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Semiconductor spin qubits based on spin-orbit states are responsive to electric field
excitation allowing for practical, fast and potentially scalable qubit control. Spin-
electric susceptibility, however, renders these qubits generally vulnerable to electri-
cal noise, which limits their coherence time. Here we report on a spin-orbit qubit
consisting of a single hole electrostatically confined in a natural silicon metal-oxide-
semiconductor device. By varying the magnetic field orientation, we reveal the exis-
tence of operation sweet spots where the impact of charge noise is minimized while
preserving an efficient electric-dipole spin control. We correspondingly observe an ex-
tension of the Hahn-echo coherence time up to 88 µs, exceeding by an order of magni-
tude the best reported values for hole-spin qubits, and approaching the state-of-the-art
for electron spin qubits with synthetic spin-orbit coupling in isotopically-purified sili-
con. This finding largely enhances the prospects of silicon-based hole spin qubits for
scalable quantum information processing.

INTRODUCTION

In the global effort to build scalable quantum processors, spin qubits in semiconductor quantum dots1 are progres-
sively making their mark2. We highlight, in particular, the achievement of single-3,4 and two-qubit5–8 gate fidelities
well above 99%, the first realizations of multi-qubit arrays9,10, and a demonstrated compatibility with industrial-grade
semiconductor manufacturing technologies11–13.

Owing to their long coherence time, electron-spin qubits in silicon quantum dots have so far attracted the largest
attention2. That said, their control requires add-ons such as metal microstrips3, micromagnets4, or dielectric
resonators14, whose large-scale integration is technically challenging13. Hole-spin qubits, on the other hand, can
circumvent this difficulty thanks to their intrinsically large spin-orbit coupling, which enables electric-dipole spin
manipulation. Over the last five years a variety of hole spin qubits have been reported in both silicon11,15 and
germanium16–19 quantum dots. In all these qubits, quantum operations are performed using high-frequency gate
voltage excitations.

The downside of all-electrical spin control is that the required spin-orbit coupling exposes the qubit to charge noise,
leading to a reduced hole spin coherence. Recent theoretical works20,21, however, have shown that, for properly chosen
structural geometries and magnetic field orientations, careful tuning of the electrostatic confinement can bring the
hole qubit to an optimal operation point where the effects of charge noise vanish to first order while enabling efficient
electric-dipole spin resonance. Here, using a single hole spin confined in natural silicon we pinpoint the existence of
operation sweet-spots where the longitudinal spin-electric susceptibility is minimized, resulting in a large enhancement
of the spin coherence time.

DEVICE AND g-FACTORS

Our device consists of an undoped silicon nanowire with rectangular cross-section whose electrostatics is controlled
by four gates (G1 to G4) as shown in Figs. 1a,b (see Methods for details). We define a large hole island below G3 and
G4 to be used simultaneously as a Fermi reservoir and as a charge sensor for a single hole trapped in a quantum dot,
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FIG. 1. Device, measurement scheme, and properties of the first confined hole. (a) Simplified 3-dimensional
representation of a silicon (yellow)-on-insulator (green) nanowire device with four gates (light blue) labelled G1, G2, G3 and
G4. Gate G2 defines a quantum dot (QD2) hosting a single hole; G3 and G4 define a hole island used as reservoir and sensor
for hole spin readout; G1 defines a hole island screening QD2 from dopant disorder and fluctuations in the source. Using
bias-tees, both static voltages (VG1, VG2) and time-dependent, high-frequency voltages (MW1, MW2) can be applied to G1
and G2, respectively. The drain contact is connected to an off-chip, surface-mount inductor to enable rf reflectometry readout.
The coordinate system used for the magnetic field is shown on the left side. Each axis is given a different color, which is used
throughout the manuscript to indicate the magnetic field orientation. (b) Colorized scanning electron micrograph showing a
tilted view of a device similar to the measured one. Image taken just after the etching of the spacer layers. Scale bar: 100 nm
(c) Artistic view of the computed wave function for the first hole accumulated under G2. The red iso-density surface encloses
85% of the probability of presence of the hole. (d) Measured (dots) and calculated (solid line) hole g-factor as a function of
the in-plane magnetic field angle θzy (dots). θzy = 90◦ corresponds to a magnetic field applied along the y axis. (e) Same as
(d) in the xz plane. θzx = 90◦ corresponds to a magnetic field applied along the x axis.

QD2, under G2. Single-shot readout of this hole spin is performed by means of a spin-to-charge conversion technique
based on the real-time detection of spin-selective tunneling to the Fermi reservoir, a widely used method often referred
to as “Elzerman readout”22. Tunneling events are detected by dispersive rf-reflectometry on the charge sensor (see
Methods and Supp. Info S1 for technical details).

In our device geometry, the first holes primarily accumulate in the upper corners of the Si nanowire23. Figure 1c
displays the expected single hole wave function in QD2, computed with a finite-differences k · p model including
the six topmost valence bands24 (see Supp. Info S2). At low-energy, i.e. close to the valence-band edge, the hole
wave function primarily contains heavy-hole (HH) and light-hole (LH) components. The strong two-axes confinement
readily seen in Fig. 1c favors HH-LH mixing25,26. This mixing is expected to manifest in the anisotropy of the hole
g-tensor, which bears information on the relative weight of HH and LH components27–29. To verify this, we measure
the hole spin resonance frequency fL while varying the orientation of the magnetic field B in the xz and yz planes.
The effective g-factor g = hfL/(µB |B|) (with µB the Bohr magneton and h the Planck constant) is plotted in Figs. 1d
and 1e as a function of the magnetic field angles θzx and θzy, respectively. These maps highlight the strong anisotropy
of the Zeeman splitting, with a maximal g = 2.7 close to the y axis (in-plane, perpendicular to the wire) and a minimal
g = 1.4 close the z axis (in-plane, along the wire). The calculated g-factors are also plotted in the same figures as
colored solid lines. The agreement with the experimental data is remarkable. From the numerical simulation, we
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FIG. 2. Longitudinal spin-electric susceptibility (LSES). (a) Spin-electric susceptibility with respect to VG2 (LSESG2)
as a function of magnetic field angle θzx (symbols), at constant fL = 19 GHz. The LSES vanishes at θzx = 41◦ and 106◦, as
indicated by the two arrows. The solid line corresponds to the numerically calculated LSESG2. (b) (top) Pulse sequence used
to measure LSESG1: a voltage pulse of amplitude δVG1 and duration τZ is applied to G1 during the first free evolution time
of a Hahn-echo sequence. (bottom) Spin-up fraction P↑ as a function of τZ for δVG1 = 2.16 mV (diamonds), 3.12 mV (stars)
and 4.80 mV (squares), at θzx = 90◦. The oscillation frequency varies with δVG1. (c) δVG1 dependence of the frequency shift
extracted from the Hahn-echo measurements at θzx = 0◦, 42◦ and 90◦. Symbols in the latter data set correspond to the P↑
oscillations shown in (b). The solid lines are linear fits to the experimental data whose slope directly yields |LSESG1|. (d)
Measured (symbols) and calculated (solid line) LSESG1 as a function of θzx, at constant fL = 17 GHz. The negative sign of
LSESG1 is inferred from the shift of fL under a change in VG1.

conclude that the measured g-factor anisotropy results from a strong electrical confinement against the side facet of
the channel (along y), which prevails over the mostly structural vertical confinement (along x). The experimental
g-factors and the small misalignment between the principal axes of the g-tensor and the device symmetry axes are best
reproduced by introducing a moderate amount of charge disorder in combination with small (∼ 0.1%) shear strains
in the silicon channel (see Supp. Info S2). The latter likely originate from device processing and thermal contraction
at the measurement temperature30.

LONGITUDINAL SPIN-ELECTRIC SUSCEPTIBILITY

Given that the g-factor anisotropy is intimately related to the HH/LH mixing, which is controlled by the electrostatic
confinement potential, the Larmor frequency is expected to be gate-voltage dependent. As a consequence, the hole spin
coherence must be generally susceptible to charge noise. We thus measure the longitudinal spin-electric susceptibility
(LSES) with respect to the voltages applied to the lateral gate G1 and to the accumulation gate G2, which we define

as LSESG1 =
∂fL
∂VG1

and LSESG2 =
∂fL
∂VG2

, respectively. In essence, LSESG1 and LSESG2 characterize the response of

the Larmor frequency to the electric-field components parallel (z) and perpendicular (x, y) to the channel direction,
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respectively.
To probe the response to G2, we directly measure the spin resonance frequency fL at different VG2 (see Supp. Info

S3 for details). The resulting LSESG2 is plotted as a function of the magnetic field angle θzx in Fig. 2a. The observed
angular dependence is in good agreement with the theoretical expectation.

Noticeably, LSESG2 is positive along x and negative along z. Indeed, when increasing VG2, the hole wave function
extends proportionally more in the yz plane than in the vertical x direction, which increases gx and decreases gy and
gz (see Supp. Info S2). As a result of the sign change, LSESG2 vanishes at two magnetic field orientations in the xz
plane (marked by arrows in Fig. 2a), which are sweet-spots for electric-field fluctuations perpendicular to the silicon
channel.

To probe the response to G1, we introduce a pulse on VG1 in a Hahn-echo sequence4 as outlined in Fig. 2b. This
defines a phase gate, controlled by the amplitude δVG1 and duration τZ of the pulse. Figure 2b displays the coherent
oscillations recorded as a function of τZ for three different pulse amplitudes. The frequency of these oscillations is
expected to increase linearly with δVG1, with a slope LSESG1 = ∂fL

∂VG1
. This is shown in Fig. 2c for different magnetic

field orientations. LSESG1, plotted in Fig. 2d as a function of θzx, ranges from −0.5 MHz/mV to −0.1 MHz/mV.
Its magnitude is much smaller than LSESG2 because G1 is farther from QD2 than G2 and its field effect is partly
screened by the hole gas beneath. The numerically calculated LSESG1 (solid line) reproduces reasonably well the
order of magnitude but not the angular dependence of the measured LSESG1. This discrepancy is likely due to the
unknown charge disorder in the spacer layers between the gates (see discussion in Supp. Info S2). We also notice
that LSESG1 never vanishes and that the minimum of |LSESG1| happens to be almost at the same θzx as a zero of
LSESG2.

COHERENCE TIMES

We now turn to the angular dependence of the hole spin coherence time and investigate its correlation with the
longitudinal spin-electric susceptibility31. To get rid of low frequency noise sources, we measure the coherence time
using a conventional Hahn-echo protocol2. The control sequence, applied to G1 (see upper inset of Fig. 3a), consists
of πx/2, πy and πφ/2 pulses separated by a time delay τwait/2. For each τwait, we extract the averaged amplitude
of the P↑ oscillation obtained by varying the phase φ of the last π/2 pulse, and normalize it to the P↑ oscillation
amplitude in the zero-delay limit. A representative Hahn-echo plot is shown in Fig. 3a. We fit the echo amplitude to
an exponential decay exp(−(τwait/T

E
2 )β), where the exponent β is left as a free parameter. The best fit is obtained

for β = 1.5 ± 0.1, which implies a high frequency noise with a characteristic spectrum S(f) = Shf(f0/f)α, where
f0 = 1 Hz is a reference frequency and α = β − 1 ≈ 0.5 (we note that the same α value was reported for hole spin
qubits in germanium10).

To explore the angular dependence of TE
2 in the xz plane, we measure the decay of the Hahn-echo amplitude for

different values of θzx. The results, shown in Fig. 3b, reveal a strong anisotropy, with TE
2 ranging from 15µs to 88µs.

Strikingly, the spin coherence time peaks at θzx = 99◦, an angle between the minimum of |LSESG1| and a zero of
LSESG2, highlighting a correlation with the correspondingly suppressed electrical noise. The extended coherence time
is much longer than previously reported for hole spin qubits in both silicon and germanium32. In addition, we notice
that spin control remains efficient at all angles including θzx = 99◦, where we could readily achieve Rabi frequencies
as high as 5 MHz limited by the attenuation on the microwave line (see Supp. Info S4).

The observed angular dependence of TE
2 can be understood by assuming that the electrical noise is the sum of

uncorrelated voltage fluctuations on the different gates Gi with respective spectral densities SGi(f) = Shf
Gi(f0/f)0.5.

Given the Hahn-Echo noise filter function, the decoherence rate can then be expressed as (see Supp. Info S5):

1

TE
2

≈ 7.8f
1/3
0

(∑
i

(
∂fL
∂VGi

)2

Shf
Gi

)2/3

. (1)

Using the longitudinal spin-electric susceptibilities from Figs. 2a and 2d and leaving the weights Shf
Gi as adjustable

parameters, we achieve a remarkable agreement with the experimental TE
2 (see colored solid line in Fig. 3b). This

strongly supports the hypothesis that the Hahn-echo coherence time is limited by electrical noise. As already argued
before, LSESG1 and LSESG2 indeed quantify the susceptibility of the hole spin to electric field fluctuations parallel
and perpendicular to the channel, respectively.

The best fit in Fig. 3b is obtained with Shf
G1 = (2.6µV/

√
Hz)2 and Shf

G2 = (0.1µV/
√

Hz)2. We speculate that
the large Shf

G1/S
hf
G2 ratio results from an artificial enhancement of Shf

G1 accounting for hidden sources of electric field
fluctuations along the silicon nanowire. Certainly, Eq. (1) misses the contribution from the electrical noise on G3,
whose LSES could not be measured. For a symmetry reason, we expect LSESG3 to be comparable to LSESG1. A
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FIG. 3. Anisotropy of the hole spin coherence and sweet-spot operation. (a) Normalized Hahn-echo amplitude
vs free evolution time τwait at fL = 17 GHz. The top-right inset sketches the pulse sequence. The down-left inset displays
P↑(τwait = 31.4µs) vs the phase φ of the last π/2 pulse for 100 repetitions. For each τwait, we extract the average amplitude
of the P↑(φ) oscillations and normalize it to the average amplitude in the zero-delay limit. The resulting normalized echo
amplitudes are reported on the main plot. The dashed curve is a fit to exp(−(τwait/T

E
2 )β) with β = 1.5 ± 0.1. (b) Measured

TE
2 vs magnetic field angle θzx (symbols). The solid line is a fit to Eq. (1), using the experimental LSESG1 and LSESG2 from

Figs. 2a and 2d. (c) Normalized CPMG amplitude as a function of free evolution time τwait for different numbers Nπ of π
pulses (curves are offset for clarity). The solid lines are fits to the same exponential decay function as in (a) with β = 1.5. (d)
Extracted TCPMG

2 as a function of Nπ. The dashed line is a linear fit with slope γ = 0.33. The inset sketches the CPMG pulse
sequence: Nπ equally spaced πy pulses between two πx/2 pulses. As for Hahn-echo, we detune the phase of the last pulse.

possible additional source of longitudinal electric field fluctuations is the randomly oscillating charges and dipoles in
the silicon nitride spacers between the gates. They presumably make a large contribution to the apparent Shf

G1 as they
are closer to QD2 and less screened by the hole gas than gate G1 itself.

To further investigate the hole spin coherence, we implemente Carr–Purcell–Meiboom–Gill (CPMG) sequences at
the most favorable field orientation θzx = 99◦. These consist in increasing the number of π pulses cancelling faster
and faster dephasing mechanisms. Figure 3c displays the CPMG echo amplitudes as a function of the total waiting
time τwait for series of Nπ = 2n π pulses, where n is an integer ranging from 1 to 8. The CPMG decay times TCPMG

2

extracted from Fig. 3c (see caption) are plotted against Nπ in Fig. 3d. As expected, the data points follow a power
law TCPMG

2 ∝ Nγ
π , where γ = α

α+1 for a ∝ 1/fα noise spectrum4. The best fit value γ = 0.33 yields again α = 0.5.

For the largest sequence of 256 π pulses, we find TCPMG
2 = 0.4 ms, which is the longest coherence ever reported for

hole spins32.

Finally, to gain insight into the low frequency noise acting on the hole spin, we perform systematic measurements of
the inhomogeneous dephasing time T ∗2 . To this aim, we apply Ramsey control sequences consisting of two π/2 pulses
separated by a variable delay τwait. Contrary to Hahn-echo, the dephasing induced by low frequency noise sources
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FIG. 4. Free induction decay (FID). (a) Collection of 600 Ramsey oscillations as a function of τwait, the free evolution
time between two πx/2 pulses, at θzx = 118◦. The applied microwave frequency is detuned by ∼ 700 kHz from the Larmor
frequency. Each Ramsey oscillation is measured in approximately 5.5 s. (b) Selected averages of Ramsey oscillations taken
over different measurement times: tmeas = 5.5 s corresponding to a single trace (diamonds); tmeas = 27.5 s, corresponding to
5 consecutive traces (circles); tmeas ≈ 1 hour, corresponding to the full set of 600 traces (squares). The solid lines are fits to
Gaussian decaying oscillations. (c) Average T ∗2 versus magnetic field angle θzx for the same three tmeas as in (b) (same symbol
notation). The shaded grey area highlights the standard deviation for tmeas = 5.5 s, while the solid lines are smooth guides to
the eye. Dashed line: calculated dephasing time due to hyperfine interactions (see Supp. Info S7).

is not cancelled due to the absence of the refocusing π pulse. Figure 4a displays P↑ for a series of identical Ramsey
sequences recorded on an overall time frame of one hour, with each sequence lasting approximately 5.5 s. The next
step is to average P↑(τwait) on a subset of consecutive sequences measured within a total time tmeas. This way, an
averaged Ramsey oscillation is obtained for each tmeas, whose amplitude is fitted to a Gaussian-decay function yielding
T ∗2 (tmeas). Representative Ramsey data sets and corresponding fits are shown in Fig. 4b for three values of tmeas.
The inhomogeneous dephasing time decreases with increasing tmeas due to the contribution of noise components with
lower and lower frequency.

To unveil the angular dependence T ∗2 , we repeat the same measurement protocol for different magnetic field orien-
tations. Figure 4c shows T ∗2 (θzx) for three values of tmeas. The anisotropy of the Hahn-echo decay time of Fig. 3b can
still be identified at the shortest tmeas, but it gets progressively washed out as tmeas is increased.

Moreover, if the 1/f0.5 charge noise prevailed over the whole mHz to MHz range, T ∗2 would be ≈ 50µs when
TE
2 ≈ 88µs (see Supp. Info S5), well above the 6µs seen in Fig. 4c. The power spectrum S(f) at low frequency can be

extracted from the data of Fig. 4a (see Supp. Info S6). This reveals a 1/fα noise with α closer to 1, and a power (at
1 Hz) four orders of magnitude larger than the one expected by extrapolating the high-frequency 1/f0.5 noise inferred
from CPMG. The change of color and amplitude of S(f) when going from the mHz to the MHz points to the presence
of different mechanisms dominating the dephasing at low and high frequencies. We note that the T ∗2 ≈ 1 − 2µs
measured at long tmeas is below but fairly close to the expected hole spin dephasing time due to hyperfine interactions
with the naturally present 29Si nuclear spins23 (see the dashed line in Fig. 4c and Supp. Info S7 for details). This
suggests that low-frequency dephasing may be partially due to such hyperfine interactions.

In conclusion, we have reported on the first spin qubit with electrical control and single-shot readout based on a
single hole in a silicon nanowire device issued from an industrial-grade fabrication line. The hole wave function and
corresponding g-factors could be modeled with an unprecedented level of accuracy in these types of devices, denoting
a relatively low level of structural and charge disorder. The hole-spin coherence was found to be limited by a 1/f0.5

charge noise at high frequencies (104−106 Hz), with a strong dependence on the magnetic-field orientation that could
be faithfully accounted for by the spin-electric susceptibilities. A largely enhanced spin coherence was measured at
the sweet-spot angle, far beyond the current state-of-the-art for hole-spin qubits and close to the best reported figures
for electron-spin qubits in 28Si. Our study of the inhomogeneous dephasing time revealed a much stronger noise at
low frequencies (10−4 − 10−2 Hz) which could be partially ascribed to the expected hyperfine interaction. In this
scenario, the possible introduction of isotopically purified silicon devices would lead to significant improvement of
hole-spin coherence in the low-frequency range.
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Methods

Device.
The device is a four-gate silicon-on-insulator nanowire transistor fabricated in an industry-standard 300-mm CMOS

platform11. The undoped [110]-oriented silicon nanowire channel is 17 nm thick and 100 nm wide. It is connected to wider
boron-doped source and drain pads used as reservoirs of holes. The four wrapping gates (G1, G2, G3 and G4) are 40 nm long
and they are spaced by 40 nm. The gaps between adjacent gates and between the outer gates and the doped contacts are filled
by silicon nitride spacers. The gate stack consists of a 6 nm thick SiO2 dielectric layer followed by a metallic bilayer with 6
nm of TiN and 50 nm of heavily doped poly-silicon. The experimental setup used to measure the device is described in Supp.
Info S8.

Dispersive readout.
Similar to charge detection methods recently applied to SOI nanowire devices33,34, we accumulate a large hole island under

the gates G3 and G4, as sketched in Fig. 1a. The island acts both as a charge reservoir and electrometer for the quantum
dot QD2 located under G2. However, unlike the above-mentioned earlier implementations, the electrometer is sensed by
rf dispersive reflectometry on a tank LC resonator connected to the drain rather than to a gate electrode. To this aim, a
commercial surface-mount inductor (L = 240 nH) is wire bonded to the drain pad (see Supp. Info S8). This configuration
involves a parasitic capacitance to ground Cp = 0.54 pF, leading to resonance frequency f = 449.81 MHz. The high value of
the loaded quality factor Q ≈ 103 enables fast, high-fidelity charge sensing. We estimate a charge readout fidelity of 99.6% in
5 µs, which is close to the state-of-the-art for Si MOS devices35. The resonator characteristic frequency experiences a shift at
each Coulomb resonance of the hole island, i.e. when the electrochemical potential of the island lines up with the drain Fermi
energy. This leads to a dispersive shift in the phase φdrain of the reflected radio-frequency signal, which is measured through
homodyne detection (See Supp. Info S1 for details on the spin readout).

Pulse sequences.
For Ramsey, Hahn echo, phase gate and CPMG pulse sequences, we set a π/2 rotation time of 50 ns. The Rabi frequency

being angular dependent, we calibrate the microwave power required for this operation time prior to apply the pulse sequence,
for each magnetic field orientation. We also calibrate the amplitude of the π pulses to achieve a π rotation in 150 ns.

Data availability.
All of the data used to produce the figures in this paper and to support our analysis and conclusions are available upon

reasonable request to the corresponding author.
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Supplementary information for “A single hole spin with enhanced coherence in
natural silicon”

S1. ENERGY SELECTIVE SINGLE SHOT READOUT OF SPIN STATE OF THE FIRST HOLE IN QD2

Figure S.1a displays the stability diagram of the device as a function of VG2 and VG3 when a large quantum dot (acting as
a charge sensor) is accumulated under gates G3 and G4. The dashed grey lines outline the charging events in the quantum
dot QD2 under G2, detected as discontinuities in the Coulomb peak stripes of the sensor dot. Figure S.1b shows a zoom on
the stability diagram around the working point used for single shot spin readout in the main text. The three points labelled
Empty (E), Load (L) and Measure (M) are the successive stages of the readout sequence sketched in Fig. S.1c. The quantum
dot is initially emptied (E) before loading (L) a hole with a random spin. Both spin states are separated by the Zeeman energy
EZ = gµBB where g is the g-factor, µB the Bohr magneton and B the amplitude of the magnetic field. This opens a narrow
window for energy selective readout using spin to charge conversion36. Namely, we align at stage (M) the center of the Zeeman
splitted energy levels in QD2 with the chemical potential of the sensor. In this configuration, only the excited spin up hole
can tunnel out of QD2 while only spin down holes from the sensor can tunnel in. These tunneling events are detected by
thresholding the phase of the reflectometry signal of the sensor to achieve single shot readout of the spin state. Typical time
traces of the reflected signal phase at stage (M), representative of a spin up (spin down) in QD2, are shown in Fig. S.1d.

We used this three stage pulse sequence to optimize the readout. For that purpose, the tunnel rates between QD2 and the
charge sensor were adjusted by fine tuning VG3 and VG4. For the spin manipulation experiment discussed in the main text, we
used a simplified two stages sequence for readout by removing the empty stage. The measure stage duration was set to 200µs
for all experiments, while the load stage duration (seen as a manipulation stage duration) was ranging from 50µs to 1 ms.
In order to obtain the spin-up probability P↑ after a given spin manipulation sequence, we repeated the single-shot readout a
large number of times, typically 100 to 1000 times.

S2. MODELING OF THE g-FACTORS

A. Methodology

The device (Fig. S.2) is modeled as a [110]-oriented rectangular nanowire channel with width W = 100 nm and height
H = 17 nm lying on a 145 nm thick buried oxide (BOX). Four 40 nm long and 50 nm tall front gates, separated by 40 nm
long Si3N4 spacers, are laid across the channel. They are insulated by a 6 nm thick SiO2 layer. Highly doped source and drain
reservoirs (NA = 1020 cm−3) are overgrown at both ends of the channel. The whole device is embedded in a 35 nm thick Si3N4

contact etch stop layer (CESL), and coated with a ' 250 nm thick oxide. The silicon substrate beneath can be used as a back
gate, and a wide metal line above (at the Metal 1 level) as an extra top gate. These top and back gates, as well as the source
and drain are grounded in the simulations.

The potential landscape V (r) in the device is first computed with a finite volumes Poisson solver24. Screening by the holes
accumulated in the source, drain and below the gates G1, G3, and G4 is accounted for in the Thomas-Fermi approximation.
Namely, these accumulations are modeled as locally homogeneous 3D hole gases, with density:

p(r) = NvF1/2 [β (Ev − eV (r)− µ)] , (1)

where F1/2 is a Fermi-Dirac integral, Nv = (3.5× 1015 cm−3.K−3/2)T 3/2 is the effective density of states in the valence band,
Ev−µ is difference between the valence band edge energy and the chemical potential (chosen to match the threshold voltage of
the device), and β = 1/kBT with T the temperature. This equation is solved self-consistently together with Poisson’s equation:

ε0∇εr(r) · ∇V (r) = −e [p(r) + ρtest(r) + ρtrap(r)−NA(r)] , (2)

where ε0εr(r) is the material-dependent dielectric constant, ρtest(r) is a test charge distribution that mimics a single hole within
the dot QD2 under G2, and ρtrap(r) is a distribution of charge traps used to assess the effects of disorder. The test charge
ρtest(r) prevents the Thomas-Fermi density from flooding the dot, as this approximation is notoriously inaccurate in the few
holes regime. The bias voltages are used to set the boundary conditions on the gates.

The test charge distribution ρtest(r) is practically modeled as a homogeneous ellipsoid with total charge +1, centered on the
average position R = (〈x〉, 〈y〉, 〈z〉) of the hole (computed a posteriori from the quantum-mechanical wave functions), with radii

ax =
√

3(〈x2〉 − 〈x〉2), ay =
√

3(〈y2〉 − 〈y〉2), and az =
√

3(〈z2〉 − 〈z〉2). As the potential VQD(r) relevant for the Hamiltonian
of the dot is that of the empty QD2, the self-consistent V (r) is corrected from the contribution of ρtest(r):

VQD(r) = V (r)− Vtest(r) , (3)

where Vtest(r) is the potential created by ρtest(r):

ε0∇εr(r) · ∇Vtest(r) = −eρtest(r) . (4)



9

|  ⟩ ↑ 

|  ⟩ 

↑ 

𝜇𝐹 

𝜇𝐹 

𝜇𝐹 

|  ⟩ ↑ 

|  ⟩ 

↑ 

𝜇𝐹 
|  ⟩ 

↑ 

|  ⟩ ↑ 
|  ⟩ ↑ 

|  ⟩ 

↑ 

|  ⟩ 

↑ 

|  ⟩ ↑ 

-647 -646 -645 -644

-897

-896

-895

-894

-2 0

Control MeasureInit

Vg2

L M E

0 50 100 150
t (µs)

1.5

1.0

0.5

0.0

P
h
a
se

 (
ra

d
)

Spin down
Spin up

N = 0
N = 1

a

c

b

d

Phase (rad)

-800 -750 -700 -650 -600 -550
-1000

-980

-960

N = 2 N = 1

VG2(mV)

V
G

3
(m

V
)

0.000

500.0

N = 0

Load
Measure

Empty

VG2

Time

Phase
(mrad)

VG2(mV)

V
G

3
(m

V
)

FIG. S.1. Single shot spin readout. (a) Stability diagram of the device as a function of VG2 and VG3. The dashed grey
lines are guides to the eye highlighting charge transitions in QD2. The first hole tunnels into QD2 at VG2 ≈ −650 mV. (b)
Zoom on the stability diagram close to the working point used in the main text. The points labelled L (Load), M (Measure)
and E (Empty) are the three stages of the pulse sequence applied to VG2 for spin readout. (c) (Top) Schematic of the three
stages pulse sequence applied to VG2. (Bottom) Schematic energy diagrams at the different stages of the pulse sequence. µF is
the chemical potential of the charge sensor playing the role of reservoir. A random spin is charged during the load stage. At
the measure stage, if the loaded spin is up, the hole is able to tunnel out and is replaced by a spin down. On the opposite, if
the loaded spin is down, tunneling in or out is impossible. Finally, the dot is discharged during the empty stage. (d) Phase
versus time during the measurement stage. The orange curve exhibits a “blip” around t = 50µs, which indicates that the dot
experienced a discharge/charge cycle characteristic of a spin up loading (see c). On the contrary, the red curve shows no phase
change, which can be interpreted as a spin down loading. The phase signal is integrated over 6µs.

As long as the dot and hole gases around remain sufficiently separated, the resulting VQD(r) is only weakly dependent on the
choice of ρtest(r).

The wave functions in the potential VQD(r) are then calculated on the same mesh with a finite differences 6 bands k · p
model24. We use Luttinger parameters γ1 = 4.285, γ2 = 0.339, γ3 = 1.446, split-off energy ∆ = 44 meV and Zeeman parameter
κ = −0.42. As discussed below, the first hole tends to localize in the two top corners of the channel overlapped by gate G2;
However, given the width of the nanowire, an even weak disorder that breaks the symmetry between the left and right sides
of the channel gives rise to two independent and non-degenerate “corner” dots (see discussion below)23. The g-tensor of the
ground-state is finally computed along the lines of Ref.24.

B. Discussion

If the device was “planar”, the hole would be confined at the top (001) facet of the channel by the quasi-vertical electric field
of gate G2. It would, therefore, show the fingerprints of an almost pure (001) heavy-hole, with a large gx ' −6κ+ 2γh ' 4.84,
and small gy and gz characteristic of the weak heavy-hole/light-hole mixing induced by the soft lateral confinement (γh = 1.16
being a correction that describes the heavy-hole/light-hole mixing by the magnetic vector potential)26.

As the gate layout is actually non-planar, there is a also significant in-plane electric field component that drives the hole to
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FIG. S.2. Modeled structure. The 17 nm thick and 100 nm wide silicon channel is connected to highly doped source and
drain reservoirs and controlled by four gates G1...G4. The substrate below the BOX and the top gate above the structure (at
the Metal 1 level) are grounded.

the lateral {110} facets. Given the width of the device, the hole is very responsive to that lateral electric field, and gets readily
squeezed near one of the top corners of the channel, in a dot with comparable vertical and lateral extensions. This admixes a
light-hole envelope into the hole wave function, which results in a decrease of gx (∂gx/∂VG2 > 0) and an increase of gy and gz
(∂gz/∂VG2 < 0)26,37. This is evidenced in Fig. S.3, in a simpler setup with no hole gases under G1, G3 and G4. The mixing is
particularly strong here because the structural vertical confinement is weak (H = 17 nm) so that the heavy-hole/light-hole gap
is small. The g-factors (especially gx and gy) tend to saturate rapidly with increasingly negative VG2 as the heavily squeezed
hole responds less and less to the (vertical and lateral) electric fields (|∂gx/∂VG2| � |∂gz/∂VG2|).

Once screening by the holes gases is accounted for, the lateral electric field is however too weak to match the measured
g-factors at the experimental bias point. This is highlighted in Fig. S.4, where the symbols are the experimental g-factors and
the dashed lines are the calculated ones. gy remains actually smaller that gx (at θzx = θzy = 90◦). This discrepancy may result
from inaccuracies in the Thomas-Fermi screening, and (more likely) from disorder. In particular, holes in the channel may be
captured by traps at the Si/SiO2 interface (Pb defects)38, and holes in the poly-silicon gates by traps in the Si3N4 spacers.
Such positively charged traps tend to strengthen confinement in the corners. We can achieve similar g-factors with different
combinations of Pb and bulk defects densities; the data displayed in the main text and in Fig. S.4 (solid lines) are computed
with a density σtrap = 5 × 1010 Pb defects/cm2 at the Si/SiO2 interface and a density ρtrap = 5 × 1017 traps/cm3 in Si3N4.
This σtrap is typical of Si/SiO2 interface, while the chosen ρtrap does not seem unrealistic given the known affinity of nitrides
for charges39. The model reproduces the main features of the experimental data – including the magnitude of the g-factors and
the overall dependence of fL on VG1 and VG2 (Fig. 2 of the main text). Note that the action of VG1 is strongly screened by
the hole gas beneath. In the absence of such screening and disorder, most electric field lines connect gate G2 to gates G1 and
G3, so that the Larmor frequency of the hole is primarily a function of VG2− (VG1 +VG3)/2, and ∂fL/∂VG1 ≈ −(∂fL/∂VG2)/2
(LSESG1 and LSESG2 have nearby zeros).

The traps are introduced as a random distribution of point charges at the Si/SiO2 interface and in Si3N4. This gives rise
to variability in the g-factors and in their derivatives (dependence on the particular realization of the disorder38). This is
outlined in Fig. S.5, which shows the g-factors calculated in 50 devices with different samples of disorder. For the sake of
completeness, interface roughness is also included in Figs. S.4, S.5, and in Figs. 1 and 2 of the main text. It is characterized
by rms fluctuations ∆ = 0.3 nm and correlation length Lc = 8 nm38. Fourty-four out of the 50 devices still show g-factors in
reasonable agreement with the experiment. In the 3 devices featuring large gx and small gy, the hole remains squeezed at the
top interface by a Pb defects near the corners. The variability is stronger for ∂fL/∂VG2, and especially for ∂fL/∂VG1. Although
the agreement with theory is not perfect, the measured ∂fL/∂VG1 < 0 whatever θzx suggests the presence of a charged Pb
defect in the vicinity of gate G2 that shifts the dot at least 10 nm towards gate G3. Alternatively, the dot might be shifted
towards gate G3 by residual in-plane electric fields not accounted for accurately by the Thomas-Fermi approximation.

Choosing [001] as the quantization axis, the hole wave function is a strong mixture of heavy (≈ 54% |3/2,±3/2〉[001]) and light

(≈ 43% |3/2,±1/2〉[001]) envelopes (the reminder being a split-off component). Choosing instead y = [110] as the quantization
axis, the hole appears as a majority ≈ 85% |3/2,±3/2〉[110] envelope admixed with a minority ≈ 12% |3/2,±1/2〉[110] component.
The measured and computed gy > gx is the salient fingerprint of the prevalence of |3/2,±3/2〉[110] over |3/2,±3/2〉[001] com-
ponents. The confinement being comparable along x and y, the hole actually appears purest when quantized along z = [110],
where it stands as a ≈ 90% |3/2,±1/2〉[110] envelope (as expected from gz < gx, gy)25.

We now discuss the remaining discrepancies with the experiment. The principal axes X, Y , Z of the calculated g-tensor are
almost perfectly aligned with the device x, y and z axes, whereas those of the experimental g-tensor are slightly rotated [by
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FIG. S.3. Dependence of the g-factors on the electric field. (a) g-factors gx, gy, and gz as a function of the difference
of potential −VG2 between gates G2 and gates G1 and G3 (both grounded). The larger −VG2, the stronger the vertical and
lateral electric fields. (b, c) Maps of the squared wave functions in the cross section of the channel below gate G2, at the biases
marked with an orange pentagon and a purple star in (a). The channel is colored in white, the gate G2 in gray and SiO2 in
light blue. In these calculations, the density of traps ρtrap(r) is zero, except for a single positive charge on the left facet of the
channel [red dot in (b, c)] introduced to lift the degeneracy between the left and right corner dots. The screening by the hole
gases is also discarded (no hole accumulations anywhere).

≈ 10◦ around x (xyz → xY z′), then ≈ −25◦ around Y (xY z′ → XY Z)]. The calculated g-factors shown in Figs. 1 and 2 of
the main text, and in Figs. S.4 and S.5 have been transformed accordingly as if these rotations resulted from a misalignment
of the sample with respect to the magnet axes. However, the large rotation around Y can hardly be accounted for by such
a misalignment only. The fact that Z is not aligned along the channel implies a loss of the xy quasi-symmetry plane of gate
G224, and the existence of additional heavy-hole/light-hole mixing mechanisms. The most likely scenario is that QD2 is slightly
displaced towards G3 (as suggested above), and experiences small process and cool-down strains24,30. In particular, shear
strains control the phase of the heavy-hole/light-hole mixing matrix elements. In the basis set and axes set of Ref.26, they give
rise to non-diagonal corrections to the g-matrix:

δgzy ≈
4
√

3κd

∆
εyz, δgzx ≈

4
√

3κd

∆
εxz, δgxy = −δgyx ≈ −

12κb

∆
εxy , (5)

where b = −2.1 eV and d = −4.85 eV are the uniaxial and shear deformation potentials of the valence band of silicon, and ∆
is the heavy-hole/light-hole gap. Therefore, the shear strains εyz, εxz, and εxy drive rotations of the principal magnetic axes
around x, y and z respectively. We can recover the experimental rotations assuming small εyz ' 0.035% and εxz ' 0.080%,
which highlights the sensitivity of such quantum devices to residual strains24,30,40. Note that the possible rotation of the
principal axes around z can not be resolved since the g-factors have not been measured in the xy plane (but may improve the
overall agreement between theory and experiment, in particular for LSESG1); The detailed assessment of strains in such complex
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FIG. S.4. Comparison between the experimental and calculated g-factors. The g-factors are plotted in the xz (red)
and yz (blue) planes, as a function of the angles θzx and θzy, respectively. The symbols are the experimental data; the dotted
lines the data calculated in the pristine device; and the solid lines the data calculated in a device with interface roughness and
charged traps at the Si/SiO2 interface and in Si3N4 (see text). These traps tend to strengthen confinement on the lateral facet.
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FIG. S.5. Variability of the calculated g-factors. Same as Fig. S.4; Each line is a different realization of the interface
roughness and charge disorder. The interface roughness rms is ∆ = 0.3 nm and the correlation length is Lc = 8 nm38; The
density of positively charged traps is σtrap = 5× 1010 cm−2 at the Si/SiO2 interface, and ρtrap = 5× 1017 cm−3 in Si3N4.

nanostructures is, however, difficult (in particular in the nitrides), and goes beyond the scope of this work. Since uniaxial and
shear strains rule the heavy-hole/light-hole mixing together with confinement, they can in principle help reduce the lateral
confinement, hence the disorder needed to reach agreement with the experimental g-factors. We emphasize, though, that the
dot becomes much more responsive to G2 once deconfined from the corner, so that ∂fL/∂VG2 increases significantly. Therefore,
the magnitude of the experimental ∂fL/∂VG2, as well as the fact that the experimental g-factors match the saturation values
calculated at large gate voltage (Fig. S.3), support pretty strong confinement in the corner and small strains.

To conclude, the present model captures and explains the most salient features of the experiment: the anisotropy of the
g-factors, gy > gx > gz, and of ∂fL/∂VG2 result from the balance between vertical and lateral confinement in the corner dot
of a “thick” silicon film; ∂fL/∂VG1 is strongly screened by the hole gas accumulated under gate G1 and is, therefore, much
smaller (in magnitude) than ∂fL/∂VG2. The remaining discrepancies (in particular the rotation of the principal axes of the
g-tensor) are attributed to residual process and cool-down strains and to possible inaccuracies in the description of screening.

Since gx saturates faster than gz with increasing electric field (Fig. S.3), the magnetic field orientations θzx at which
∂fL/∂VG2 = 0 depend on the strength of the electric field, and in particular on the ratio between the lateral and vertical
components. This ratio can be controlled in an alternative “face-to-face” layout where G2 is split in two independent gates
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G2L and G2R that overlap the left (L) and right (R) corners respectively41. G2R can then be used to strengthen the lateral
electric field in the left dot. This opens interesting opportunities for the exploration of the manipulation, lifetimes and physics
of hole spins.

S3. LSES WITH RESPECT TO GATE 2 (LSESG2)

To measure LSESG2, we apply a two stage sequence (Initialisation/Measure and Control) on MW2 while bursting for 5µs on
MW1 to drive coherent spin rotations (see Fig. S.6a). We record the oscillations of P↑ (averaged over 200 pulse sequences) as
a function of the MW1 burst frequency fMW1 (Fig. S.6b), and fit with a Rabi chevron model to extract the Larmor frequency
fL.
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FIG. S.6. Measurement of LSESG2. (a) Schematic representation of the pulse sequence used to monitor spin resonance.
We burst on MW1 for 5µs and average P↑ over 200 such sequences. (b) Average P↑ (Blue dots) versus MW1 burst frequency
at Vplunge = −1 mV. This plot is in essence a line cut of a Rabi chevron at tburst = 5µs. The red dashed line is a fit used to
extract the Larmor frequency. (c) Tracking of fL as a function of Vplunge. The dashed blue line is a linear fit whose slope is
equal to LSESG2.

We repeat the experiment for different Vplunge, and obtain the map of Fig. S.6c, where LSESG2 = ∂fL/∂Vplunge is the slope
of the dashed blue line. Note that the Rabi frequency also depends on Vplunge.

S4. RABI OSCILLATIONS AT THE SWEET SPOT

Sweet spots for coherence may result from a simple zero of the longitudinal spin-electric susceptibility, or from the complete
decoupling of the hole from the electric field (for example if the wave function becomes centrosymmetric24). In the latter case,
Rabi oscillations (transverse spin-electric susceptibility) are also impossible. Figure S.7 demonstrates that the hole can still be
manipulated electrically near the sweet spot for coherence at θzx = 99◦. In the experiment reported in the main text, the hole
is driven by a microwave burst on gate G1. The Rabi frequency is found dependent on the magnetic field orientation (data
not shown here), with a minimum around the sweet spot, where the hole spin still rotates up to FRabi = 5 MHz for an applied
power of 20 dBm on top of the MW1 line. A microwave burst on gate G2 also enables spin rotation up to ∼ 3 MHz at the
sweet spot (see Fig. S.7d). However, we speculate that the Rabi frequency is only limited by the available microwave power
and the line attenuation, since we do not observe any saturation with increasing power. After conversion of the microwave
power into gate voltage amplitudes, we find that the driving efficiency is much larger on gate G2 (FRabi = 7.6 MHz/mV) than
on gate G1 (FRabi = 1.2 MHz/mV), which suggests that the spin could be rotated much faster by reducing the attenuation on
the MW2 line.



14

a

c d

b

4 2 0 2 4
f (Hz)

0

1

2

3

4

5

b
u
rs
t
(
s)

0 2.5 5.0 7.5 10.0 12.5 15.0
PMW1 (dBm)

0

1

2

3

4

5

b
u
rs
t
(
s)

0.0 0.2 0.4 0.6
P

0.0 0.2 0.4 0.6
P

0.0 0.5 1.0 1.5 2.0 2.5
VMW1 (mV)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

F R
ab
i
(M
H
z)

1.0 7.0 10.5 13.0 14.9
PMW1 (dBm)

0.0 0.1 0.2 0.3 0.4
VMW2 (mV)

0.0

0.5

1.0

1.5

2.0

2.5

3.0
F R
a
b
i
(M
H
z)

3.0 9.0 12.5 15.0
PMW2 (dBm)

FIG. S.7. Electrical spin driving at the coherence sweet spot (a) Chevron pattern at θzx = 99◦ recorded with the same
pulse sequence as in Fig. S.6a. P↑ is plotted versus MW1 detuning from spin resonance (∆f = fMW1 − fL) and MW1 burst
duration τburst. The Larmor frequency is fL = 17 GHz and the MW1 power on top of the fridge is PMW1 = 5 dBm. (b) P↑
versus PMW1 and τburst for ∆f = 0. (c) Rabi frequency extracted from (b) versus MW1 amplitude on chip (symbols) assuming
30 dB attenuation from attenuators and 30 dB loss from cables at low temperature. The top axis is the power delivered on
top of the fridge. The dashed line is a linear fit with slope FRabi = 1.2 MHz/mV, which evidences the absence of saturation at
least up to 3 MHz. (d) Same as (c) but driving the spin using G2. The attenuation is larger on this line (46 dBm), so that the
Rabi oscillations are actually 6 times faster on G2 (slope FRabi = 7.6 MHz/mV) than on G1.

S5. PURE DEPHASING WITH UNCORRELATED NOISE SOURCES

The hole can generally be described as an effective spin 1/2 with Hamiltonian28

Hs = S · ωL(VG) . (6)

Here S = ~
2
σ is the spin 1/2 operator and ωL(VG) = µB

~ g(VG) · B stands for the spin precession (Larmor) vector,

proportional to the product of the voltage-dependent g-tensor (or g-matrix42) g(VG) with the external magnetic field B.
VG = (VG1, VG2, . . . , VGn) is the set of voltages on gates G1, G2, . . . , Gn. Each can be split into static and dynamical con-
tributions VGi(t) = V 0

Gi + δVGi(t), V0
Gi being the bias voltage on gate Gi and δVGi(t) the voltage noise responsible for qubit

relaxation and decoherence.

The gate voltage noise introduces a random component δφ(t) to the qubit phase φ(t) = 2πfLt+δφ(t), where fL = µB
h
| g(V0

G)·



15

B| is the Larmor frequency. After free evolution over time t the accumulated random phase reads at first order in the noise43,44:

δφ(t) = 2π

∫ t

0

dt′ δfL(t′) = 2π

∫ t

0

dt′
∑
i

DGiδVGi(t
′) . (7)

where DGi = ∂fL/∂V
0
Gi is the LSES of gate Gi. More generally, for a dynamical decoupling pulse sequence the accumulated

phase is:43–47

δφ(t) = 2π

∫ +∞

−∞
dt′
∑
i

DGiδVGi(t
′) ηt(t

′) , (8)

where the function ηt(t
′) describes the effects of the pulse sequence performed over time t. In particular, for free induction

decay (Ramsey experiment),

ηt
R(t′) =

{
1 if 0 < t′ < t,

0 otherwise ,
(9)

and for a CPMG sequence with Nπ π-pulses48:

ηt
CPMG(t′) =

Nπ∑
k=0

(−1)kθ(tk+1 − t′)θ(t′ − tk) , (10)

where θ is the Heaviside function, tk = (k−1/2)t/Nπ for k = 1, . . . , Nπ, and by definition48 t0 = 0 and tNπ+1 = t. The Ramsey
and the Hahn echo experiments are particular cases of the CPMG sequence with Nπ = 0 and Nπ = 1 respectively.

The dephasing experienced by the spin as a consequence of voltage noise is characterized by the decay of the off-diagonal
element of the spin density matrix in the rotating frame44:

〈ρ̃01〉(t) = ρ̃01(0)〈eiδφ(t)〉 = ρ̃01(0)e−
1
2
〈δφ2(t)〉 , (11)

where 〈·〉 denotes an ensemble average (over the random processes), and, for the general pulse sequence:

〈δφ2(t)〉 = 4π2

∫ +∞

−∞
dt′
∫ +∞

−∞
dt′′

∑
i,j

DGiDGj 〈δVGi(t
′)δVGj(t

′′)〉 ηt(t′) ηt(t′′) . (12)

Under the assumptions that the noise on the different gates are independent, and that their respective auto-correlation functions
are homogeneous in time, we reach in frequency domain:

〈δφ2(t)〉 = 4π2

∫ +∞

−∞
df
∑
i

D2
GiSGi(f) |η̃t(f)|2 , (13)

where SGn(f) =
∫ +∞
−∞ dt e−2iπft 〈δVGn(t)δVGn(0)〉 is the Fourier transform of the auto-correlation function of the noise on gate

Gn (the power spectrum according to the Wiener-Khinchin theorem), and η̃t(f) =
∫ +∞
−∞ dt e−2iπft ηt(t). Eq. (13) can also

be formalized using the filter function concept44,48,49. We analyze below the different pulse sequences relevant for the present
experiments.

A. Free induction decay

For the Ramsey sequence we have ∣∣∣η̃tR(f)
∣∣∣2 =

(
sin(πft)

πf

)2

. (14)

Therefore,
∣∣η̃tR(f)

∣∣2 /t2 is close to unity up to |f | ∼ 1/t ∼ 1/T ∗2 , so that free induction decay is sensitive to noise in this

whole range of frequencies. For low-frequency noise spectra of the form SGi(f) = Slf
Gi f0/max(|f |, fl) together with a (soft)

high-frequency cutoff fh, we get in the regime 2πfl � 2πfh � 1/t:

exp

(
−1

2
〈δφR(t)2〉

)
≈ exp

[
−4π2t2 ln

(
fh
fl

)
f0
∑
i

D2
Gi S

lf
Gi

]
≡ exp

[
−
(
t

T ∗2

)2
]
, (15)

with43:
1

T ∗2
≈ 2π

√
ln

(
fh
fl

)
f0
∑
i

D2
Gi S

lf
Gi . (16)

As shown in the main text (Fig. 4), the averaged T ∗2 decreases with increasing tmeas ∼ 1/(2πfl) as the experiment probes
smaller and smaller noise frequencies.
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We can also estimate the contribution of higher frequency noises with spectra SGi(f) = Shf
Gi

√
f0/f . The Ramsey oscillations

then decay as exp(− 1
2
〈δφR(t)2〉) = exp(−(t/T ∗2,hf)

3/2), where we define:

1

T ∗2,hf
=

(
16π2

3
f
1/2
0

∑
i

D2
Gi S

hf
Gi

)2/3

≈ 14

(
f
1/2
0

∑
i

D2
Gi S

hf
Gi

)2/3

. (17)

The low-frequency and high-frequency contributions to the decay of the Ramsey signal cross over at time t∗ = T ∗2 (T ∗2 /T
∗
2,hf)

3 �
T ∗2 when T ∗2 � T ∗2,hf , and the decay is dominated by the low-frequency noise when t� t∗.

B. Hahn Echo sequence

For the Hahn echo sequence, ∣∣∣η̃tE(f)
∣∣∣2 =

sin4(πft/2)

(πf/2)2
. (18)

Therefore, the integrand in Eq. (13) is small at frequencies |f | � 1/t and the integral is dominated by the region around
f∗ = 2/(πt) (with extent ∼ f∗). f∗ is of the order of 10− 100 kHz for Hahn-echo sequences with total length t = 10− 100µs.
If in this range of frequencies the noise spectra are of the form SGi(f) = Shf

Gi(f0/f)α (0 < α ≤ 2 typically), then:

exp

(
−1

2
〈δφE(t)2〉

)
= exp

(
−Cα(2πt)α+1fα0

∑
i

D2
Gi S

hf
Gi

)
≡ exp

[
−
(

t

TE
2

)α+1
]
, (19)

where Cα = 2 sin(απ
2

)(21−α − 1)Γ(−1− α), with Γ the Gamma function50, and:

1

TE
2

= 2π

(
Cαf

α
0

∑
i

D2
Gi S

hf
Gi

) 1
α+1

. (20)

In the particular case α = 0.5 (see main text), C0.5 = 4
√
2π
3

(21/2 − 1) ≈ 1.38, so that:

1

TE
2

≈ 7.8

(
f
1/2
0

∑
i

D2
Gi S

hf
Gi

)2/3

. (21)

The Hahn echo TE
2 and Ramsey T ∗2,hf [Eq. (17)] are thus proportional. Therefore, one would expect T ∗2,hf ' 50µs at θzx = 99◦

where TE
2 ' 90µs if the limiting noise mechanisms were the same at low and high frequency. The much shorter T ∗2 measured

in the present device hence support the existence of additional noise sources at low frequency.

C. CPMG sequence

For the more general CPMG sequence48,51 with noise spectra Shf
Gi(f0/f)α over extent ∼ 1/t around the frequency fNπ =

Nπ/(2t) ∼ Nπ/(2TCPMG
2 ), we get the scaling

〈δφ2(t)〉 ∼ tα+1N−απ fα0
∑
i

D2
Gi S

hf
Gi , (22)

so that 〈δφ2(t)〉 ∼ (t/TCPMG
2 )α+1, with:

TCPMG
2 ∼ Nγ

π f
−γ
0

(∑
i

D2
Gi S

hf
Gi

)− 1
α+1

(23)

and γ = α/(α+ 1), in agreement with Ref. 51.

S6. NOISE SPECTRUM

We measured 3700 Ramsey fringes over ttot = 10.26 hours. For each realization, we varied the free evolution time τwait up
to 7µs, and averaged 200 single shot spin measurement to obtain P↑ (see Fig. S.8a (top)). The fringes oscillate at the detuning
∆f = |fMW1 − fL| between the MW1 frequency fMW1 and the spin resonance frequency fL. In order to track low frequency
noise on fL, we make a Fourier transform of each fringe and extract its fundamental frequency ∆f reported in Fig. S.8a
(bottom). During the whole experiment, fMW1 is set to 17 GHz.
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The low frequency spectral noise on the Larmor frequency (in units of Hz2/Hz) is calculated52 from ∆f(t) as4:

SL =
ttot |FFT[∆f ]|2

N2
, (24)

where FFT[∆f ] is the fast Fourier transform (FFT) of ∆f(t) and N is the number of sampling points. We observe that the low
frequency noise, plotted in Fig. S.8b, behaves approximately as SL(f) = Slf(f0/f) with Slf = 109 Hz2/Hz, which is comparable
to what has been measured for a hole spin in natural Germanium53.
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FIG. S.8. Noise spectrum (a) (top) Ramsey fringes as a function of τwait acquired during 10 hours, at θzx = 90◦. Each fringe
oscillates at the frequency ∆f = fMW1 − fL. A single fringe takes roughly 10 s to record. (bottom) ∆f , obtained via Fourier
transform of the Ramsey fringes, versus laboratory time. (b) Power spectral density of the noise on the Larmor frequency. The
low frequency spectrum (RF) is calculated from (a) and is roughly proportional to 1/f , as outlined by the upper dashed line.
The high frequency spectrum (colored dots) is extracted from CPMG measurements with Nπ from 2 to 256, and is proportional
to 1/f0.5 (lower dashed line).

To further characterize the noise spectrum, we add the CPMG measurements as colored dots on Fig. S.8b4:

SL (Nπ/(2τwait)) = − ln(ACPMG)

2π2τwait
, (25)

where ACPMG is the normalized CPMG amplitude. As discussed in the main text, the resulting high frequency noise scales as
Shf(f0/f)0.5, where Shf = 8 × 104 Hz2/Hz is four orders of magnitude lower than Slf . This high frequency noise appears to
be dominated by electrical fluctuations (as supported by the correlations between the Hahn-echo/CPMG T2 and the LSESs),
whereas additional quasi-static contributions, including hyperfine interactions (see section S7), prevail at low frequency.

S7. HYPERFINE INTERACTION LIMIT FOR THE INHOMOGENEOUS DEPHASING TIME

The hyperfine interactions between the hole and the N nuclei spins are described by the following Hamiltonian54,55:

Hint =
A

2n0

N∑
n=1

δ(r−Rn)⊗ J · In , (26)

where A is the hyperfine coupling constant, n0 is the density of nuclei in the crystal, In is the spin operator of nuclei n at
position Rn, and J is the angular momentum operator acting on the J = 3/2 Bloch functions of the heavy and light holes
(whereas the δ(r−Rn) acts on the envelopes). We discard here the small contributions from the split-off J = 1/2 components
as well as the small ∝ J3

x , J
3
y , J

3
z corrections arising from the cubic symmetry of the crystal54.

Let |↑〉 and |↓〉 be the pseudo-spin states of the dot at a given magnetic field, and |ψnucl〉 be the nuclear configuration. The
first-order correction to the Larmor energy εL = hfL is:

δεL =
A

2n0

N∑
n=1

〈ψnucl| In |ψnucl〉 ·
(
〈↑| δ(r−Rn)⊗ J |↑〉 − 〈↓| δ(r−Rn)⊗ J |↓〉

)
. (27)
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We next average over the nuclei configurations assuming uncorrelated and unpolarized nuclear spins with Gaussian-distributed
quasi-static fluctuations56. The variance of δεL is then:

〈
δε2L
〉

=
A2

4n2
0

N∑
n=1

〈
I2x
〉
δJ2
x(Rn) +

〈
I2y
〉
δJ2
y (Rn) +

〈
I2z
〉
δJ2
z (Rn) , (28)

where, for α ∈ {x, y, z}:
δJα(Rn) = 〈↑| δ(r−Rn)⊗ Jα |↑〉 − 〈↓| δ(r−Rn)⊗ Jα |↓〉 , (29)

and
〈
I2x
〉

=
〈
I2y
〉

=
〈
I2z
〉

= I(I + 1)/3. Taking a second average over nuclei spin distributions, and assuming slowly varying
envelope functions, we reach: 〈〈

δε2L
〉〉

=
A2

12n0
I(I + 1)ν

(
δJ2
x + δJ2

y + δJ2
z

)
, (30)

where ν is the fraction of nuclei carrying a spin, and:

δJ2
α =

∫
d3R δJ2

α (R) . (31)

Finally, the rate of inhomogeneous dephasing due to hyperfine interactions is57,58:

Γ∗2 =
1

T ∗2
=

√
〈〈δε2L〉〉√

2~
=
|A|
2~

√
νI(I + 1)

6n0

(
δJ2
x + δJ2

y + δJ2
z

)1/2
. (32)

The above expression can be evaluated with the 6 bands k · p wave functions computed in section S2. For silicon, we use
n0 = 49.94 nm−3, as well as ν = 4.7%, I = 1/2, and |A| = 1.67µeV for 29Si isotopes55. This value of |A| was specifically
computed for holes with ab initio density functional theory59. The resulting T ∗2 , plotted as a dashed line in Fig. 4 of the main
text, is minimal when the magnetic field B is along y, and maximal when it is in the xz plane, as expected for a carrier that
shows the strongest heavy-hole character when J is quantized along y. T ∗2 is weakly dependent on the angle θzx, and is around
2.4µs in the xz plane.

S8. SETUP

We operate in a dilution refrigerator system equipped with a three-axis vector superconducting magnet. However, one of
the axis was broken during the experiment. Therefore, after recording Fig. 1d of the main text, the sample was warmed up,
physically rotated by 90◦, and cooled down again to record Fig. 1e. The main solenoid magnet produces a magnetic field of up
to 6 T in the z direction, while both transverse Helmholtz coils ramp up to 1 T in the x and y directions. The electrical lines
connecting the sample are displayed in Fig. S.9. 24 twisted pairs are filtered at the mixing chamber by 6 low pass filters. The
DC gate voltages are generated by Itest high stability voltage sources (BE2141). To perform charge and spin manipulation,
semi-rigid coaxial lines with 20 GHz bandwidth are routed to G1, G2 and G3 using on-PCB bias tees. Microwave frequency
signals are supplied by a vector signal generator (R&S SMW200A) with IQ modulating signals originating from two channels
of an arbitrary waveform generator (AWG) Tektronix AWG5200. Other channels of the AWG are used to generate the pulse
sequences. The homodyne readout of the resonator connected to the drain electrode is performed with a Zurich Instrument
UHFLI lock-in with an excitation power of −105 dBm at the PCB stage. The reflected signal from the resonator is amplified
at 4 K with an ultra-low noise cryogenic amplifier LNF-LNC0.2-3A.
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Braakman, “Ultrafast hole spin qubit with gate-tunable spin–orbit switch functionality,” Nature Nanotechnology 16, 308
(2021).

[19] G. Scappucci, C. Kloeffel, F. A. Zwanenburg, D. Loss, M. Myronov, J.-J. Zhang, S. De Franceschi, G. Katsaros, and
M. Veldhorst, “The germanium quantum information route,” Nature Reviews Materials 6, 926 (2020).
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