, ∆IQPC, before and after

SAW transmission at the source (blue) and receiver (green) for thousand single-electron

transfer experiments. The grey data shows reference experiments without initial loading

at the source QD. The data nicely reflects the extremely high sending efficiency.

Whenever an electron is loaded at the source QD, it is picked up by the SAW causing

a positive jump in QPC current – see blue data points in Supplementary Fig. 6a. Thanks

to a sufficiently smooth potential landscape along the quantum rail and an optimized

catching configuration, the transferred electron also arrives at the receiver QD what causes

negative jump in QPC current – see green data points in Supplementary Fig. 6a. In the

exemplary data only three catching errors occur. The distinct peaks in the histograms

of the events with (coloured) and without (grey) initial loading at the source QD – see

Supplementary Fig. 6c-d – show that the presence of an electron in the QD is clearly

distinguishable.
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Fig. 6: Characterisation of optimised SAW-driven single electron transport. The

data points show the difference of QPC current, IQPC, before and after lauching a SAW train

at the (a) source and (b) receiver QD without (grey) and with (coloured) an electron initially

loaded at the source. (c,d) Histograms of the data.
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II. SAW-AMPLITUDE ESTIMATION FROM COULOMB-BLOCKADE PEAKS

Besides their application as single-electron sources, quantum dots (QDs) can be

moreover employed as very sensitive electrometers. Consequently, a QD can be used

to measure the amplitude of potential modulation that is introduced by a SAW in

piezoelectric materials2. The measurement approach is based on the broadening of

discrete energy levels in quantum dots by SAW modulation. Due to the piezoelectric

coupling, a SAW passing through a quantum dot leads to a periodic modification of

the quantum dots chemical potential. This causes that the discrete energy states of the

quantum dot oscillate with respect to the bias window. During this process – as for the

situation of a classical swing – the quantum dot states remain most of the time close to

turning points of the oscillation. Repeating Coulomb-blockade-peak measurements with

increased SAW amplitude, the conductance peaks split according to the amplitude of the

periodic potential modulation. The two lobes in which such a Coulomb blockade peak

splits indicate the two energies at which a quantum dot state stays on average most of the

modulation time. Stressing again the classical picture of a swing, thus, one can estimate

the peak-to-peak amplitude of the SAW-introduced potential modulation by determining

the energy difference between those two lobes of the split peak.

In order to obtain this peak-to-peak amplitude in meV, however, the voltage-to-energy

conversion factor η has to be known. This quantity can be determined from Coulomb

diamond measurements as exemplary shown in Supplementary Fig. 7a. Knowing η, one

can measure the broadening of the Coulomb blockade peaks with rising amplitude of the

SAW introduced potential modulation, A. Supplementary Fig. 7b shows an exemplary

data set showing the broadening of Coulomb blockade peaks with increasing transducer

power, P . The splitting of resonances is indicated by the dashed red lines. At P ≈ 1

dBm the side peaks of two neighbouring Coulomb blockade peaks start to overlap. At

the intersection position, the peak-to-peak amplitude of the SAW is equal to the charging

energy of the quantum dot, EC. The peak-to-peak amplitude of the SAW introduced

potential modulation, A, is related to the transducer power, P , by the relation:

A [eV] = 2 · η · 10
P [dBm]−P0

20 , (1)

where P0 is a fit parameter accounting for power losses.
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Fig. 7: Exemplary Coulomb diamonds and SAW-introduced peak splitting. (a)

Measurement of the differential conductance, ∂I
∂VSD

, for changes in the source-drain voltage, VSD,

and the plunger gate voltage, VP. The Coulomb diamonds allow deducing the voltage-to-energy

conversion factor η = EC/VC. (b) Measurement of Coulomb-blockade peaks as the amplitude of

a continuous SAW is increased via the transducer power, P . In order to highlight the important

features, we plot the derivative of current through the quantum dot, I, with respect to the

plunger gate voltage VP. When neighbouring peaks start to overlap, the amplitude of the SAW

introduced piezoelectric potential wave, A, trespasses the charging energy, EC.
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Since these measurements are performed in continuous-wave mode, we trace the

broadening of the Coulomb-blockade peaks only up to a transducer power of -5 dBm

in order to avoid unnecessary heating. Fitting equation 1 to the data we estimate the

SAW amplitude for the typically applied transducer power of 25 dBm with 30 ns pulse

modulation. Supplementary Fig. 8 shows the SAW amplitude data (zoom in inset) and

the extrapolation to 25 dBm (grey area) for measurements on the present beam-splitter

device. The extrapolation indicates a SAW introduced peak-to-peak modulation of about

(15± 5) meV in the single-electron transfer experiments. Consequently, we modelled the

SAW modulation driving single-electron transport in the present beam splitter setup with

15 meV peak-to-peak amplitude.
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Fig. 8: Amplitude of SAW introduced potential modulation. The data points show the

width of the Coulomb-blockade peaks as the transducer power is increased. Comparing the data

to equation 1, we estimate the peak-to-peak amplitude with an error that is indicated by the

grey area. The plot shows an extrapolation of this region to the typically employed transducer

power of 25 dBm. The inset shows a zoom into the data points.
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III. QUANTUM MECHANICAL SIMULATIONS

To understand the experimentally observed transition in the transfer probabilities, PU

and PL, as function of potential detuning, ∆ = VU − VL, we employ two independent

models. First (model A), we perform a stationary investigation of the eigenstates in the

tunnel-coupled region. Secondly (model B), we simulate the time-dependent propagation

of the electron within a certain SAW minimum through our device. Model A is a minimum

model to understand our data. Model B is more elaborate and accounts for the actual

partitioning mechanism. Both give consistent results in agreement with the experimental

data.

Model A. Let us begin with the stationary investigation. We consider a one-dimensional

cut of the double-well potential in the tunnel-coupling region. In this region we have a

sufficiently flat potential landscape, U(r) ≈ U(y|V )+USAW(x, t), such that the eigenstate

problem becomes separable in the x and y coordinates. The electronic wave function

φi(y) along the transverse y direction satisfies the 1D Schrödinger equation:

~2

2me

∂2φi(y)

∂y2
+ U(y|V ) · φi(y) = Eiφi(y) (2)

where U(y, V ) is the electrostatic double-well potential defined by the surface-gate

voltages V containing VU, VL and VT. U(y, V ) has been obtained from solving the

corresponding Poisson problem. me indicates the effective electron mass in a GaAs

crystal.

To obtain the probability of finding the electron in the upper or lower potential well,

we can now simply sum up the contributions from the wave functions of the eigenstates

for the respective regions of interest. To obtain the probability of finding the electron

in the upper quantum rail, we integrate the square of the wave function over the spatial

region of the upper quantum rail:

PU =
∑
i

pi

∫
y>0 nm

∣∣φi(y, U(y|V ))
∣∣2 dy (3)

where pi is the occupation of the eigenstate φi. For a fixed tunnel-barrier height

we can now detune the double-well potential as in experiment by varying ∆. It is

now straightforward to calculate the directional coupler transition, PU(∆, V ), for the

experimental setting with any imaginable occupation of the eigenstates.
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Ground state occupation. Let us first consider the situation where only the ground

state is occupied. We evaluate equation 3 with mere ground state occupation (p0 = 1)

and fixed tunnel-barrier height (VT = −0.7 V) for different values of potential detuning,

∆, that are changed as in experiment. The predicted course of the probability transition

follows the shape of a Fermi distribution:

PU(∆) ≈ 1

exp(−∆/σ) + 1
(4)

Qualitatively, this course strongly resembles the experimental data. Assuming pure

ground-state occupation, the simulation shows that we have to expect an extremely

abrupt transition in transfer probability. We can characterise the width of the probability

transition by the scale parameter, σ. For pure ground state occupation, the width

of the probability transition, σ, is in the order of microvolts. Increasing the tunnel

barrier, we increase the confinement in the double-well potential what makes the transition

continuously narrower as shown in Supplementary Fig. 9b. For VT ≈ −0.9 V the

transition width reaches already a scale of picovolt. With state-of-the art equipment

this transition thus would be hardly resolvable in experiment. It would appear as an

abrupt jump of transfer probability from 100 % to 0 %.
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Fig. 9: Partitioning a ground-state electron in the present double-well potential.

(a) Probability, PU, to find the electron in the upper quantum rail (y > 0 nm) as function of

potential detuning, ∆ = VU − VL, for fixed tunnel-barrier height (VT = −0.7 V). The transition

width σ is obtained via the fit of a sigmoid function, P (∆) = 1/(exp(−(∆ − µ)/σ) + 1). (b)

Width of the probability transition, σ, for different tunnel-barrier heights defined via VT.
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The role of excitation. Let us now investigate how the situation changes as we

populate successively excited eigenstates of the double-well potential. For this purpose

we define the occupation of the eigenstates, φi, with eigenenergies, Ei, via an exponential

distribution:

pi ∝ exp
(
− Ei − E0

ε

)
(5)

where ε is a parameter determining the occupation of higher energy eigenstates. With

this approach we can keep the course of the probability transition that resembles the

experimental data as we successively occupy excited states. Increasing ε, we find a

broadening of the probability transitions as shown in Supplementary Fig. 10a. For

ε = 6.9 meV we obtain simulation results of PU(∆) showing very good agreement over a

wide range of VT. For small values of ε we find an approximately linear relation to the

width of the probability transition, σ, as shown in Supplementary Fig. 10b. The slope

of this line changes non-linearly as we change the tunnel-barrier height. This shows that

the transition width, σ, reflects the occupation of excited states and thus indirectly the

confinement in the double-well potential.
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Fig. 10: Partitioning an excited electron in the double-well potential. (a) Probability,

PU, to find the electron in the upper quantum rail (y > 0 nm) as function of potential detuning,

∆ = VU − VL, for fixed tunnel-barrier height (VT = −0.9 V). Here we evaluate the stationary

model A given by equation 3. The data points show data from experiment. The lines show

evaluations of equation 3 for different values of ε. (b) Relation between the probability transition

width, σ, and the occupation parameter, ε, for different tunnel-barrier voltages, VT.
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Model B. Let us now introduce the time-dependent simulation of SAW-driven

electron propagation. For this purpose we consider the full two-dimensional potential

landscape, V (r, t), of our beam-splitter device with a 15 meV peak-to-peak potential

modulation of the SAW having a wavelength of 1 µm. We calculate the evolution of the

particle described via the electron wave function, ψ(r, t), by solving the time-dependent

Schrödinger equation:

i~
∂ψ(r, t)

∂t
= Ĥψ(r, t) =

[
− ~2

2me

∇2 + U(r, t)

]
ψ(r, t) (6)

where Ĥ describes the Hamilton operator, U(r, t) is the two-dimensional dynamic

potential encountered by the electron and me is the effective electron mass in a GaAs

crystal. We numerically solve the equation using the finite-difference method3 and

discretise the wave function both spatially and in time. In one dimension, the

single-particle wave function becomes:

ψ(x, t) = ψ(m ·∆x, n ·∆t) ≡ ψnm (7)

where m and n are integers and ∆x and ∆t are the lattice spacing in space and in

time respectively. Following the numerical integration method presented by Askar and

Cakmak4, we evaluate the leading term in the difference between staggered time steps:

ψn+1
m = e−i∆tĤ/~ ψnm '

(
1− i∆tĤ

~

)
ψnm (8)

Consequently, we can write the relation between the time steps ψn+1
m , ψnm and ψn−1

m as:

ψn+1
m − ψn−1

m =
(
e−i∆tĤ/~ − ei∆tĤ/~

)
ψnm ' −2

(
i∆tĤ

~

)
ψnm (9)

By splitting the wave function in its real and imaginary parts, ψnm = unm + ivnm, where

u and v are real functions, we can evaluate the entire wave function in the same time

step. Using the Taylor expansion to estimate the second order spatial derivative, ∂2ψ
∂x2
'

ψ(x−∆x)−2ψ(x)+ψ(x+∆x)
∆x2

, the system of equations to solve becomes:

un+1
m = un−1

m + 2

(
~∆t

m∆x2
+

∆t

~
Un
m

)
vnm −

~∆t

m∆x2

(
vnm−1 + vnm+1

)
(10a)

vn+1
m = vn−1

m − 2

(
~∆t

m∆x2
+

∆t

~
Un
m

)
unm +

~∆t

m∆x2

(
unm−1 + unm+1

)
(10b)

By this approach we do not need to obtain the eigenstates of the dynamic QD potential for

each time step. Instead, we calculate the eigenbasis only at the beginning of the simulation
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to form the initial wave function based on an exponentially decreasing occupation of the

eigenstates. Solving the system of equations 10 for each successive time step, we then

calculate the evolution of the wave function in the dynamic potential landscape that

is given by the electrostatic potential defined by the surface gates and the potential

modulation of the moving SAW train. We solve the time-dependent Schrödinger equation

over the entire tunnel-coupled region using Dirichlet boundary conditions. The boundaries

are sufficiently far away from the position of the wave function such that no reflections

are observed. To obtain the occupation of the eigenstates after a certain propagation

time of the wave packet, we calculate the eigenstates for the potential of the present time

step and decompose the wave function in that basis. The method we use is shown to be

convergent and accurate.3

The origin of excitation. To find the reason for the occupation of eigenstates at

higher energies, we simulated the time-dependent SAW-driven propagation of the electron

along different sections of our beam-splitter device. Simulating electron propagation along

the injection channel, we find no significant excitation in this part of the quantum rail.

As we prepare the electron directly after the source QD initially in the ground state,

we find that the wave function basically remains in that state after propagation to the

entrance of the tunnel-coupling region. We observe only 3 % excitation due to a change

in momentum along the angled part of the injection channel.

Simulating the entrance of the flying electron from the injection channel into the

tunnel-coupled region, however, we observe an abrupt change in electrostatic potential

landscape. Supplementary Fig. 11a shows an exemplary trace (red) of the electron

wave function for this situation. The abrupt change in potential confinement causes

Landau-Zener transitions into excited states. Supplementary Fig. 11b shows a histogram

of the eigenstate occupation after propagation from from the injection channel to the

center of the tunnel-coupled region. Comparing this histogram (red) to the exponential

distribution (black), we find qualitative agreement of the distributions. Let us note

at this point that the employed theoretical models do not take into account relaxation

mechanisms. Assuming initial ground state occupation in the injection channel, we obtain

an increase of the electrons energy of about 5 meV after propagation to the center of the

tunnel-coupled region – see Supplementary Fig. 11c. This value is of the same order

of magnitude as the occupation parameter (ε = 6.9 meV) that we use to reproduce our

experimental data.
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Fig. 11: Comparison of SAW-driven electron transport simulations. (a) Propagation

of the electron wave function with a moving QD of the SAW along the tunnel coupled region

with symmetric potential detuning (∆ = 0 meV) for two scenarios: The red trace shows

electron propagation from the injection channel to the center of the tunnel-coupled region.

The black trace shows on the other hand electron propagation from the center to the exit of

the tunnel-coupled region. For both of the two traces the parameter, ε, determining the initial

occupation of excited states was chosen as 6.7 meV. Here the tunnel-barrier voltage is set to

VT = −0.85 V. (b) Comparison of the eigenstate-occupation distribution, pi, of the aforeshown

red and black traces at the center of the tunnel-coupled region. (c) Increase of the expected

electron energy, 〈E〉, due to excitation as function of initial state occupation, ε. Assuming an

initial occupation with ε ≈ 10 meV, the expectation energy is predicted to remain constant after

propagation to x = 0 µm.

26



REFERENCES

1 Bertrand, B. et al. Injection of a single electron from static to moving quantum dots.

Nanotechnology 27, 214001 (2016).

2 Schneble, R. J. et al. Quantum-dot thermometry of electron heating by surface acoustic waves.

Appl. Phys. Lett. 89, 122104 (2006).
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