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Introduction and summary

Introduction

Study of light-matter interaction with circuits

Understanding the underlying mechanism in the interaction between light and
matter has been a fundamental part of physics since its beginning. From geomet-
rical optics to electromagnetism, every new discovery gave rise to a different way
of understanding nature. In quantum physics the introduction of the idea of the
photon and its role in the excitation and relaxation of atoms set the foundations of
the study of light-matter coupling at its most fundamental level.

A system composed of an atom coupled to a single electromagnetic mode
of frequency ω0 represents the most standard model in quantum optics1. The
research field treating this type of system is called Cavity Quantum ElectroDy-
namics (cqed) because of the optical cavities used in the experiments to “trap”
photons inside. Whenever the mode is nearly resonant with one atomic transition
of frequency ωq, the atom can be modeled as an effective two-level system whose
energy splitting is given by ωq. There is an exchange of energy between the two
systems, the atom and the em mode. This energy exchange is related to the light-
matter coupling strength g. The system dynamics is governed by the strength of
this coupling g compared to the other energy scales in the system, ω0 and ωq. In
natural systems g is related to the fine structure constant α ∼ 1/137 which, as a re-
sult, limits the strength of this coupling. Given its weakness, it is common in these
systems to perform the Rotating Wave Approximation (rwa) where effects such
as the simultaneous creation (annihilation) of a photon and the excitation (relax-
ation) of the atom can be neglected. Within this approximation and whenever the
coupling strength g overcomes the losses in the system, it is possible to observe
a coherent exchange of energy between the atom and the em mode in an oscilla-
tory fashion: the atom relaxes emitting a photon into the mode that eventually is
absorbed back by the atom exciting it, the so called Rabi oscillations.

In the last decade, the study of light-matter interaction has seen an incred-
ible development thanks to the introduction of superconducting circuits2. Nat-
ural atoms are replaced by superconducting qubits that couple to the em field
inside microwave transmission lines and resonators. Due to the similarity with
cqed this field was called Circuit Quantum ElectroDynamics (Circuit qed). Apart
from its wide use in quantum computation3 and quantum information4, super-
conducting circuits enable the exploration of light-matter coupling beyond the
rwa approximation, a regime unreachable with natural atoms. In this regime ex-
otic phenomena such as quantum phase transitions5 and photonic population
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Introduction and summary

of the ground state6 take place. There are three factors affecting the coupling
strength g. First, the dipole moment of the atom. Superconducting circuits have
a larger dipole moment than natural atoms due to their larger size. Second, the
field dimension. In the integrated circuits used in Circuit qed the field propa-
gates in one dimensional transmission lines which enhances the coupling com-
pared to the three dimensional confinement of their cqed counterpart. Third, the
vacuum fluctuations of the electromagnetic field. This fluctuations are related to
the impedance of the environment Z0. They scale as 1/

√
Z0 for magnetic cou-

pling and as
√

Z0 for electric coupling7,8. By engineering the proper impedance
Z0 one can increase the coupling strength several orders of magnitude compared
to cqed systems. First experiments showing coherent coupling within the rwa be-
tween a superconducting qubit and a photonic mode used microwave resonators
to enhance this coupling9,10,11,12,13. Soon after, thanks to the optimization of the
qubit-resonator coupling, experimental observations of the break down of the rwa

were reported14,15,16. This coupling regime was named ultra-strong coupling regime.
In addition, quantum simulations of these systems have shown the qubit-photon
entanglement of the ground state17 and the system dynamics18 beyond the rwa.
Despite the great advances obtained in these experiments, the use of microwave
resonators limited the measured systems to a two-body problem where only two
electromagnetic modes interact, the one from the qubit and the one from the mi-
crowave resonator.

Many-body systems in Circuit qed

Many-body problems are ubiquitous in nature due to the fact that no system is
ever fully isolated from its environment. Moreover, many-body systems are at
the core of condensed matter physics. Therefore, understanding how these sys-
tems behave in a controlled environment is highly relevant for nowadays research.
Given the versatility of Circuit qed architectures they are one of the best candi-
dates to study these problems.

Until now we have introduced the idea of light-matter coupling with one atom
and one electromagnetic mode. With an increasing number of modes we can enter
the realm of many-body physics. More modes does not necessarily mean that the
atom is interacting with several of them. If the coupling is weak, the atom will
only interact with the mode it is resonant with. One would need a strong enough
coupling for the atom to interact with more than one mode at once. Here we give
some conditions that ensure that a system can be viewed as a many-body system.

In a multi-mode system, the atom couple to each of the modes of the environ-
ment ωk via a coupling strength gk, where k indicates the mode index. Whenever
the atom is resonant with any of the modes, a mode splitting of ∼ 2gk occurs.
If this mode splitting is big enough it will involve several modes. Therefore, in
order to have a many-body system it is necessary for the coupling strengths gk to
be in the order of the Free Spectral Range of the environment (fsr = ωk − ωk−1
). In addition, for the qubit to behave as a nonlinear system, it is important for
its nonlinearity to be at least in the order of the fsr. In this way, the effect of the
nonlinearity will not be seen as a perturbation to the system. Finally, in order to
observe nontrivial effects, it is important for the system to be beyond rwa, that is,
the coupling strength should be comparable to the qubit frequency. This regime
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is named ultra-strong coupling regime. We can summarize these conditions as:

— The environment the qubit couples to contains several modes ωk.

— These modes are dense, i.e. the coupling strength is comparable to the Free
Spectral Range of the environment, 2gk/fsr ∼ 1 with fsr = |ωk −ωk−1|.

— The qubit anharmonicity α̃ should be larger or in the order of the fsr,
α̃/fsr ≥ 1

— The system must be beyond the rwa, coupling strength comparable to the
qubit frequency (ultra-strong coupling regime).

In a Circuit qed architecture we can obtain all these conditions. The first two can
be obtained either with very long microwave resonators (fsr ∝ 1/l) or directly
using open transmission lines (fsr = 0). The third one can be obtained choosing
the right qubit design. For the fourth one, the impedance of the environment Z0
and the dipole moment of the qubit, the most challenging of the two, should be
designed to maximize the qubit-environment coupling.

First experiments on many-modes environments in Circuit qed consisted of a
flux qubit inductively coupled to an open transmission line19,20. They observed
resonance fluorescence of the flux qubit in a transmission line. In addition, well-
known quantum optics effects such as the Mollow triplet, the Autler-Townes split-
ting and Electromagnetically Induced Transparency were measured, all within the
rwa. With the same type of system but with an optimized coupling scheme21, a
new experiment22,23 measured quantum many-body effects from the spectroscopy
of the circuit. When increasing the coupling g between the flux qubit and the
transmission line, the bare qubit frequency ωq shifted to lower values. This renor-
malization of the qubit frequency is a well-known many-body effect related to the
suppression of the tunneling rate in the Josephson junction24.

Regarding capacitive coupling, some experiments have been already performed
where a transmon qubit is coupled to an open transmission line25,26. They showed
the extinction of the qubit resonance with increasing microwave power, a signa-
ture of strong nonlinearity, and obtained the Mollow triplet and Autler-Townes
splitting for this system. Following a different approach, a transmon qubit was ca-
pacitively coupled to a long resonator27 (l ∼ 0.68 m). Given the length of the res-
onator, the obtained fsr is very small, ∼ 92 MHz, obtaining a ratio 2g/fsr ∼ 0.65
for mode number 75. The hybridization of the transmon qubit mode with each
of the modes of the environment was measured via the spectroscopy of the sys-
tem. In addition, high power measurements showed multimode fluorescence in
the resonator. Due to the fact that these measurements were performed in a low
impedance environment, Z0 = 50 Ω, they did not show any non rwa effect. Re-
cently, a new device was presented consisting of a transmon qubit coupled to a
microwave resonator28. The coupling was optimized via a vacuum-gap capacitor
between the transmon island and the center conductor of the resonator. Thanks
to this optimized capacitor non rwa effects were measured despite working in a
low impedance environment. They obtained a coupling strength of g = 897 MHz.
Comparing this to the qubit frequency ωq they obtained a ratio of g/ωq = 0.2,
already far beyond rwa. Due to the short length of the microwave resonator, in
their system they obtained 2g/fsr ∼ 0.4. Despite this, they fitted the spectrum
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of the circuit with a multimode Rabi model proving the coupling of the qubit
to up to 5 modes of the resonator. These experiments open exciting new possi-
bilities and represent a first step towards many-body quantum optics. However,
most of this field remains experimentally unknown: a quantitative understanding
of this many-body renormalization remains to be given and countless theoretical
predictions concerning the dynamics of such systems remain to be tested29,30,31,32.

The aim of this work is to enhance the qubit-light coupling by increasing the
impedance of the environment the qubit is coupled to. A similar idea was exper-
imentally implemented recently using a transmon qubit coupled to a standard
microwave resonator in the cpw geometry33. In our case, following recent theoret-
ical proposals29,30,34, we engineer a high impedance environment consisting of an
array of Josephson junctions.

The use of arrays of Josephson junctions for the study of fundamental physics
is not new. It has been an important topic in condensed matter physics for more
than thirty years now. First experiments used two dimensional arrays for studying
topological phase transitions35,36,37,38.

More recently, one dimensional arrays have been used in dc experiments show-
ing the effects of large phase fluctuations on single Josephson junctions39,40. Con-
trary to the arrays used in this work, the ones used in these experiments were
highly nonlinear (EJ ∼ EC). These arrays have also been used for measuring phase
slips41,42,43. It is only recently that the microwave properties of such arrays have
been investigated in their linear regime (EJ � EC)44,45. Given their large kinetic
inductance, they are used as superinductors46,47 and gave rise to the fluxonium
qubit48. In applied physics they are used for fabricating Josephson Parametric
Amplifiers49,50,51.

The circuit presented in this manuscript consists of a transmon qubit capac-
itively coupled to an array of squids. The aim is two fold: the transmon qubit
is very resilient to noise and easy to model while the parameters of the arrays
of squids can be adjusted in-situ making it possible to study the transmon-array
system at different coupling regimes. Thanks to the high impedance of the array
and its dense spectrum we observe a coupling between the transmon qubit and
the array of squids involving several modes of the system. This makes this circuit
a perfect platform for studying many-body physics in a tunable and controllable
system.

Most theoretical predictions made for many-body systems52 have not been
proved experimentally yet. Therefore, near future experiments using our original
circuit platform involve the measurement of some of these phenomena such as
low power frequency conversion29,32,53 or the many-body renormalization of the
qubit frequency34. Long-term goals involve the study of well-known many-body
problems in condensed matter physics such as the sine-Gordon model, the Dicke
model or the Kondo model. In addition, taking advantage of the flexibility of the
array of squids, one can think of shaping the dispersion relation by modulating
the size of the junctions in the array54 or designing Left Handed Transmission
Lines that are predicted to show multimode entanglement and quantum phase
transitions55,56.
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Summary

The purpose of this work is to study the interaction between a transmon qubit and
a controlled environment for non-perturbative coupling strengths, i.e. for coupling
strengths comparable to the qubit frequency. This regime has been achieved by
increasing the impedance of the environment using an array of squids. Indeed,
for capacitive coupling, this strength scales as

√
Zarray.

We perform spectroscopy measurements of a transmon qubit coupled to an
array of squids and observe the hybridization of the transmon qubit mode with
several modes of the array. Using an external magnetic field we tune the character-
istic impedance of the array and study the system at different coupling strengths.
This tuning of the coupling strength is seen by a modulation of the transmon
qubit resonance width as a function of the applied magnetic flux. Finally we de-
velop an effective linear model accounting for the transmon non-linearity and all
the vacuum-quantum fluctuations that explains the experimental results with no
fitting parameter for all the range of coupling strengths.

The sample

The sample consists of a transmon qubit capacitively coupled to an array of 4700
Josephson junctions in a squid geometry. Its lumped element model is given in
Fig. 1 (a). In red the transmon qubit is shown. It plays the role of the quantum
system we want to study. On the other hand, in blue, the array plays the role of
the environment the transmon is coupled to. Thanks to the large kinetic induc-
tance of Josephson junctions the array behaves as a high impedance transmission
line of characteristic impedance Zarray =

√
LJ/Cg. In addition, the squids in the

array allow us to tune this impedance and therefore the transmon-array coupling
strength. We include a squid with a larger loop area in the transmon qubit. This
makes it possible to study the interaction between the system (the transmon qubit)
and the environment (the array of squids) in different coupling regimes. An op-
tical picture of the sample is shown in Fig. 1 (b). The circuit was fabricated in
one step of e-beam lithography. It is made of aluminum deposited on a silicon
substrate.

Measurements

The characterization of the circuit is done via microwave transmission measure-
ments performed at 20 mK in a dilution refrigerator. We measure the transmitted
voltage S21(ω) = V2/V1 as a function of the applied microwave frequency ω us-
ing a Vector Network Analyzer (vna). We obtain a peak in transmission at the
eigenfrequencies of the system. Using an external superconducting coil we apply
a magnetic field to the sample and obtain the transmission for several magnetic
fields, Fig. 2 top. We denote by ΦA the flux in the squids loops of the array and by
ΦT the flux in the transmon qubit squid loop. The magnetic flux is given in units
of the magnetic flux quantum Φ0 = h/2e. The colormap represents the amplitude
of the transmission through the circuit |S21|(ω).

As it can be seen, we measure two different flux periods. This is due to the
difference in area between the transmon squid loop (large area, short period) and
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Z0 = 50 Ω

200 µm

10 mm(b)

EJ,T

Csh

Cg,T2 Cg,T2Cg,T Cg,T

Cc Cc

Cg

LJ CJ

Z0 = 50 Ω

(a) CJ,T

10 µm 10 µm

200 nm

50 Ω 50 Ω

Figure 1 – The sample measured in this work. (a) Circuit diagram of
the sample. In red the transmon qubit and in blue the array.
Both the transmon qubit and the array of squids are flux
tunable. We include the input and output ports of character-
istic impedance Z0 = 50 Ω. (b) Optical image of the sample.
Only a portion of the array of squids is shown. The insets
show the squid in the transmon (red) and the squids in the
array (blue). The Josephson junctions for the transmon are
given as insets in the former (red dashed squares).
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Figure 2 – Transmission of the circuit as a function of the magnetic flux
in the array ΦA and the microwave frequency. The bottom
plots show two qubit periods for the smallest (left) and the
largest (right) array impedances.

the array squids loops (small area, long period). Thanks to this we can observe the
system response at several array impedances Zarray(ΦA). In Fig. 2 bottom we show
a transmon period for the smallest impedance Zarray(0) (red square in the upper
figure) and the largest impedance Zarray(Φ0/2) (orange square). These figures
show qualitatively the high degree of tunability of the sample. At low Zarray the
density of modes is lower and less modes are coupled to the transmon qubit.
However at high Zarray the density of modes increases and more modes couple to
the qubit.

Results

The main results of this work are first the fabrication and characterization of sev-
eral arrays of squids of various lengths, N ∈ (500, 5500), and second the measure-
ment of an ultra-strongly coupled transmon qubit to several photonic modes in a
high impedance tunable environment.

Influence of the transmon in the environment

From the transmission measurements shown in Fig. 2 it is clear that the transmon
qubit is coupled to several modes at once. This is seen as a shift in the frequency
of the modes due to the presence of the transmon qubit mode. To quantify this
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effect we define the frequency shift as

δφn (ΦT, ΦA) = π

Mode for uncoupled transmon︷ ︸︸ ︷
ωn (Φ0/2, ΦA) −

Mode for coupled transmon︷ ︸︸ ︷
ωn (ΦT, ΦA)

ωn (Φ0/2, ΦA)−ωn−1 (Φ0/2, ΦA)︸ ︷︷ ︸
Mode spacing for uncoupled transmon

. (1)

Here, ωn (ΦT, ΦA) is the mode number n of the system (transmon plus array). It
depends on the flux in the squids of the array (ΦA) and the flux in the squid of
the transmon (ΦT). For ΦT = Φ0/2 the transmon frequency becomes zero and it
decouples from the environment. Therefore, the frequency shift δφn is a measure
of the dispersion of the modes of the environment due to the presence of the
transmon qubit. The experimentally obtained δφn is given as dots in Fig. 3 for
several values of ΦT. It is a step-like function that goes from 0 to π. The points
in the step give the number of modes coupled to the transmon qubit. As we see,
at least eight modes are affected by the presence of the transmon. In the inset the
measurement where the data is taken from is shown.

The frequency shift is related to the phase shift induced by the qubit in the
modes of the array. As explained in the manuscript, we linearize the lumped ele-
ment circuit in Fig. 1 via a Self-Consistent Harmonic Approximation (scha) that
accounts for the quantum-vacuum fluctuations in the circuit and the nonlinearity
of the transmon. From the linearized system we can obtain the eigenmodes of the
circuit. They are given by

Φl ∝ cos [ka (l − 1)− φ] with l = 1, 2, 3, . . . (2)

Here Φl is the flux at island l, k is the wave number of the mode and a is the unit
cell of the array. We included in the mode definition a phase φ. This phase comes
from the fact that the array is coupled to the measurement line via the transmon
qubit. Therefore the boundary conditions for the eigenmodes of the circuit de-
pend on the transmon. As already mentioned, when ΦT = Φ0/2 the transmon
frequency goes to zero and it decouples from the environment. Therefore, for
monitoring the effect of the transmon qubit in the modes of the circuit, we define
the transmon phase shift δφ as the difference between the phase of the eigenmodes
of the system when the transmon is uncoupled and when the transmon is coupled
to the array,

δφ = φ (ΦT = Φ0/2)︸ ︷︷ ︸
Transmon uncoupled

− φ (ΦT 6= Φ0/2)︸ ︷︷ ︸
Transmon coupled

. (3)

In this thesis we demonstrate that from this phase shift we can obtain the width
ΓT and frequency ωT of the transmon qubit. The width ΓT is directly related to the
coupling strength between the qubit and the environment22,57.

The obtained δφ in the thermodynamic limit i.e. when the number of squids
in the array tends to infinity, is shown in Fig. 3 as solid lines. The agreement
between the experimental points and the theoretical curves is very good taking
into account that we did not use any fitting parameter. The transmon frequency
ωT and width ΓT are indicated in gray.
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ΦA

Figure 3 – Comparison between the experimental phase shift δφn and the
theoretical one δφ with no fitting parameter. The curves are
taken for several values of ΦA. In gray the transmon width
ΓT and transmon frequency ωT obtained from δφn are given.
In the inset the transmon period from where the data is taken
is shown.
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Tunable environment

One of the strong points of our platform is that we can tune it exploring different
coupling regimes. To do so we measure at different fluxes in the array, ΦA, and
obtain the width ΓT of the transmon qubit via the frequency shift defined in Eq. (1).

To get an estimation of the transmon width and frequency we fit both the ex-
perimental data and the theoretical curve with an arctangent. In Fig. 4 we plot
the transmon width as a function of ΦA. The experimental values are given by
the blue dots with the error bars coming from the fitting procedure. It is clear
that thanks to the tunability of the circuit we can explore different coupling
regimes, reaching a variation in the transmon width of almost 40 %. The theo-
retical prediction is included as a shaded area giving by the error in the esti-
mation of the parameters of the circuit. Once again despite not using any fit-
ting parameter the agreement between the experiment and the theory is very
good. Contrary to the expected behavior, we observe in Fig. 4 that the coupling

Figure 4 – Transmon qubit maximum width as a function of the flux in
the array ΦA. The blue dots are experimental data. The error
bars come from the error in the fitting procedure. The blue
shaded area is the theoretical curve. The area represents the
error in the estimation of the system parameters.

is reduced with increasing impedance. As explained in the main text, this effect
comes from the fact that the ground capacitances shunt the array for very high
impedances and is directly linked to the impedance matching condition in circuit
theory58. At Zarray (ΦA = 0) = 1.6 kΩ the transmon is more impedance matched
than at Zarray (ΦA = Φ0/2) = 3.2 kΩ. At the maximum coupling strength we ob-
tain ΓT/ωT ∼ 10 % which is already in the so called ultra strong coupling regime14,15.

10



Introduction and summary

Conclusion
During my PhD we fabricated and characterized several arrays of squids of dif-
ferent lengths N ∈ (500, 5500) in the linear regime (EJ/EC � 1) using microwave
transmission measurements. Then we coupled a transmon qubit to an array with
N = 4700 and observe the hybridization of the qubit with several modes in the
array. We prove the in situ tunability of the qubit-array interaction and reach a
coupling strength of 10 % the qubit frequency. We obtain a good agreement be-
tween experiment and theory using an effective linear model in the thermody-
namic limit (N → ∞) with no fitting parameter. Then we could confirm that the
four above-mentioned criteria are fulfilled: an environment that contains several
modes, the coupling strength is comparable to the fsr of the environment, the
qubit anharmonicity in the order of the fsr and the system is beyond the rwa.

Therefore the circuit behaves as a many-body system where the array of squids
can be seen as the high impedance dissipative environment the transmon qubit is
coupled to.

Manuscript organization
This manuscript contains seven chapters organized as follows. The first three
chapters give the necessary theoretical background to understand the experimen-
tal results. The first chapter contains a brief introduction on the different light-
matter interaction models. The second one introduces the basic concepts related
to superconducting circuits. The third one treats in detail the different variables
involved in the coupling between electrical circuits. The next two chapters are fo-
cused on the most experimental aspects of this work. In chapter four we describe
the fabrication process in detail as well as the estimation of the system parameters.
Chapter five contains a brief description of the experimental setup used in all the
measurements. Finally, the last two chapters contain all the experimental results
for the arrays of squids, chapter six, and for the transmon qubit coupled to one of
these arrays, chapter seven.
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Light-matter interaction 1

Light-matter interaction is at the heart of many phenomena in nature. That is
the reason why it remains a key topic in fundamental physics. In this section we
briefly introduce the most important models dealing with it. We start with the
Jaynes-Cummings and Rabi model treating a two-level system interacting with
a single photonic (bosonic) mode. Then we increase the number of modes and
enter into the realm of many-body physics introducing the spin-boson model. This
model is seen as the simplest quantum many-body problem. Despite its apparent
simplicity, finding its solution is far from trivial and therefore it still represents a
challenge both experimental and theoretical in nowadays research.

1.1 One atom and one mode

As a first approach to light-matter interaction it is important to introduce the mod-
els that treat only one electromagnetic mode interacting with a two-level system.

We start by obtaining a quantum mechanical description of the electromagnetic
field. The Hamiltonian for the electromagnetic field can be written in SI units as1

HEM =
1
2

∫
V

(
ε
∣∣∣~E (~r)

∣∣∣2 + µ
∣∣∣~H (~r)

∣∣∣2) d~r. (1.1)

Here ~E (~r) and ~H (~r) are the electric and magnetic fields respectively. The constants
ε and µ are the electric permittivity and the magnetic permeability of the medium.
The integration is taken over an arbitrary volume V.

To treat this Hamiltonian quantum mechanically we promote the fields ~E and
~H to operators Ê and Ĥ . There is a clear correspondence between Eq. (1.1) and the
Hamiltonian for a quantum harmonic oscillator. We therefore define the operators
Ê and Ĥ as a function of the creation and annihilation operators a†

k and ak as in
Eq. (1.2),

Ê = ∑
k

√
h̄ωk
2εV

(
ak + a†

k

)

Ĥ = i ∑
k

√
h̄ωk
2µV

(
ak− a†

k

)
.

(1.2)

where k is the mode index.
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Chapter 1 Light-matter interaction

Operators a†
k and ak satisfy the following commutation relations,[

an, a†
m

]
= δn,m

[an, am] = 0[
a†

n, a†
m

]
= 0.

(1.3)

If we insert the operators definition from Eq. (1.2) in Eq. (1.1) we obtain for HEM

HEM =
1
2

∫
V

(
ε Ê (~r)2 + µ Ĥ (~r)2

)
d~r = ∑

k
h̄ωk

(
a†

k ak +
1
2

)
. (1.4)

This is the Hamiltonian for several uncoupled harmonic oscillators. For a detailed
derivation of this result refer to D.F. Walls 1 , Meystre and Sargent 59 .

This Hamiltonian has as eigenstates the Fock states |nk〉. Application of opera-
tors a†

k and ak on the Fock state |nk〉 gives

a†
k |nk〉 =

√
nk + 1 |nk + 1〉 ak |nk〉 =

√
nk |nk − 1〉 . (1.5)

At first, we are interested only in one of the modes of HEM of frequency ω0.
Therefore we write

Hmode = h̄ω0

(
a† a+

1
2

)
, (1.6)

which is the Hamiltonian for a single harmonic oscillator.
Now that we have a proper definition for the electromagnetic field we can turn

into the problem of describing the material system interacting with it. Here we
will treat the simplest material system, a quantum two-level system. This two-
level system has a ground state |↓〉 and an excited state |↑〉. We denote the energy
difference between these two levels as h̄ωq. Under these assumptions the Hamil-
tonian for such a system can be written as

Hatom =
h̄
2

ωqσz with σz = |↑〉 〈↑| − |↓〉 〈↓| . (1.7)

The last term we need to include is the interaction between light and matter.
Once again this is simple if we make some approximation. If the system, e.g. an
atom, is much smaller than the wavelength of the electromagnetic field we can
perform the dipolar approximation1. Under this approximation we can write the
interaction term as in Eq. (1.8),

Hint = ~p · ~E. (1.8)

Here ~p is the dipole moment of the system. For a two-level system this dipole
moment is proportional to the raising and lowering operators σ+ and σ−,

~p ∝ (σ+ + σ−) with σ+ = |↑〉 〈↓| , σ− = |↓〉 〈↑| . (1.9)
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1.1 One atom and one mode

Combining the expression in Eqs. (1.2) and (1.9) we obtain for the interaction term,

Hint = ~p · ~E = h̄g (σ+ + σ−)
(

a† + a
)

. (1.10)

Here g is a measure of the strength of the interaction. As already seen in Eq. (1.8),
there are two different contributions in g. One contribution comes from the electric
dipolar moment of the atom. This can be considered a geometrical factor related
to the exact shape of the atomic orbital. The second term comes from the strength
of the electric field, which is given by its quantum r.m.s fluctuations. For harmonic
modes in optical systems this fluctuations are proportional to the impedance of the
vacuum Zvac ∼ 377 Ω7. As will be discussed in detail in Chapter 3, in capacitively
coupled superconducting circuits the geometrical factor is given by a capacitance
ratio and the electric field fluctuations are related to the characteristic impedance
of the environment the qubit is coupled to.

Adding Eqs. (1.6), (1.7) and (1.10) we arrive to the Rabi Hamiltonian60 given in
Eq. (1.11), which represents a two-level system interacting with an electromagnetic
mode.

HRabi = Hmode +Hatom +Hint

= h̄ω0

(
a† a+

1
2

)
+

h̄
2

ωqσz + h̄g (σ+ + σ−)
(

a† + a
)

.
(1.11)

1.1.1 The Rotating Wave Approximation

Finding an analytical solution for the Rabi Hamiltonian in Eq. (1.11) is not trivial61.
However, for most regimes of light-matter interaction found in nature one can
perform an approximation that simplifies it and makes it easier to solve. This is
the Rotating Wave Approximation (rwa).

If we assume that the coupling strength is much smaller than the system fre-
quency, g � ωq and the electromagnetic mode is near resonant with the system,
|ωq−ω0| � ωq , we can get rid of the terms containing a† σ+ and a σ− in Eq. (1.11)
and arrive to the Jaynes-Cummings Hamiltonian62 HJC in Eq. (1.12).

HJC = h̄ω0

(
a† a+

1
2

)
+

h̄
2

ωqσz + h̄g
(

σ+ a+σ− a†
)

. (1.12)

The effect of the coupling term now becomes clear. The term σ+ a absorbs one
photon and excites the atom. On the other hand, the term σ− a† creates a photon
by relaxing the atom.

To get some insight into this Hamiltonian we can write it in matrix form. To
do so we use the following basis;

— |0, ↓〉: No photons and the qubit in the ground state,

— |n + 1, ↓〉: n + 1 photons and the qubit in the ground state,

— |n, ↑〉: n photons and the qubit in the excited state.
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Chapter 1 Light-matter interaction

Recalling the application of the operators on the different states |n〉, |↓〉 and |↑〉
we obtain the matrix in Eq. (1.13).

HJC = h̄


1
2 ω0 − 1

2 ωq

M0
M1

. . .

 (1.13)

where each block Mn is given by

Mn =

(
ω0
(
n + 3

2

)
− 1

2 ωq
√

n + 1g√
n + 1g ω0

(
n + 1

2

)
+ 1

2 ωq

)
. (1.14)

Thanks to the rwa the obtained Hamiltonian is block diagonal. This means that
we can diagonalize each of the blocks independently to obtain the eigenenergies
and the eigenstates of the system. The eigenergies are given by

Eg = −δ

2

En,± = (n + 1)ω0 ±
1
2

√
4g2(n + 1) + δ2

(1.15)

where δ = ωq −ω0. The associated eigenstates are

|0〉 = |0, ↓〉 (1.16)

|n,+〉 = cos (θn) |n, ↑〉+ sin (θn) |n + 1, ↓〉 (1.17)

|n,−〉 = − sin (θn) |n, ↑〉+ cos (θn) |n + 1, ↓〉 (1.18)

where θn is given by

tan (2θn) =
2g
√

n + 1
δ

. (1.19)

There are several things to notice in this solution. First, the ground state of the
Hamiltonian is |↓, 0〉 i.e. the two-level system in the ground state and no photon in
the electromagnetic mode. This is an expected result. However, we will see later
that beyond the rwa it is not true. Second, the interaction terms mix the states
|↓, n + 1〉 and |↑, n〉 showing the hybridization between the photon states and the
two-level system states.

If we think in energy transitions we see from Eqs. (1.16) to (1.18) that we obtain
two transitions per Fock state |n〉, Eq. (1.21).

En,− − Eg = (n + 1)ω0 −
1
2

√
4g2(n + 1) + δ2 +

δ

2
(1.20)

En,+ − Eg = (n + 1)ω0 +
1
2

√
4g2(n + 1) + δ2 +

δ

2
(1.21)
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1.1 One atom and one mode
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Figure 1.1 – Energy spectrum in units of h̄ω0 of the Jaynes-Cummings
Hamiltonian for n = 0. The gray dashed lines indicate the
uncoupled values for ω0 and ωq.

These two transitions are shown in Fig. 1.1 for different δ values and for n = 0.
We see an avoided crossing for δ = 0, the vacuum Rabi splitting. The value of this
splitting depends on the number of photons n as

En,+ − En,− = 2g
√

n + 1. (1.22)

This gives a direct measure of the coupling strength g from the spectroscopy. We
see that when the absolute value of the detuning increases, one energy transition
tends towards h̄ωq and the other towards h̄ω0.

When performing real experiments to probe this model one needs to take into
account the losses inherent to any experimental setup. If we imagine the setup
as a “photon box” where we introduce our two-level system we can think of two
contributions for the losses. First the rate κ at which photons leak out of the box
and second the decay rate γ at which the atom releases energy to the environment.
Therefore in order to see a coherent interaction between the photons and the
system it is necessary to fulfill the condition κ, γ � g. The fulfillment of this
condition is called strong coupling regime.

The first experiments probing this model experimentally were performed dur-
ing the last two decades of the twentieth century63. They involved real atoms in-
side optical cavities. The first experimental evidence of the strong coupling regime
at the single-atom level was obtained in 1992

64. This field of research was called
Cavity Quantum Electrodynamics (cqed) due to the optical cavities used in the ex-
periments. Later on, between 2001 and 2004, it was proposed65,66 to use supercon-
ducting circuits as building blocks for the same type of experiments. Microwave
resonators were proposed as substitutes for optical cavities and nonlinear circuits
as substitutes for the atoms. The use of superconducting circuits presents sev-
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Chapter 1 Light-matter interaction

eral advantages over the previous setups7,8; they can be fabricated using existing
lithography techniques, electromagnetic field can be confined to one dimension
which increases the dipole coupling and superconducting qubits are much bigger
than real atoms giving rise to a stronger dipole moment. To highlight the proxim-
ity to the previous experiments, this field was called Circuit Quantum Electrody-
namics (Circuit qed).

The first experiments reaching the strong coupling regime in a Circuit qed ar-
chitecture were done in 2004 and consisted of a charge qubit capacitively coupled
to a microwave resonator9 and a flux qubit inductively coupled to a Superconduct-
ing QUantum Interference Device (squid)10. Thanks to the strong coupling and
the low losses of superconducting circuits, coherent energy exchange between the
electromagnetic mode and the qubit mode could be measured. Later on, other
experiments explored the non-linear scaling67,68 of Eq. (1.22) and the system dy-
namics11,12.

1.1.2 Beyond the rwa approximation

As pointed out before, thanks to the use of circuits in the study of light-matter
interaction the coupling g between light and matter could be further increased
reaching limits unreachable with natural atoms7. Therefore it was not long before
the rwa had to be dropped and the full Rabi Hamiltonian in Eq. (1.11) needed to
be used. This involves the counter-rotating terms a† σ+ and a σ− which excite the
qubit and create a photon and relax the qubit and annihilates a photon respec-
tively.

We can write the Rabi Hamiltonian HRabi in Eq. (1.11) in matrix form using
the same basis as before. We obtain

H = h̄



|0,↓〉 |0,↑〉 |1,↓〉 |1,↑〉 ...
1
2 ω0 − 1

2 ωq 0 0 g . . .
0 1

2 ω0 +
1
2 ωq g 0 . . .

0 g 3
2 ω0 − 1

2 ωq 0 . . .
g 0 0 3

2 ω0 +
1
2 ωq . . .

...
...

...
... . . .

. (1.23)

This matrix is no longer block diagonal due to the matrix elements coupling states
|n, ↓〉 and |n + 1, ↑〉. It is possible to obtain the eigenenergies of this Hamiltonian
analytically61. However, obtaining its eigenvectors and its dynamics remains a
modern theoretical challenge. In Fig. 1.2 we see a comparison between the Jaynes-
Cummings model and the Rabi model as a function of the coupling strength for
several n values. The curve for the Rabi model was obtained by numerical diago-
nalization of Eq. (1.23). As it can be seen, for low coupling both models coincide.
However when the coupling is increased the Jaynes-Cummings model is not cor-
rect anymore and the counter-rotating terms start to play a role.

Regarding the eigenstates, there are some approximated solutions based on
polarons and antipolarons6,69. Here we will only point out that the ground state is
not |0〉 = |0, ↓〉 anymore. Due to the counter-rotating terms the expected number
of photons in the ground state is not zero. This is a striking result that serves as
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Figure 1.2 – Numerical simulation of the energy spectrum in units of
h̄ω0 as a function of the coupling strength g for the Jaynes-
Cummings model (dashed gray lines) and the Rabi model
(blue lines). We set δ = 0.4.

an example of the new physics that can be found when the light-matter coupling
strength is increased. For a recent review on the Rabi model see Xie et al. 70

In 2010 the first Circuit qed system in the ultra strong coupling regime was
measured14. It consisted of a flux qubit galvanically coupled to a microwave res-
onator. Shortly after the same regime was reached but this time coupling a flux
qubit to a lumped element LC resonator15. These works showed a qualitative dif-
ference between the measured spectrum and the spectrum obtain from the Jaynes-
Cummings model. This difference was explained using the Rabi model. Recently
the Rabi model with coupling strength g in the order of ωq was simulated ex-
perimentally. This experiments showed the Schrödinger-cat-like structure of the
ground state in the Rabi model17 and the system dynamics beyond the rwa ap-
proximation18.

1.2 One atom and several modes

Until now we treated the interaction between a two-level system and a single
electromagnetic mode. In order to enter the realm of many-body physics we can
include several modes in the model. In the Rabi Hamiltonian we substitute the
Hamiltonian for one mode in Eq. (1.6) by the one in Eq. (1.4) for several modes.
The resulting Hamiltonian is given in Eq. (1.24). It is known in literature as the
spin boson Hamiltonian24,52,71.

HSB =
h̄
2

ωqσz + ∑
k

h̄ωk

(
a†

k ak +
1
2

)
+ h̄gk (σ+ + σ−)

(
a†

k + ak

)
(1.24)
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Chapter 1 Light-matter interaction

As we see now the frequency of the modes ωk and the coupling strength gk depend
on the mode index k. The modes ωk can be seen as the environment to which the
two-level system couples. The frequencies ωk are given by the dispersion relation
of the modes of the environment ω(k). Usually a cut-off frequency ωcut−off is
included to give the system a finite size72. The gk are given by the spectral function
J(ω),

J(ω) =
2π

h̄2 ∑
k

g2
kδ (ω−ωk) . (1.25)

The spectral function relates the dispersion relation ωk to the coupling terms gk.
The different environments can be classified according to J(ω). In the continuous
limit, if we assume24 that J(ω) ∝ ωs we can classify the environments as subohmic
(s < 1), ohmic (s = 1) and superohmic (s > 1).

This Hamiltonian is strongly linked to dissipation in quantum systems24,73,74.
The bath of harmonic oscillators plays the role of friction in the system as long as
the number of oscillators tends to infinity. For circuits the dissipation by a resistor
has s = 1 and therefore the name ohmic71. In this case it is common to write
J(ω) = αω where α is a dimensionless parameter that gives the strength of the
coupling.

An example of the energy spectrum for the spin-boson model is shown in
Fig. 1.3 for two different coupling strengths α. As it can be seen, with increasing
coupling strength more modes disperse due to the two-level system. These figures
are meant to give a qualitative idea of the energy spectrum for the spin-boson
model. Therefore we truncated the Hilbert space to one excitation per mode. This
discards any many-body effect in the system. Obtaining the exact spectrum of the
full spin-boson Hamiltonian is currently an intensive subject of research69.

When α is large or equivalently the dissipation is strong, one of the pre-
dicted effects is the renormalization of ωq due to the interaction with the envi-
ronment24,52. For a coupling strength α < 1 this renormalized frequency is given
by24,34

ωq,r = ωq

(
ωq

ωcut−off

) α
1−α

. (1.26)

This expression is plotted in Fig. 1.4 for several values of ωcut−off. As it can be
seen, with increasing coupling strength the frequency of the qubit is renormal-
ized. This effect is clearly suppressed for ωq ∼ ωcut−off due to the drop of the cou-
pling strength close to this frequency. Some other predicted effects in this regime
include spontaneous Schrödinger cat emission31 and low power frequency con-
version29,32.

The Hamiltonian in Eq. (1.24) can be further expanded if we substitute the
two-level system by a multilevel one with Hamiltonian Hsystem ,

Hmulti−level = Hsystem +∑
k

h̄ωk

(
a†

k ak +
1
2

)
+ h̄gk Ĉsystem

(
a†

k + ak

)
. (1.27)

Here Ĉsystem represents the coupling degree of freedom between Hsystem and the
bath.
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1.2 One atom and several modes

Figure 1.3 – Spin boson model spectrum as a function of ωq for two
different coupling strengths α. In blue the eigenenergies of
the Hamiltonian are given. The dashed red line indicates the
value of ωq. The same linear dispersion relation was used
for both plots with an ohmic spectral density, i.e. gk =√

αωk. In both cases the Hilbert space was truncated to
one excitation per mode. These plots show qualitatively how
with an increasing coupling strength the number of modes
coupled to the qubit increases.
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Figure 1.4 – Ratio between the renormalized qubit frequency ωq,r and
ωq as a function of the coupling strength α. We set ωq =
4.65 GHz which is the value obtained in the experiment.

Both the spin-boson Hamiltonian HSB and its multilevel version Hmulti−level
require a huge Hilbert space whenever we include several modes, several ex-
citations per mode and large coupling. This makes brute force diagonalization
hopeless. However, some alternative tools have been presented to make the prob-
lem tractable69. Regarding the experimental implementation of this model in a
Circuit qed architecture there have been several attempts27,75. As previously ex-
plained, in 2016 a flux qubit was coupled to an open transmission line and the
renormalization of the qubit frequency due to many-body effects was first mea-
sured22. This represents an important first step towards the study of many-body
systems in superconducting circuits.
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Circuit theory 2

In this chapter we present the theoretical methods used along the manuscript to
model the different circuits. First we give a brief introduction of the basic notions
in superconducting circuits. Then we introduce the transmission line theory and
the Lagrangian and Hamiltonian formalism for linear circuits. Finally, we intro-
duce the Self Consistent Harmonic Approximation (scha) as a way of treating
circuits embedding intermediate non-linearities such as a transmon qubit.

2.1 Basics of superconducting circuits

For understanding the physics in Circuit qed it is required to introduce the Joseph-
son effect and the quantization of electrical circuits. Here we introduce both and
explain the superconducting qubit used in this work, the transmon qubit.

2.1.1 The Josephson effect

Most of the results included in this work depend fundamentally on the existence
of the Josephson effect. It allows to create lossless nonlinear elements that can
be used as the building blocks of superconducting qubits and high impedance
environments.

The Josephson junction

A Josephson junction consists of two superconducting electrodes separated by a
thin insulating barrier. In 1962 Josephson predicted76 that a zero voltage supercur-
rent can flow between them. This supercurrent Is is given by the first Josephson
equation

Is = Ic sin ϕ. (2.1)

Here ϕ is the gauge invariant phase difference between the two superconducting
electrodes and the critical current Ic is the maximum supercurrent that can flow
through the junction. Moreover, when a constant voltage difference V is applied
to a junction, the phase difference ϕ evolves according to the second Josephson
equation:

dϕ

dt
=

2e
h̄

V =
1
ϕ0

V, (2.2)

where ϕ0 = h̄/2e is the reduced magnetic flux quantum.
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Chapter 2 Circuit theory

From Eqs. (2.1) and (2.2) we can obtain the Josephson inductance LJ ,

LJ =
V

dI/dt
=

ϕ0

Ic cos ϕ
. (2.3)

The Josephson inductance plays a crucial role in this work. First, as it can be seen
from Eq. (2.3), it is nonlinear. Second, it is several orders of magnitude larger than
any other linear magnetic inductance per unit length. We make use of this large
inductance to build high impedance environments. We can rewrite Eq. (2.3) as

LJ =
ϕ0

Ic

√
1−

(
I
Ic

)2
. (2.4)

In this form it is clear that LJ is a function of the bias current I. However, when we
take the limit Ic >> I we eliminate the dependence in I and obtain a constant in-
ductance LJ = ϕ0/Ic. Therefore, by increasing the critical current of the Josephson
junction we can find a regime where it becomes a linear inductor. This is going to
be important when designing high impedance transmission lines.

From Eqs. (2.1) and (2.2) we can obtain the energy stored in a Josephson junc-
tion by integrating the electrical power stored in the junction with respect to time,

U =
∫ t

0
VIsdt = ϕ0

∫ t

0
Is

dϕ

dt
dt = ϕ0

∫ t

0
Ic sin ϕdϕ =

= ϕ0 Ic (1− cos ϕ) = EJ (1− cos ϕ) . (2.5)

Here EJ = ϕ0 Ic is the Josephson energy. It gives the right scale for the energy
stored in the junction.

Another important aspect of the Josephson junction is its self-capacitance CJ ,
see Fig. 2.1. This capacitance comes from the fact that the junction consists of two
electrodes separated by an insulator. From this capacitance we define a charging
energy for the junction EC = e2/CJ . Nonlinear effects such as phase slips can
occur in the junction for small EC. The rate at which these phase slips occur scales
as77 exp

{
−8
√

EJ/EC
}

. Therefore, for large EJ/EC ratio these phase slips can be
neglected. LJ and CJ in parallel create an LC oscillator. As we said, for large Ic
we can assume that the Josephson junction is a linear inductor. In this regime the
junction has a resonance frequency given by

ωp =
1√
LJCJ

. (2.6)

This frequency is the plasma frequency of the junction. It can be shown that the
plasma frequency is independent of the junction area and only depends on the
thickness of the insulating barrier t, see Section 4.2.4.

The squid

The Superconducting QUantum Interference Device78,79 (squid) consists of two
Josephson junctions connected in parallel forming a loop. By applying a magnetic
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(a) (b)

EJ EJ CJ

EJ,CJ

Figure 2.1 – Symbols for the Josephson junction. (a) A single Josephson
junction without the Josephson capacitance. (b) The Joseph-
son capacitance is included. To simplify the notation the last
symbol is used.

flux to the loop the supercurrents flowing in each arm acquire a different phase.
This leads to an interference phenomenon that modulates the outgoing supercur-
rent Itotal.

The total outgoing supercurrent is the sum of the supercurrent coming from
the left branch (IL) and the supercurrent coming from the right branch (IR). As-
suming that both junctions are identical with critical current Ic we have

Itotal = IL + IR = Ic (sin ϕL + sin ϕR) = 2Ic cos
(

ϕL − ϕR

2

)
sin
(

ϕL + ϕR

2

)
. (2.7)

If both junctions are the same and there is no applied magnetic flux then ϕL =
ϕR = ϕ and Itotal = 2Ic sin ϕ. However when an external magnetic field Φ is
applied the fluxoid quantization79 leads to

ϕL − ϕR = 2π
Φ
Φ0

. (2.8)

Here Φ0 = h/2e is the magnetic flux quantum. This condition gives a flux depen-
dent total critical current given by

Ic,total (Φ) = 2Ic

∣∣∣∣cos
(

π
Φ
Φ0

)∣∣∣∣ . (2.9)

This result can be generalized to take into account an asymmetry between the
junctions80. The expression in this case is

Ic,total (Φ) = Ic,Σ

∣∣∣∣cos
(

π
Φ
Φ0

)∣∣∣∣
√

1 + d2 tan2
(

π
Φ
Φ0

)
. (2.10)

Here Ic,Σ = Ic,1 + Ic,2 is the maximum current through the squid and d = (Ic,1 −
Ic,2)/(Ic,1 + Ic,2) gives the asymmetry between the junctions. In Fig. 2.2 Ic,total (Φ)
is plotted for several asymmetry values. From the tunability of the critical current
we have a tunable inductance, see Eq. (2.3). As explained later, this allows to
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have a tunable impedance for a transmission line made of squids and a tunable
frequency for the superconducting qubits.

1.0 0.5 0.0 0.5 1.0
External magnetic flux ( / 0)

0.0

0.2

0.4

0.6

0.8

1.0

I c,
to

ta
l/I

c,

d = 0
d = 0.25
d = 0.5

Figure 2.2 – Total critical current in a squid Ic,total as a function of the
external magnetic flux for several asymmetries d between
the junctions.

2.1.2 Circuit quantization

Here we give a brief introduction of the different operators used to quantize elec-
trical circuits. For a rigorous treatment refer to Devoret 81 . Any electrical circuit
can be seen as a group of nodes connected via electrical components. We use the
charge Qn and flux Φn at each node n as variables to describe the dynamics of the
system. Here, the node flux is given bya Φn =

∫ t
−∞ Vb(t′)dt′. To perform the circuit

quantization we promote the classical variables to operators; the charge operator
at node n, Q̂n and the flux operator at node n, Φ̂n. They satisfy the commutation
relation [Φ̂n, Q̂m] = ih̄δn,m, where δn,m is the Kronecker delta.

When treating a Josephson junction in the superconducting state Cooper pairs
tunnel through the barrier and therefore the charge is quantized in units of 2e. It
is then useful to define the Cooper pair number operator as

n̂n =
Q̂n
2e

. (2.11)

In addition we define an operator for the superconducting phase. To do so we
use the second Josephson equation in Eq. (2.2) and Faraday’s law to relate the

aIn this expression the orientation of the branch should be taken into account according to
Kirchhoff’s laws81.
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2.1 Basics of superconducting circuits

superconducting phase operator to the flux operator for a Josephson junction as

ϕ̂n =
2e
h̄

Φ̂n =
1
ϕ0

Φ̂n. (2.12)

These operators satisfy the commutation relation [ϕ̂n, n̂m] = iδn,m.

2.1.3 The transmon qubit
The first implementation of a superconducting qubit was the Single Cooper Pair
Box82 (scpb). It consists of a superconducting island coupled via a Josephson junc-
tion to a superconducting reservoir, Fig. 2.3 (a). Using an external voltage source

(a)

Vg

Cg

EJ,CJ

(b)

Vg

Cg

Csh EJ,CJ

Figure 2.3 – Circuit scheme for the (a) scpb and (b) the transmon qubit.
In orange the superconducting island is shown.

a gate voltage Vg is applied to tune the energy levels of the scpb. Using the oper-
ators defined in Eqs. (2.11) and (2.12) the Hamiltonian for the scpb can be written
as

H =
EC

2
(
n̂−ng

)2
+ EJ [1− cos (ϕ̂)] . (2.13)

Note that we use a different but equivalent definition for the Hamiltonian from
the usual one80,81. The first term with EC = (2e)2/CΣ represents the charging
energy of the island, where CΣ = Cg + CJ . The cosine term is the potential energy
of the Josephson junction with EJ its Josephson energy. Finally, ng = CgVg/2e is
the induced charge via the gate voltage Vg in 2e units. This Hamiltonian can be
exactly solved in the phase basis in terms of Mathieu functions83. In the charge
basis it can be numerically solved. To do so we rewrite the Hamiltonian in the
charge basis81, Eq. (2.14) and diagonalize it. Here we dropped the constant term
EJ .

〈n| H
∣∣n′〉 = EC

2
(
δn,n′ − ng

)2 −
EJ

2
[δn+1,n′ + δn,n′+1] (2.14)

The energy levels normalized by the first transition frequency at ng = 1/2 are
shown in Fig. 2.4 (a) as a function of the gate charge ng. The spectrum consists on
charging parabolas with periodicity 2e. The Josephson term opens a gap where
this parabolas intercept. Two features of the spectrum should be noticed. First, the
spectrum is fully anharmonic i.e. the energy levels are not equally spaced. This
is crucial if the system is meant to be used as a qubit. Second, the spectrum is
not flat. This means that the system’s coherence time is greatly reduced due to
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fluctuations in the gate charge ng that lead to fluctuations in the scpb transition
frequencies57. In order to reduce this effect, one can tune ng to 1/2 where the first
derivative with respect to ng is suppressed. However, this calls for a high level of
control over the gate voltage and does not protect the system from large amplitude
noise (e.g. 1/ f charge noise) and quasiparticles in the Josephson junction.

In order to overcome this difficulty, in 2007 a modified version of the scpb was
presented under the name of transmon qubit13,80, Fig. 2.3 (b). The idea behind the
transmon qubit is to increase the EJ/EC ratio. To do so an additional capacitance
Csh is included in parallel with the Josephson junction, see Fig. 2.3 (b). This ca-
pacitance lowers the charging energy EC increasing the EJ/EC ratio. The effect of
the increment of this ratio can be seen in Fig. 2.4. For low EJ/EC ratio, the energy
levels are not flat. However, with increasing EJ/EC the levels become flatter. This
improves the scpb coherence time by several orders of magnitude13. The incre-
ment of the EJ/EC ratio comes with a drawback, the anharmonicity of the system
is reduced. However it can be shown80 that the reduction in the charge dispersion
overcomes the reduction in the anharmonicity.

2.2 Linear circuits

A linear circuit is a circuit whose components relate voltage and current linearly.
It can be easily treated due to the fact that its equations of motion are the same as
the ones for the harmonic oscillator.

2.2.1 Homogeneous systems

First we treat translational invariant systems. These are circuits that can be defined
by a unit cell that repeats periodically in one dimension.

Transmission line

A transmission line is a circuit element that can propagate electromagnetic waves.
This means that, contrary to lumped elements, the voltage and current magnitude
and phase vary over its length. The most common way of representing a trans-
mission line is with two conductors, Fig. 2.5 (a). The reason for this is that TEM
modes need at least two conductors to propagate.

A portion of infinitesimal length dx can be modeled using the following lum-
ped elements:

— Rx : series resistance per unit length for both conductors.

— Lx : series inductance per unit length for both conductors.

— Gx : shunt conductance per unit length.

— Cx : shunt capacitance per unit length.

The series inductance Lx is the inductance of both conductors and the shunt capac-
itance Cx comes from the proximity between the conductors. The series resistance
Rx represents the finite conductivity of the conductors and the shunt conductance
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(a)

(b)

Figure 2.4 – First three energy levels as a function of ng for the (a) scpb

and (b) the transmon qubit. The energy is normalized to the
0→ 1 transition energy at ng = 1/2, E10.
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v(x,t)

i(x,t)

dx

(a)

Rxdx

Gxdx Cxdx

Lxdx

dx

(b)

Figure 2.5 – (a) Voltage and current definitions. (b) Lumped element
model.

Gx the losses in the dielectric between the two conductors. Rx and Gx therefore
represent the losses in the transmission line.

The equations of motion of the transmission line can be obtained applying
Kirchhoff’s laws to the circuit in Fig. 2.5 (b)58. This results in the telegrapher equa-
tions, Eq. (2.15).

∂v(x, t)
∂x

= −Rxi(x, t)− Lx
∂i(x, t)

∂t
,

∂i(x, t)
∂x

= −Gxv(x, t)− Cx
∂v(x, t)

∂t
.

(2.15)

We can simplify the expression assuming sinusoidal solutions of the form v(x, t) =
V(x)ejωt for both voltage and current. Introducing this expression in Eq. (2.15) we
obtain

dV(x)
dx

= − (Rx + jωLx) I(x) (2.16)

dI(x)
dx

= − (Gx + jωCx)V(x) (2.17)

Combining these two expressions we get a wave equation for the voltage and the
current, Eq. (2.19).

∂2V(x, t)
∂x

− γ2V(x, t) = 0 (2.18)

∂2 I(x, t)
∂x

− γ2 I(x, t) = 0 (2.19)

Here γ is the propagation constant of the line. It is given by

γ = α + jk =
√
(Rx + jωLx) (Gx + jωCx) (2.20)

The solutions for Eq. (2.19) are incoming and outgoing voltage and current waves;

V(x, t) =
∣∣V+

0

∣∣ ejωt−γx +
∣∣V−0 ∣∣ ejωt+γx, (2.21)

I(x, t) =
∣∣I+0 ∣∣ ejωt−γx +

∣∣I−0 ∣∣ ejωt+γx. (2.22)
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From Eqs. (2.16), (2.21) and (2.22) we see that the current and the voltage in
the line are related via

V+
0

I+0
=
−V−0

I−0
= Z0 =

√
Rx + jωLx

Gx + jωCx
(2.23)

This quantity Z0 is the characteristic impedance of the transmission line. It plays
a role similar to the index of refraction in optical media. When connecting two
transmission lines in series they must have the same characteristic impedance Z0
in order to avoid reflections at the interface between them. For most electrical
circuits it is fixed to 50 Ω.

We can rewrite Eq. (2.21) taking the real part to show explicitly the space
dependence,

v(x, t) = |V+
0 | cos

(
ωt− kx + φ+

)
e−αx + |V−0 | cos

(
ωt + kx− φ−

)
eαx. (2.24)

Here ω and k are related via the dispersion relation of the line imposed by
Eq. (2.20). As it can be seen from Eqs. (2.20) and (2.23), at low frequencies the
resistance per unit length Rx and the conductance per unit length Gx dominate.
This results in a damping of the propagating wave via α in Eq. (2.24). At high
frequencies at which the wavelength is comparable to the physical dimensions of
the transmission line, the modes are not TEM and this transmission line model is
not valid anymore.

In this work we use superconductors and measure at cryogenic temperatures,
therefore we neglect both Rx and Gx and work with a lossless line. In this case we
can simplify the expressions for the propagation constant γ and the characteristic
impedance Z0 of the line as

γ = jω
√

LxCx → k = ω
√

LxCx, (2.25)

Z0 =

√
Lx

Cx
, (2.26)

As it can be seen, now Z0 is frequency independent. From Eq. (2.25) we obtain a
linear dispersion relation

ω(k) = vpk. (2.27)

where the phase velocity vp is given by

vp =
1√

LxCx
(2.28)

Therefore, in a transmission line waves propagate in the same way as optical light
does in a linear medium of refractive index n = c/vp.

The array of squids

In circuits the coupling strength is given by the impedance matching condition58

which basically states that the coupling between two circuits is maximal whenever

31



Chapter 2 Circuit theory

their impedances are the same. This idea is treated in detail in Chapter 3. For the
superconducting qubits the impedance is in the kΩ range. Therefore to improve
the coupling between the qubit and the transmission line we need to increase Z0.
From Eq. (2.26) it follows that it is necessary to increase Lx and to decrease Cx.

As mentioned in Section 2.1.1, a Josephson junction has a large inductance
while being dissipation less. In addition, due to its reduced size (∼ µm2) its ca-
pacitance to ground can be very small (≤ 1 fF). In order to fabricate this high
impedance transmission line we connect several junctions in series39,46,47,84. The
lumped element model for this array is shown in Fig. 2.6 (a). Each site consists
of a Josephson junction with inductance LJ and self capacitance CJ . In addition
each site has a capacitance to ground Cg. We are interested in the linear properties
of this array, therefore we use junctions with a large EJ/EC ratio (large Ic) to be
sure that they behave as linear inductors, see Eq. (2.4). Moreover, instead of single
junctions we use squids that allow to tune the inductance of the junctions LJ and
therefore the characteristic impedance of the line Z0 via an external magnetic flux
Φ. The circuit scheme for the array in the linear regime is shown in Fig. 2.6 (b). To
represent the tunable linear inductors we use the usual inductor symbol with an
arrow across it.

Cg

N

LJ,CJ

Cg

LJ

CJ

(a)

(b) IL

IC

IʹL

IʹCICg

l-1 l l+1

a

Figure 2.6 – Lumped element model for an array of squids. (a) Full
nonlinear model. (b) Linearized model. The different nodes
in the circuit and different currents are shown. The length
of each unit cell is a.

Using the linear model of Fig. 2.6 (b) we obtain the dispersion relation of the
modes in the chain. We apply Kirchhoff’s current law to one array cell of length a,

IL + IC − I′L − I′C − I′Cg
= 0. (2.29)

We rewrite this expression using the flux Φl at node l and the parameters of the
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array, LJ , CJ and Cg. We obtain

1
LJ

(Φl−1 −Φl) + CJ
(
Φ̈l−1 − Φ̈l

)
− 1

LJ
(Φl −Φl+1)− CJ

(
Φ̈l − Φ̈l+1

)
− CgΦ̈l = 0. (2.30)

The position along the x axis can be written as x = la with l an integer denoting
the node in the circuit. To solve Eq. (2.30) we use as ansatz a plane wave Φl =
A exp j (ωt− kla) and solve for ω. In this way we obtain the dispersion relation
for an array of squids in the linear regime, Eq. (2.31).

ω (k) =
1√
LJCJ

√√√√ 1− cos (ka)

1− cos (ka) + Cg
2CJ

. (2.31)

In Fig. 2.7 we plot ω (k) in blue. We distinguish two different regimes in this
dispersion relation. When ka � 1 and ka �

√
Cg/CJ we can Taylor expand the

cosine term cos (ka) ∼ 1− (ka)2/2 obtaining a linear dispersion relation

ω(k) =
a√

LJCg
k = vpk. (2.32)

We recover the linear behavior for the infinite continuous transmission line in
Eq. (2.27). This linear regime is shown in orange in Fig. 2.7. For usual values
of a = 1 µm, LJ = 1 nH and Cg = 0.1 fF we obtain a phase velocity of vp =

3× 106 m/s. This means that with such arrays of squids we can get refractive
indexes in the order of n = c/vp = 100. For ka → π the dispersion relation
becomes flat approaching a constant value given by

ωp =
1√

LJ
(
CJ + Cg/4

) . (2.33)

This is the plasma frequency of the single junctions. It is shown in Fig. 2.7 with
a dashed gray line. As it can be seen, for CJ � Cg/4 the dispersion relation is
already almost flat for ka = 0.2.

This plasma frequency comes from two different characteristics of the array.
The most intuitive one is the Josephson capacitance CJ . At low frequencies this
capacitance is an open and the array behaves as a regular transmission line. How-
ever, at high frequencies it becomes a short. No current flows through the in-
ductors and therefore no mode propagates. There is however some transmission
through the array via capacitances CJ and Cg. The boundary between these two
limits is the resonance frequency of the LC circuit formed by each cell. At this fre-
quency the impedance of each cell becomes infinite and there is no transmission
through the array.

The second characteristic is that we assumed a discrete model for the array,
i.e. we divided its length in unit cells of length a. Within this model, the shortest
possible wavelength λ is when each unit cell oscillates with a π shift from its

33



Chapter 2 Circuit theory
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Figure 2.7 – Dispersion relation for an infinite chain. In orange the lin-
ear regime is shown. The plasma frequency is given in grey.
The chosen parameters are similar to the ones in the exper-
iment, LJ = 0.33 nH, CJ = 259 fF and Cg = 0.13 fF.

neighbors, i.e. when λ = 2a. This corresponds to k = 2π/λ = π/a which gives
ka = π. Using Eq. (2.31) and ka = π the maximum mode frequency is given by
ωmax = ωp.

Regarding the wave number k, its values depend on the boundary conditions
imposed in the array. For an infinite array, k takes any value. All waves propagate
and there are no standing waves. However, whenever we make a finite size array
with islands l ∈ [0, . . . , N], the two sites at the extremity have different boundary
conditions than the sites in the middle. Therefore the value of k will be restricted.

The general form of the eigenmodes of a chain is a superposition of right-
moving and left-moving plane waves,

Φl = A exp j (ωt− kla) + B exp j (ωt + kla) . (2.34)

If we ground both ends of the chain the voltage at nodes 0 and N becomes zero,

Φ̇0 = 0 Φ̇N = 0. (2.35)

Plugging this condition into Eq. (2.34) gives the allowed k values,

k =
nπ

Na
f or n = 1, 2, . . . , N − 1. (2.36)

For both ends open the voltage reaches a maximum at nodes 0 and N. This
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imposes the following condition on the flux,

∂Vl
∂ (la)

∣∣∣∣
l=0

=
∂Φ̇l

∂ (la)

∣∣∣∣
l=0

= jω
∂Φl

∂ (la)

∣∣∣∣
l=0

= 0

∂Vl
∂ (la)

∣∣∣∣
l=N

=
∂Φ̇l

∂ (la)

∣∣∣∣
l=N

= jω
∂Φl

∂ (la)

∣∣∣∣
l=N

= 0.

(2.37)

With these boundary conditions we obtain the same expression for the k as in
Eq. (2.36).

Another configuration is to keep one side open and the other grounded. This
gives mixed boundary conditions,

∂Φl
∂ (la)

∣∣∣∣
l=0

= 0 Φ̇N = 0. (2.38)

For this case the allowed values for k are

k =
(n− 1/2)π

Na
for n = 1, 2, . . . , N. (2.39)

The characteristic impedance of the array of squids can be obtained in a similar
way to the dispersion relation, see Appendix A.1. The result is

Z0 (ω) =

√
LJ

Cg (1− LJCJω2)
. (2.40)

For frequencies far away from the plasma frequency of the junctions, the array of
squids behaves as a lossless transmission line of characteristic impedance

Z0 =

√
LJ

Cg
for ω � 1/

√
LJCJ . (2.41)

Regular Josephson junctions have an inductance in the nH range. The capacitance
to ground depends on the specific geometry of the circuit but it is usually in
the fF range. This means that the characteristic impedance for these arrays is in
the kΩ range, much larger than the usual 50 Ω in microwave systems. Thanks to
the squids in the array we can tune the impedance with an external flux via the
Josephson inductance,

Z0(Φext) =

√
LJ(Φext)

Cg
. (2.42)

To sum up, the array of squids is a high impedance transmission line whose
impedance is flux tunable. This allows us to study the qubit-array system at dif-
ferent interaction regimes.

2.2.2 Non-homogeneous systems
Most circuits are not homogeneous i.e. they cannot be described by a unit cell
that repeats periodically over a finite length. Here we introduce two different
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formalisms to treat these circuits.

Lagrangian and Hamiltonian for a linear circuit

In this section we describe the formalism to obtain the eigenmodes and eigenfre-
quencies for any given linear circuit. The useful variables to describe the circuit
are the flux Φn and the voltage Φ̇n at node n. We are going to work only with
linear elements: capacitors (C) and inductors (L). Each of these elements have the
following constitutive relations81;

Q = C (Vm −Vn) = C
(
Φ̇m − Φ̇n

)
, (2.43)

I =
(Φm −Φn)

L
. (2.44)

The energy stored in each component integrating the electrical power with respect
to time is given by Eqs. (2.45) and (2.46).

EC =
C
(
Φ̇m − Φ̇n

)2

2
, (2.45)

EL =
(Φm −Φn)

2

2L
. (2.46)

A Lagrangian containing only linear elements is quadratic in Φn and Φ̇n for
all n. This means that it can be written in the form

L =
1
2
~̇ΦT Ĉ ~̇Φ− 1

2
~ΦT L̂

−1 ~Φ, (2.47)

where we defined vectors ~̇Φ and ~Φ as

~̇Φ =


Φ̇0
Φ̇1
...

Φ̇N

 , ~Φ =


Φ0
Φ1
...

ΦN

 . (2.48)

The matrices Ĉ and L̂ are symmetric matrices. Ĉ is the capacitance matrix and
L̂ is the inductance matrix of the circuit. For this Lagrangian the Euler-Lagrange
equation is given by85,86

~̈Φ = − Ĉ
−1

L̂
−1 ~Φ. (2.49)

From this expression it is clear that the positive square root of the eigenvalues of

Ĉ
−1

L̂
−1

gives the resonance frequencies of the circuit.
From the Lagrangian in Eq. (2.47) we can obtain directly the Hamiltonian of

any linear circuit. To do so we perform a Legendre transformation obtaining86

H =
1
2
~QT Ĉ

−1 ~Q +
1
2
~ΦT L̂

−1 ~Φ, (2.50)
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where the ~Q contains the conjugate momenta of node fluxes, the node charges Qn.
The relation between ~̇Φ and ~Q is given by

~Q = Ĉ ~̇Φ. (2.51)

To move to the quantum mechanical problem we replace the variables Q and
Φ by the operators Q̂ and Φ̂ defined in Section 2.1.2. Following the method in
Snyman and Florens 30 we write the linear Hamiltonian in Eq. (2.50) in its normal-
mode basis. To do so we first impose the following relation between the charge
and flux operators and the bosonic creation and annihilation operators,

Q̂n =

√
h̄
2

N

∑
k=1

ξn,k

(
ak + a†

k

)
Φ̂n = i

√
h̄
2

N

∑
k=1

πn,k

(
ak− a†

k

)
. (2.52)

The inverse relation reads,

ak =
1√
2h̄

N

∑
n=1

[
ξk,nΦ̂n + iπk,n Q̂n

]
a†

k =
1√
2h̄

N

∑
n=1

[
ξk,nΦ̂n − iπk,n Q̂n

]
. (2.53)

Here, matrices ξ and π need to be determined. By imposing the standard commu-
tation relations for the bosonic operators, [an, a†

m] = δn,m and [an, am] = 0, and the
commutation relations for charge and flux operators, [Φ̂n, Q̂m] = ih̄δn,m we obtain
an important relation for matrices ξ and π (see Appendix A.2 for the derivation),

ξπT = I. (2.54)

The units for the elements of the matrices are [ξ] = 1/
√

Ω and [π] =
√

Ω. If we
introduce Eq. (2.52) in the Hamiltonian in Eq. (2.50) we obtain

H =
1
2
~̂Q

T
Ĉ
−1 ~̂Q +

1
2
~̂Φ

T
L̂
−1 ~̂Φ

=
1
2

N

∑
j,k=1

[
Q̂j Ĉ

−1
j,k Q̂k +Φ̂j L̂

−1
j,k Φ̂k

]

=
h̄
4

N

∑
j,k=1

[(
a†

j + aj

) [
ξT Ĉ

−1
ξ
] (

a†
k + ak

)

−
(

a†
j − aj

) [
πT L̂

−1
π
] (

a†
k − ak

)]
. (2.55)

In order to recover the expression for an harmonic Hamiltonian the terms in brack-
ets must fulfill [

ξT Ĉ
−1

ξ
]
= Ω̂, (2.56)

[
πT L̂

−1
π
]
= Ω̂, (2.57)
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where Ω̂ is a diagonal matrix whose entries are the frequencies of the normal
modes ωk. Therefore, from Eq. (2.49), Ω̂ contains the positive square root of the

eigenvalues of matrix Ĉ
−1

L̂
−1

.
To fulfill these conditions the components of matrix π must be the eigenvectors

of matrix Ĉ
−1

L̂
−1

. If we multiply on the left Eq. (2.56) by π and Eq. (2.57) by ξ we
obtain

πξT Ĉ
−1

ξ = Ĉ
−1

ξ = πΩ̂, (2.58)

ξπT L̂
−1

π = L̂
−1

π = ξΩ̂. (2.59)

Now we substitute the expression for ξ in Eq. (2.59), ξ = L̂
−1

πΩ̂−1, into Eq. (2.58).
We get an eigenvalue equation for π,

Ĉ
−1

L̂
−1

πΩ̂−1 = πΩ̂ → Ĉ
−1

L̂
−1

π = πΩ̂2. (2.60)

This means that the columns of matrix π are the right eigenvectors of matrix

Ĉ
−1

L̂
−1

.
Taking all this into account we can finally write the Hamiltonian as:

H =
h̄
4

N

∑
j,k=1

[(
a†

j − aj

) [
ξ̂T Ĉ

−1
ξ̂
] (

a†
k − ak

)

−
(

a†
j + aj

) [
π̂ L̂
−1

π̂T
] (

a†
k + ak

)]

=
h̄
4

N

∑
j=1

[(
a†

j − aj

)
ωj

(
a†

j − aj

)
−
(

a†
j + aj

)
ωj

(
a†

j + aj

)]

=
N

∑
j=1

h̄ωj

(
a†

j aj +
1
2

)
. (2.61)

This method is valid for any system whose Lagrangian can be written as in
Eq. (2.47) for any form of matrices Ĉ and L̂ i.e. for any quadratic Lagrangian. This
means that the system must be linear.

ABCD matrices

Here we present a method to obtain the scattering parameters of a circuit for any
given frequency. The circuits treated in this work are two port circuits. They have
an input port, port 1, and output port, port 2. We can relate the incident voltage
in both ports V−1 , V−2 to the reflected voltage V+

1 , V+
2 via the scattering matrix as(

V−1
V−2

)(
S11 S12
S21 S22

)
=

(
V+

1
V+

2

)
. (2.62)
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2.2 Linear circuits

Although the scattering matrix can in principle be obtained for any circuit, it is
not very convenient when using several elements in series. A much more suitable
description of the circuit is given by the ABCD matrix58. This matrix relates the
total voltage Vi = V+

i + V−i and current Ii = I+i − I−i in any of the ports to the
voltage and current in the other port, Eq. (2.63).(

V1
I1

)(
A B
C D

)
=

(
V2
I2

)
(2.63)

It can be easily shown that the ABCD matrix of two subsystems coupled in cas-
cade is given by the multiplication of the two subsystems ABCD matrices. There-
fore for modeling an array of N squids we can obtain the ABCD matrix of a single
cell to the power N.

We can relate the ABCD matrix to the transmission coefficient S21 via58:

S21 =
2

A + B/Z0 + CZ0 + D
. (2.64)

Here Z0 is the impedance of the input and output ports. For asymmetric ports
with characteristic impedances Z1 and Z2 given by

Z1 = R1 + jX1, (2.65)

Z2 = R2 + jX2, (2.66)

an expression for S21 can be obtained87,

S21 =
2
√

R1R2

AZ2 + B + CZ1Z2 + DZ1
. (2.67)

This expression reduces to Eq. (2.64) when Z1 = Z2 = Z0.
Using this method it is easy to obtain the transmission of a circuit S21 for any

component configuration and at any frequency via the multiplication of each of
the components’ ABCD matrices.

Comparison

It is interesting to get an understanding of both methods to compare them in
different regimes. For doing so we are going to simulate the linearized array of
squids shown in Fig. 2.6 (b). We reproduce the circuit diagram in Fig. 2.8. We
include the different nodes that are going to be used to obtain the Lagrangian of
the circuit. In addition, we include an input port of impedance Zin and an output
port of impedance Zout. The values for the capacitances and the inductances of
the system are given in Table 2.1. We use the same values as the ones in the
experiment. However, in order to speed up the computation, we use a shorter
chain of 1000 sites.

To write the Lagrangian of the circuit we use as coordinates the flux Φn and the
electric voltage Φ̇n in each of the islands of the circuit, n ∈ 0, 1, . . . , N. However,
the Lagrangian formalism cannot deal with the impedances Zin and Zout. We can
take two limits on each of these impedances, one when they tend to zero and the
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LJ 0.33 nH
Cg 0.13 fF
CJ 259 fF
d(asymmetry) 0.25
N 1000

Table 2.1 – Array parameters for the Lagrangian and the ABCD simu-
lations.

Cg

LJ

CJ

1 2 3 N

Zin Zout

0

Figure 2.8 – Linearized model for the array. In gray we include the dif-
ferent nodes used to obtain the Lagrangian of the circuit.
We include the input and output ports Zin and Zout.

other when they ten to infinity. These two limits change the boundary conditions
at sites 0 and N. If Zin = 0 node 0 will be grounded and Φ0 = Φ̇0 = 0. The
same would happen for Zout and node N. The Lagrangian for the array for open
boundary conditions, i.e. Zin, Zout → ∞ is given byb

Larray =
N

∑
n=1

[
CJ
(
Φ̇n − Φ̇n−1

)2

2
+

(Φn −Φn−1)
2

2LJ
+

CgΦ̇2
n

2

]
. (2.68)

We can write it using the capacitance Ĉ and inductance L̂ matrices of the array,

Larray =
1
2
~̇ΦT Ĉ ~̇Φ− 1

2
~ΦT L̂

−1 ~Φ. (2.69)

bOne can always set Φ0 = Φ̇0 = 0 or ΦN = Φ̇N = 0 in this expression to obtain the desired
boundary conditions.
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2.2 Linear circuits

These are N + 1× N + 1 matrices and are given in Eq. (2.70).

Ĉ =



CJ −CJ
−CJ CΣ −CJ

−CJ CΣ −CJ
. . . . . . . . .

−CJ CΣ −CJ
−CJ CJ + Cg



L̂
−1

=
1
LJ



1 −1
−1 2 −1

−1 2 −1
. . . . . . . . .
−1 2 −1

−1 1



(2.70)

Here we defined CΣ = 2CJ + Cg. Given the fact that the first and last columns and
rows of the matrices are related to nodes 0 and N, they are not present whenever
any of those nodes is shorted to ground. The eigenfrequencies and eigenmodes
are given by the square root of the eigenvalues and the eigenvectors of matrix

Ĉ
−1

L̂
−1

. The obtained eigenfrequencies are shown in Fig. 2.9 as vertical dashed
lines for Zin = 0, Zout = 0 (green) and Zin = 0, Zout → ∞ (purple).

Now we use ABCD matrices to obtain S21 for several frequencies. This allows
us to take into account impedances Zin and Zout via Eq. (2.67). We need to obtain
the ABCD matrix for the array. Due to the fact that the array is periodic, we
obtain the matrix for one cell and then multiply it N times. The matrix for one cell
containing one CJ , one Cg and one LJ is given by

Marray =

1 + ZLC
ZCg

ZLC
1

ZCg
1

 , (2.71)

where

ZLC = j
(

ωLJ

1−ω2LJCJ

)
(2.72)

ZCg =
1

jωCg
. (2.73)

We obtain the Nth power and substitute into Eq. (2.67) to obtain S21(ω). We plot
|S21| in Fig. 2.9 keeping Zin constant and taking two values for Zout. We obtain
several peaks in transmission. These peaks correspond to the eigenfrequencies of
the array. The system can be seen as a Fabry-Pérot interferometer. The impedance
mismatch between the input and output impedances Zin and Zout are like mirrors
in optics. At the eigenfrequencies of the array standing waves are created and the
transmission reaches a maximum.

As it can be seen, when Zout = Zin = 50 Ω the peaks obtained with the ABCD
matrices coincide with the eigenvalues obtained from the Lagrangian using closed
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(a)

(b)

Figure 2.9 – Comparison between the ABCD matrices and the La-
grangian formalism for the linearized array. The dashed
lines in both figures indicate the eigenfrequencies obtained
from the Lagrangian formalism with closed boundary con-
ditions (green) and close/open boundary conditions (pur-
ple). The blue curve is the result obtained from the ABCD
matrices for (a) Zin = 50 Ω and Zout = 50 Ω and
(b) Zin = 50 Ω and Zout = 100kΩ.
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2.2 Linear circuits

boundary conditions. This means that 50 Ω ports can effectively be seen as shorts
to ground. When we change the value of Zout to 100 kΩ the peaks shift to the
eigenvalues in the closed/open configuration. Now the impedance of the output
port is too high and the last site of the circuit can be seen as an open. In both cases
the plasma frequency of the array can be seen as the resonances pack together at
high frequencies.

The boundary between the two is the point where Zout = Zarray =
√

LJ/Cg. At
this point the spectrum is almost flat due to the fact that the array is impedance
matched with the input and output ports, see Fig. 2.10. For low frequencies the

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Frequency (GHz)
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3

2

1
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2

|S
21

| 
(d
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Figure 2.10 – Transmission as a function of frequency for a linearized
array. Here Zout = Zarray =

√
LJ/Cg.

array behaves as a transmission line of impedance
√

LJ/Cg giving a flat trans-
mission. However, for high frequencies some oscillations appear. This is because
close to the plasma frequency the array is not impedance matched with the ports
anymore. In this work we are interested in the low frequency regime where the
impedance of the array is almost constant with frequency.

As mentioned in Section 2.1.1 we can use an external magnetic flux Φ to tune
the total critical current of a squid. We can get an idea of the effect of this flux
tunability using both the Lagrangian and the ABCD matrices. We perform the
same simulations performed before varying LJ according to the flux modulation
of an asymmetric squid,

LJ (Φ) =
LJ (0)∣∣∣cos

(
π Φ

Φ0

)∣∣∣√1 + d2 tan2
(

π Φ
Φ0

) , (2.74)

where LJ (0) = LJ . The result is shown in Fig. 2.11. The color map is the transmis-
sion obtained with ABCD matrices. The red dashed lines are the eigenfrequencies
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from the Lagrangian.
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Figure 2.11 – Simulated flux sweep. The color code is the transmission
obtained form the ABCD matrix simulation. The dashed
red lines are the eigenfrequencies obtained from the La-
grangian.

2.3 Nonlinear circuits

The theoretical derivations presented here were made by Dr. Izak Snyman and
Dr. Serge Florens with whom I have closely collaborated.

When dealing with nonlinear elements, such as the Josephson junctions, one
cannot write the Lagrangian of a circuit as a matrix product (Eq. (2.47)) and obtain
the Euler-Lagrange equation in Eq. (2.49). It is then very convenient to approxi-
mate this nonlinear elements by linear ones.

A common approach for linearizing a circuit with Josephson junctions of en-
ergy EJ is to replace them by linear inductors of inductance LJ = ϕ2

0/EJ . This is
the approach we follow with the array of squids. One could in principle make the
same approximation for the transmon qubit. However, this approach does not give
the best possible harmonic approximation for the system since it does not count
for the strong vacuum fluctuations within the transmon potential. To obtain the
closest harmonic Hamiltonian one has to use the Self Consistent Harmonic Ap-
proximation (scha). Although the scha could in principle be used to treat all the
nonlinearities in any circuit, in this work we use it only to linearize the transmon
qubit.

We start with the transmon qubit Hamiltonian from Eq. (2.13);

HT =
EC

2
n̂2 +EJ [1− cos (ϕ̂)] . (2.75)
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2.3 Nonlinear circuits

Keeping the system in a potential minimum is needed in order to perform the
scha. For this reason in this Hamiltonian we set ng = 0. Taking into account that
we work in the transmon regime, the effect of ng in the Hamiltonian is negligible.
We would like to write this Hamiltonian as an harmonic Hamiltonian of the form

Hho =
EC

2
n̂2 +

ES

2
ϕ̂2. (2.76)

Here the parameter ES is the parameter we would like to optimize in order to
obtain the closest harmonic solution to the exact solution. The criterion we use is
that the chosen ES should minimize 〈HT〉 where the expectation value is taken
with respect to the ground state of Hho .

For a given ES, the eigenstates and eigenenergies of Hho are the ones for a
quantum harmonic oscillator,

|n〉 =

(
B†
)n

√
n!
|0〉 , (2.77)

E0
n = h̄ωho

(
n +

1
2

)
for n = 0, 1, 2, . . . (2.78)

with the resonance frequency given by ωho =
√

ECES/h̄ and operator B defined
as

B =
1

2λ
ϕ̂− iλ n̂, λ =

1√
2

(
EC

ES

) 1
4

. (2.79)

With this definition, operators n̂ and ϕ̂ can be written as

n̂ =
i

2λ

(
B−B†

)
(2.80)

ϕ̂ = λ
(

B+B†
)

. (2.81)

Now we express the full Hamiltonian HT using these operators. First we
rewrite it in the form

HT =
EC

2
n̂2 +

ES

2
ϕ̂2 + EJ [1− cos (ϕ̂)]− ES

2
ϕ̂2. (2.82)

The first two terms are just the harmonic part. Now we can substitute expressions
Eqs. (2.80) and (2.81) in Eq. (2.82) obtaining

HT =h̄ωho

(
B† B+

1
2

)
+ EJ

[
1− e−λ2/2

2

(
eiλ B†

eiλ B + e−iλ B†
e−iλ B

)]

−ES

2
λ2
[(

B†
)2

+ B2 +2 B† B+1
]

.

(2.83)
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Here we used the Baker-Campbell-Hausdorff formulac. The expectation value
〈0| HT |0〉 is given by

〈0| HT |0〉 =
h̄ωho

4
+ EJ

(
1− e−λ2/2

)
=

√
ECES

4
+ EJ

[
1− e−

1
4
√

EC/ES
]

. (2.84)

The minimal value for 〈0| HT |0〉 is

∂ 〈0| HT |0〉
∂ES

= 0 → ES = EJe−
1
4
√

EC/ES , (2.85)

or rewriting it using the harmonic oscillator resonance frequency

h̄ωho =
√

EJECe−EC/8ωho . (2.86)

One needs to solve Eq. (2.85) self-consistently to get ES. However we can solve
it approximately performing a Taylor expansion of the exponential and assuming
ES ∼ EJ ,

ES = EJ −
1
4

√
ECEJ . (2.87)

The same expression for the harmonic oscillator resonance frequency is

h̄ωho =
√

EJEC −
EC

8
. (2.88)

In Fig. 2.12 we compare the numerical diagonalization of the exact Hamiltonian
in Eq. (2.75) with the approximate solutions given in Eqs. (2.86) and (2.88). As
we see, for EJ/EC ≥ 2 both approximations are indistinguishable from the exact
solution. This means that for this regime we can approximate the transmon qubit
by an harmonic oscillator characterized by EC and ES.

2.3.1 General formula
The strength of the scha compared to the usual linearizations of the transmon
qubit performed in e.g. Koch et al. 80 is easier to see if we deal with the whole
system, a transmon qubit capacitively coupled to an array of linearized squids.
The Hamiltonian of this system is

H =
(2e)2

2 ∑
l,s

Ĉ
−1
l,s n̂l n̂s +∑

l

EJ

2
(ϕ̂l − ϕ̂l+1)

2 − EJ,T cos ϕ̂T. (2.89)

Here the operator n̂l is the Cooper pair number operator at island l and the oper-
ator ϕ̂l is the superconducting phase operator at island l. The only nonlinear term
in the Hamiltonian is the last one which contains ϕ̂T, the superconducting phase
difference through the Josephson junction in the transmon qubit. We rewrite the
Hamiltonian as

H = H0−EJ,T cos ϕ̂T. (2.90)

cFor creation and annihilation operators B and B† with commutation relation [B, B†] = 1 and a

scalar λ it follows that eλ(B−B†) = eλ Beλ B†
e−λ2/2
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ho =
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EJEC e EC/8 ho

ho =
√

EJEC EC/8

T from the full Hamiltonian

Figure 2.12 – Comparison between the exact transmon frequency ωT
and its harmonic approximation ωho for EC = 2.6 GHz.
The blue area represents ωT for ng ∈ [0, . . . , 1/2]. The
black line is the self-consistent solution from the scha.
The red dashed line is the approximate solution for the
self-consistent equation.
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Our goal is to obtain an harmonic Hamiltonian to approximate the original one.
This harmonic trial Hamiltonian is given by

Htrial = H0 +
ES

2
ϕ̂2

T. (2.91)

We use as a trial state |Ψ〉 the ground state of Htrial. From the variational principle
we obtain the condition

∂

∂ES
〈Ψ| H |Ψ〉 = 0. (2.92)

After some calculations, see Appendix A.3, this condition gives the following ex-
pression for ES,

ES = EJe−
1
2 〈Ψ|ϕ̂2

T|Ψ〉. (2.93)

The meaning of this expression is clear, the self-consistent energy ES depends
strongly on the vacuum fluctuations of the superconducting phase at the transmon
island. This vacuum fluctuations have contributions from all the modes in the
array, see the mode decomposition given in Eq. (2.52). Therefore, contrary to the
usual linearization of the Josephson junction energy, this method properly takes
into account the contribution to ES from the modes of the environment. The full
procedure was implemented for the full system in this work but it gave negligible
contributions and therefore we took into account the vacuum fluctuations coming
from the transmon qubit only and their strong effect given its nonlinear potential.
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Coupling in circuits 3

In this chapter we give a detailed description of the capacitive coupling between
circuits. First we study the case of two oscillators capacitively coupled. We obtain
the coupling strength as a function of the circuit parameters for the linear case,
two LC linear oscillators, and the non-linear case, a Single Cooper Pair Box (scpb)
and an LC oscillator. Then we show how the coupling between an LC circuit
and a continuous environment of characteristic impedance Z0 depends on this
impedance. Finally we substitute the environment by an array of squids and the
LC oscillator by a transmon qubit and introduce a way of obtaining the coupling
strength between them by looking at the frequency shift of the modes of the array.
This method allows to account for the many modes of the array of squids and for
the nonlinearity of the transmon qubit, which is comparable to the Free Spectral
Range (fsr) of the array.

3.1 Coupling between two oscillators

Most of the results in this work are based on the coupling of one system to an
environment composed of several modes. Here we briefly treat a simpler case, a
linear LC oscillator coupled to another LC oscillator via a capacitor. The lumped
element model of this system is shown in Fig. 3.1. The first oscillator, in red, has
inductance L1 and capacitance C1. The second one, in blue, has inductance L2 and
capacitance C2. They are coupled via capacitance Cc. In the following, we relate
the oscillator 1 to the system and oscillator 2 to the environment.

L1

C1

Cc

1 2
L2

C2

Figure 3.1 – Two coupled LC oscillators. In grey the nodes used for de-
scribing the circuit are shown. The third node is grounded.

The Lagrangian of this system can be easily obtained,

L =
C1Φ̇2

1
2

+
Φ2

1
2L1

+
C2Φ̇2

2
2

+
Φ2

2
2L2

+
Cc
(
Φ̇2 − Φ̇1

)2

2
. (3.1)

49



Chapter 3 Coupling in circuits

In order to study the coupling between the two oscillators it is useful to obtain
a Hamiltonian in terms of creation and annihilation operators. The Hamiltonian
of the system can be directly obtained via a Legendre transformation of the La-
grangian. It is given by

H =
Q2

1
2CΣ,1

+
Φ2

1
2L1

+
Q2

2
2CΣ,2

+
Φ2

2
2L2

+
Q1Q2

CΣ,c
. (3.2)

Here we defined the following capacitances;

CΣ,1 = C1 +

(
1

C2
+

1
Cc

)−1

, (3.3)

CΣ,2 = C2 +

(
1

C1
+

1
Cc

)−1

, (3.4)

CΣ,c = C1 + C2 +
C1C2

Cc
. (3.5)

In Eq. (3.2) we can clearly differentiate three terms: two harmonic oscillators and
one coupling term. This coupling term contains the charge associated to each of
the oscillators. Now we can promote all variables to operators and introduce as
usual the creation and annihilation operators. The charge and flux operators in
this basis are given by

Q̂j =

√
h̄
2

1√
Zj

(
aj + a†

j

)
, (3.6)

Φ̂j = i

√
h̄
2

√
Zj

(
aj− a†

j

)
for j = 1, 2. (3.7)

We defined the impedances of the oscillators as Zj =
√

Lj/CΣ,j. The quantum

vacuum oscillations for the flux Φ̂j are then given by 〈0| Φ̂2
j |0〉 = (h̄/2)Zj which

is proportional to the impedance of the oscillator.
Using these operators we obtain a linear Hamiltonian for two coupled LC

oscillators, Eq. (3.8).

H =h̄ω1

(
a†

1 a1 +
1
2

)
+ h̄ω2

(
a†

2 a2 +
1
2

)
+

h̄g
(

a1 + a†
1

) (
a2 + a†

2

)
.

(3.8)

The first two terms are the usual Hamiltonian for an harmonic oscillator. The
frequencies ωj are given by 1/

√
LjCΣ,j. The third term gives the coupling between

the oscillators. The coupling strength g is given by

g =
1

2CΣ,c

1√
Z1

1√
Z2

=
Cc

2 (Cc (C1 + C2) + C1C2)

1√
Z1

1√
Z2

. (3.9)
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It has two parts. The first one is a term that contains a ratio of the coupling capac-
itance Cc to the other capacitances. This is expected, with increasing Cc the cou-
pling between the oscillators increases. The second part contains the impedances
Z1 and Z2 of the oscillators. At first glance one would think that in order to in-
crease the coupling we need to decrease this impedances. This is the total oppo-
site to what one would expect. As already shown several times7,8,30,85, to get the
proper scaling for the coupling we need to compare it to the energy scales of the
system. In this case we take the energy of the environment, h̄ω2, and write the
coupling term as

g
ω2

=
1
2

Cc

C1 + Cc

√
Z2

Z1
. (3.10)

We can distinguish two contributions in this coupling term. The first one is a ratio
of capacitances. It is a purely geometrical factor and can be increased with the
proper design for the coupling capacitors. The second one is related to the vacuum
fluctuations of Φ̂7. It is clear that we need Z2/Z1 � 1. This states that we need
the impedance of the environment to be at least as high as the impedance of the
system if we want a coupling in the order of the frequencies of the environment.
Of course, given the relation between the impedance and the frequency of each of
the oscillators, the condition Z2/Z1 � 1 might not be experimentally relevant if,
for example, one wants to keep the resonance condition ω1 = ω2.

3.1.1 Nonlinear model

The results in previous section were obtained assuming two linear LC oscillators.
In a way similar than the one followed in Manucharyan et al. 8 we replace now the
linear inductor L1 with a Josephson junction of Josephson energy EJ,T = ϕ0

2/LJ,T,
see Fig. 3.2. To keep a consistent notation we rename C1 as CJ,T and relabel the

Cc

1 2
L

C

EJ,T

CJ,T

Figure 3.2 – One scpb in red coupled to an LC oscillator in blue via a
coupling capacitor Cc. The nodes of the circuit are given in
gray.

inductance and capacitance of oscillator 2 as L and C. The Hamiltonian of the
system is then

H =
EC,T

2
n̂2−EJ,T cos ϕ̂ +

Q̂
2

2CΣ
+

Φ̂2

2L
+

(2e) n̂ Q̂
CΣ,c

. (3.11)
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Here n̂ and ϕ̂ are the Cooper pair number operator and the superconducting
phase operator respectively. We defined EC,T = (2e)2/CΣ,J as the charging energy
of the Cooper pair box. The capacitances CΣ,J and CΣ are given by CΣ,1 and CΣ,2
respectively. Contrary to Eq. (3.2), this Hamiltonian is not linear due to the Joseph-
son energy term. We can introduce the creation and annihilation operators for the
harmonic oscillator as in Eq. (3.8). This gives the following Hamiltonian,

H =
EC,T

2
n̂2−EJ,T cos ϕ̂ + h̄ωr

(
a† a+

1
2

)
+

h̄
2e

CΣ,c

√
1

2h̄
1√
Zr

n̂
(

a† + a
)

.

(3.12)

Here we defined Zr =
√

L/CΣ. The last term is the coupling term and depends
on the value of n̂. As previously we can rewrite it taking out the resonance fre-
quency of the LC resonator ωr = 1/

√
LC. In addition we introduce the quantum

of resistance Rq = h/(2e)2 ∼ 6.5 kΩ. This gives

Hcoupling = h̄ωr
Cc

Cc + CJ,T

√
πZr

Rq
n̂
(

a† + a
)

. (3.13)

As we see we obtain an expression similar to the one obtained for linear circuits.
We have to keep in mind that the strength of the coupling depends on the operator
n̂.

For a linear circuit we could easily introduce the creation and annihilation
operators to obtain the final expression for the coupling between the circuits. In
this case we can take two limits, small and large EJ,T/EC,T. For small EJ,T/EC,T we
can assume that the scpb is an effective two-level system and write8

Hcoupling = h̄ωr
Cc

Cc + CJ,T

√
πZr

Rq
(σ+ + σ−)

(
a† + a

)
. (3.14)

This is the expression for the coupling in the Rabi model, see Section 1.1. We can
identify the coupling strength g as

g
ωr

=
Cc

Cc + CJ,T

√
πZr

Rq
. (3.15)

This shows that in this regime the impedance of the environment needs to be quite
large, in the kΩ range. That is a clear justification for using an array of squids as
the environment.

We can take now the limit of large EJ,T/EC,T in Eq. (3.13) and obtain the cou-
pling in the transmon regime. First we introduce the Cooper pair number operator
n̂ for a transmon qubit80

n̂ =

√
1
2

(
EJ,T

EC,T

) 1
4 (

B† +B
)

, (3.16)
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3.2 Coupling between an LC oscillator and a continuous environment

where B† and B are the creation and annihilation operators for the harmonic oscil-
lator approximating the transmon qubit. Introducing this in Eq. (3.13) we obtain
an expression similar to the one of the harmonic oscillators,

g
ωr

=
Cc

Cc + CJ,T

1√
2

(
EJ,T

EC,T

) 1
4
√

πZr

Rq
. (3.17)

Once again we need to increase the impedance Zr to enhance the coupling between
the transmon and the LC oscillator.

3.2 Coupling between an LC oscillator and a continuous en-
vironment

It is now clear that in order to couple strongly a charge qubit or a transmon qubit
to a resonator one needs to increase the impedance of the latter. Now we are going
to continue increasing the complexity of the problem. Here we study the coupling
between a linear LC oscillator and a continuous environment of characteristic
impedance Z0. By continuous environment we mean that the dispersion relation
of the environment is continuous.

First of all we need to discuss what we understand for coupling strength when
dealing with a continuous environment. Until now the coupling strength was
given by a number g. When dealing with several modes we have a gk per mode.
In this case it is more convenient to measure the coupling strength via the width Γ0
of the resonance frequency of the qubit. This width Γ0 can be seen as the relaxation
rate of the system to the environment. We can obtain the relation between Γ0 and
the gk via the bath spectral function J(ω),

Γ0 =
2π

h̄2 ∑
k

g2
kδ
(
ωq −ωk

)
= J

(
ωq
)

. (3.18)

This expression is obtained via the Born-Markov and rotating-wave approxima-
tions. However, up to Γ0/ωq ∼ 1 the equation is still correct22. Therefore we can
use Γ0 as a direct measure of the coupling strength. According to the previous
results, g ∝

√
Z0, we expect Γ0 to be proportional to the impedance of the envi-

ronment.

3.2.1 Intuitive explanation

The behavior of an LC circuit coupled to an environment with impedance Z0
can be intuitively obtained using the circuit depicted in Fig. 3.3. We model the
environment with a resistor of resistance R and couple the LC circuit via two
coupling capacitors of capacitance Cc. From the impedance ZAB between points A
and B we can obtain the frequency ω0 and the width Γ0 of the resonance of the
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Cc

L0

Csh

R

Cc

A B

Figure 3.3 – A parallel LC circuit capacitively coupled to a resistor of
resistance R. The impedance of the system ZAB is obtained
between nodes A and B.

system. From the circuit in Fig. 3.3 we see that this impedance is given by

1
ZAB(ω)

=

(
R +

2
jωCc

)−1

+ jωCsh +
1

jωL0

=
(2 + iCcRω)

(
1− L0Cshω2)− L0Ccω2

iL0ω (2 + iCcRω)
.

(3.19)

The real part of the poles of this impedance gives the resonance frequency of the
system ω0. The imaginary part gives the resonance width Γ0

88.
The behavior of ω0 with respect to R is easy to understand. If we set R = 0 we

simplify Eq. (3.19) and obtain

1
ZAB(ω)

= 1−ω2L0

(
Csh +

Cc

2

)
. (3.20)

This gives a resonance frequency of ω0,R=0 = 1/
√

L0(Csh + Cc/2). This makes
sense, the current oscillates through the whole circuit. However, at large R the
first term in Eq. (3.19) disappears and we obtain ω0,R→∞ = 1/

√
L0Csh. In this case

the resistor behaves as an open and the current oscillates only in the parallel LC
formed by Csh and L0. Regarding the width, we obtain analytically two asymptotic
expressions for small and large R,

Γ0,R→0 =
C2

c R

8 (Csh + Cc/2)2 L0
(3.21)

Γ0,R→∞ =
1

2CshR
. (3.22)

In Fig. 3.4 the width Γ0 is plotted as a function of R including the asymptotic ex-
pressions. For the calculation we used L0 = 18.1 nH, Cc = 119 fF and Csh = 80 fF.
As it can be seen, for small R the width Γ0 is linear with R. This is an expected
behavior consistent with the results derived in the previous section and the fact
that Γ0 ∝ g2. However, at large R it is proportional to 1/R. This is because with an
increasing R less and less current goes through capacitances Cc and therefore the
coupling is reduced.
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C2

c R/8(Csh + Cc/2)2L0

1/2CshR

Figure 3.4 – Resonance width Γ0 as a function of the resistance R. We
take L0 = 18.1 nH, Cc = 119 fF and Csh = 80 fF. The
dashed lines give the two asymptotic expressions. The black
dot where both asymptotic expressions cross gives an es-
timation of the maximum value of Γ0 and the respective
resistance R∗.
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We can get a good estimation of the maximum value of Γ0 and its related
resistance R∗ from the intersection of the two asymptotic expressions,

Γ0,max =
1
2

Cc

2Csh + Cc
ω0,R→∞, (3.23)

R∗ =
(

1 +
2Csh

Cc

)
ZLC. (3.24)

Here we defined ZLC as the impedance of the LC oscillator. The point (R∗, Γ0,max)
is given in Fig. 3.4 in black. This analysis shows intuitively that despite needing
a high impedance to increase the coupling between a circuit and its environment,
one should take care of parasitic capacitances that might shunt the environment
for too high impedances. This effect of shunting a high impedance environment
via parasitic capacitances has been studied recently in several publications72,89,90

relating it to A2 terms in cqed.

3.2.2 Quantitative results

In this section we obtain more quantitative results regarding the coupling of an LC
oscillator to an environment of characteristic impedance Z0. We are going to treat
the circuit shown in Fig. 3.5. This capacitance network describes the experiment,
see Section 4.3.2 for a detailed description of the capacitors used in the sample.
The value of the capacitances used in these simulations is the same as the ones
in the sample measured in the experiment. They are given in Table 3.1. Using

Capacitance Value (fF)

Cg,T2 33
Cg,T 48
Cc 119
Csh 12.1

L0 18.1 nH

Table 3.1 – LC oscillator parameters for the ABCD simulations.

L0

Csh

Cg,T2 Cg,T2Cg,T Cg,T

Cc Cc

Z0 Z0

Figure 3.5 – LC oscillator (red) coupled to two transmission lines of
characteristic impedance Z0 (blue). The capacitance net-
work is the one used in the experiment.

56



3.2 Coupling between an LC oscillator and a continuous environment

ABCD matrices it is easy to obtain the transmission of this circuit as a function of
the impedance of the ports Z0.

To obtain the ABCD matrix for the circuit we decompose it in three submatri-
ces. Two of them are given by capacitances Cg,T2, Cc and Cg,T,

M1 =

 1 +
Cg,T
Cc

1
jωCc

jω
(

Cg,T2 + Cg,T +
Cg,T2Cg,T

Cc

)
1 +

Cg,T2
Cc

 . (3.25)

The third one contains the parallel LC circuit formed by L0 and Csh,

MLC,0 =

(
1 j

(
ωL0

1−ω2LJ,TCsh

)
0 1

)
. (3.26)

The total ABCD matrix is obtained multiplying these three matrices,

MLC = M1MLC,0M1. (3.27)

Now we can use the expression in Eq. (2.67) to obtain the transmission of
the circuit as a function of frequency. First we set Z0 = 50 Ω and obtain the
curve in Fig. 3.6. As it can be seen the transmission has a resonance peak and

2 4 6 8 10 12 14
Frequency (GHz)

80

60

40

20

0

|S
21

| 
(d

B)

1 = 1/
√

L0(CJ + (Cc + Cg, T)/2)

LC = 1/
√

L0Csh

Figure 3.6 – Transmission of the circuit in Fig. 3.5 for Z0 = 50 Ω. In
gray the resonance and the antiresonance are given.

a dip. The dip occurs at frequency ωLC = 1/
√

L0Csh. It is an antiresonance that
comes from the parallel LC circuit formed by L0 and Csh. When the microwave
frequency is ωLC the impedance of the LC circuit becomes infinite and no sig-
nal is transmitted through it. A very important feature of this antiresonance is
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Chapter 3 Coupling in circuits

that it does not depend on any other parameters but L0 and Csh. This is an im-
portant property that will be used in Section 4.3.2 to obtain the system capaci-
tances. Regarding the peak in transmission, it comes from the LC circuit formed
by the whole capacitance network and L0. For low impedances its frequency is

ω1 = 1/
√

L0(Csh + (Cc + Cg,T)/2) which does not depend on Cg,T2. This is ex-
pected, for low impedances Cg,T2 is totally shunted by impedances Z0 and there-
fore no current flows through it.

In Fig. 3.7 we plot the transmission for four different port impedances Z0.
As mentioned before, the dip in transmission is not affected by the impedance

Figure 3.7 – Transmission of the circuit in Fig. 3.5 for different values
of Z0. For Z0 = 5000 Ω the resonance and antiresonance
are indicated in gray.

Z0. However, the width and position of the resonance peak changes as a func-
tion of Z0. The behavior is similar to the one described in Section 3.2.1. For low
impedances the width of the resonance increases with increasing impedance. This
is expected because the oscillator and the port impedances become impedance
matched. However for too high impedances the width is reduced due to the ca-
pacitances Cg,T and Cg,T2 which shunt impedances Z0.

Interestingly, by increasing the impedance Z0 the position of the peak shifts

to higher frequencies. It goes from ω1 = 1/
√

L0(Csh + (Cc + Cg,T)/2) in the low
impedance limit to

ω2 =
1√

L0CΣ

with CΣ =

(
2

Cc
+

2
Cg,T2

)−1

+ Csh +
Cg,T

2
.

(3.28)
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3.3 Coupling of a transmon qubit to a linearized array

in the high impedance limit. It is obvious that for high impedances the effective
capacitance CΣ is the parallel combination of Cg,T, Csh and Cc, Cg,T2 in series. This
makes sense because in this regime the ports can be seen as opens and the current
needs to go through all these capacitances.

In conclusion,whenever we are dealing with a complex capacitance network
that includes capacitances to ground, both the resonance frequency and width de-
pend on the impedance of the environment. Moreover, if we want to optimize the
coupling between the LC oscillator and this impedance we need to design cou-
pling capacitors to reduce the capacitances to ground and increase the coupling
capacitances.

3.3 Coupling of a transmon qubit to a linearized array

Following what we did in Section 3.1 we can obtain the expression for the coupling
between a transmon qubit and a linearized array of squids. We consider the same

Cg

LJ

CJ

LJ,T

Csh

Cg,T2 Cg,T2Cg,T Cg,T

Cc Cc

L R 1 2 3 N+10

Figure 3.8 – Circuit diagram of the sample measured in the experiment,
a transmon qubit (red) capacitively coupled to an array of
squids(blue). In gray the different islands in the circuit are
given. Both ends of the circuit are shunted to ground.

circuit as the one in the experiment, but the method presented here can be used in
principle with any circuit. The circuit diagram is given in Fig. 3.8. We replaced the
50 Ω input and output pads by shorts to ground. As we have seen in Section 2.2.2,
this is a good approximation.

The Hamiltonian of the system can be written as

H =
(2e)2

2 ∑
l,s∈L,R,1,2,...

n̂l Ĉ
−1
l,s n̂s +

ϕ0
2

2 ∑
l,s∈L,R,1,2,...

ϕ̂l L̂
−1
l,s ϕ̂s

− EJ,T cos (ϕ̂R − ϕ̂L).

(3.29)

Matrices Ĉ and L̂ are the inductance and capacitance matrices of the circuit. They
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are tridiagonal matrices given by

Ĉ =



C1 −Csh,T
−Csh,T C1 −Cc

−Cc C2 −CJ
−CJ CΣ −CJ

. . . . . . . . .
−CJ CΣ −CJ

−CJ CΣ



L̂
−1

=
1
LJ



0 0
0 0 0

0 2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2



(3.30)

Here we defined the capacitances

Csh,T = Csh + CJ,T,

C1 = Cc + Csh,T + Cg,T,

C2 = Cc + Cg,T2 + CJ ,

CΣ = 2CJ + Cg.

(3.31)

We neglected the nonlinearity of the squids in the array. Therefore they are de-
scribed by a single inductance LJ . The only nonlinear element in the Hamiltonian
is the cosine term coming from the Josephson junction of the transmon qubit.
We can simplify this Hamiltonian defining the following operators related to the
transmon dynamics

n̂T =
(n̂R− n̂L)

2
, ϕ̂T = (ϕ̂R − ϕ̂L) . (3.32)

Introducing these operators and removing constant terms we obtain the following
expression for the Hamiltonian,

Hsystem =
EC,T

2
n̂2

T−EJ,T cos (ϕ̂T) +
(2e)2

2

N

∑
l,s=1

n̂l

[
Ĉ
−1]

l,s
n̂s +

ϕ2
0

2LJ

N

∑
l=1

(ϕ̂l+1 − ϕ̂l)
2 + n̂T

N

∑
l=1

νl n̂l .

(3.33)

Here we defined the charging energy associated to the transmon qubit EC,T. It is
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3.3 Coupling of a transmon qubit to a linearized array

given by

EC,T = (2e)2
{[

Ĉ
−1]

L,L
+
[
Ĉ
−1]

R,R
− 2

[
Ĉ
−1]

R,L

}
. (3.34)

The coupling between n̂T and n̂l is given by the term νl defined by

νl = (2e)2
{[

Ĉ
−1]

R,l
−
[
Ĉ
−1]

L,l

}
. (3.35)

In order to obtain the values for the gk of the system we first need to diagonal-
ize the array of squids using the method described in Section 2.2.2. In this case, we

need to remove the sites in Ĉ
−1

and L̂
−1

that contain any of the transmon islands,
L or R. Then we write the Cooper pair number operator and the superconducting
phase operator as a function of creation and annihilation operators,

n̂n =
1
2e

√
h̄
2

N

∑
k=1

ξn,k

(
ak + a†

k

)
, ϕ̂n =

1
ϕ0

i

√
h̄
2

N

∑
k=1

πn,k

(
ak− a†

k

)
. (3.36)

We need to keep in mind that in this case the matrices ξ and π are obtained

from matrices Ĉ
−1

and L̂
−1

without the transmon islands. With this definition the
coupling term is given by

n̂T

N

∑
l=1

νl n̂l = n̂T

N

∑
k=1

g̃k

(
ak + a†

k

)
, (3.37)

where the g̃k are given by

g̃k =

√
h̄
2

N

∑
l=1

νlξl,k (3.38)

By using the expression in Eq. (3.16) for the transmon qubit charge operator we
obtain

gk =

√
1
2

(
EJ,T

EC,T

) 1
4

g̃k. (3.39)

Here EJ,T is the Josephson energy obtained from the Self Consistent Harmonic
Approximation (scha) for the sample in the experiment which is EJ,T = 9.0 GHz
at zero flux. The charging energy is obtained from the estimated capacitances in
the circuit, EC,T = 2.4 GHz, see Chapter 7. In Fig. 3.9 gk is plotted as a function
of the modes in the array ωk. We used the array parameters and the qubit capaci-
tances for the real sample, see Tables 2.1 and 3.1 with N = 4700. As we see, for low
frequencies the coupling grows as

√
ωk, gray dashed line. This is expected for an

ohmic environment. However, at high frequencies the coupling decays due to the
effect of the capacitances to ground of the system and the plasma frequency of the
array. In blue we give the frequency range where we can measure the hybridiza-
tion between the transmon qubit and the modes of the array. As we can see, with
this sample design we get a coupling strength between 200 MHz and 150 MHz for
the transmon-array coupling. This gives a 2gk which is comparable to the fsr of
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Figure 3.9 – The coupling strength gk as a function of the mode fre-
quency ωk for the parameters of the measured sample. The
gray dashed line shows the

√
ωk scaling characteristic of

an ohmic bath. In blue the frequency range where the mea-
surements are performed is shown.

the environment, fsr ∼ 400 MHz. It is interesting to obtain gk for different values
of the capacitances to ground, Cg,T and Cg,T2. In Fig. 3.10 we compare three cases,
the one in the experiment, one with Cg,T = 0 and one with Cg,T = Cg,T2 = 0. As
shown in Fig. 3.10 these capacitances reduce the coupling drastically. We still see
the effect of the plasma frequency in the coupling strength since gk decays for ωk
close to the plasma frequency. However it is clear, as shown previously in Sec-
tion 3.2.2, that the most limiting factor are the capacitances to ground that shunt
the environment.

3.4 The transmon phase shift

As previously discussed, the coupling strength gk between each mode and the
transmon qubit are obtained from the capacitance and inductance matrix of the
circuit. However this requires the diagonalization of the Hamiltonian in Eq. (3.33)
which is not possible given its size. For m = 10 modes with n = 4 photons each
and a transmon qubit with q = 3 levels the size of the Hamiltonian is already
3× 104. Therefore we follow a different approach. The coupling strength between
the array and the transmon qubit can be described by a phase shift amplitude
induced by the transmon qubit on the modes of the array. We call this effect the
transmon phase shift. This phase shift informs on the strength of the coupling be-
tween the transmon and the array as well as the number of modes coupled to the
transmon.
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Figure 3.10 – Coupling strength gk as a function of the mode frequency
ωk for three cases, (Cg,T 6= 0, Cg,T2 6= 0), (Cg,T 6=
0, Cg,T2 = 0) and (Cg,T = 0, Cg,T2 = 0). The dashed
lines represent the scaling gk ∝

√
ωk.

3.4.1 Derivation of the expression

First we need to obtain the eigenmodes of the circuit as a function of the circuit
parameters. We start with the lumped element model for the real system, see
Fig. 3.11 (a). It consists of a transmon qubit (red) coupled to an array of squids
(blue). Both ends of the circuit are terminated with two Z0 = 50 Ω ports. As
a first step we linearize the system. We can treat the array directly as a linear
system due to its large EJ/EC ratio, EJ/EC ∼ 8000 in the experiment. Regarding
the transmon qubit, in order to linearize it we perform the scha as explained in
Section 2.3. This allows to replace the Josephson junction in the transmon qubit
by a linear inductor of inductance LJ,T,S = ϕ0

2/ES. Another approximation we
make is to replace the 50 Ω port on the left by a short to ground. This is a valid
approximation as explained in Section 2.2.2. Finally, in order to obtain analytical
expressions, we assume that the array is semi-infinite therefore working in the
thermodynamic limit. In conclusion, we go from the circuit in Fig. 3.11 (a) to the
circuit in Fig. 3.11 (b) by embedding the phase fluctuations and the nonlinear
potential of the transmon in an effective inductance.

We can obtain the equations of motion from the Euler-Lagrange equation in
Eq. (2.49). However, we rewrite this expression in the following way to avoid
having to invert the capacitance matrix Ĉ0

30,

L̂
−1
0 ~Φ = ω2 Ĉ0 ~Φ. (3.40)
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The capacitance and inductance matrices for this circuit are given in Eq. (3.41).

Ĉ0 =



C1 −Csh
−Csh C1 −Cc

−Cc C2 −CJ
−CJ CΣ −CJ

−CJ CΣ −CJ
. . . . . . . . .



L̂
−1
0 =



1
LJ,T,S

− 1
LJ,T,S

− 1
LJ,T,S

1
LJ,T,S

0

0 1
LJ

− 1
LJ

− 1
LJ

2
LJ

− 1
LJ

− 1
LJ

2
LJ

− 1
LJ

. . . . . . . . .



(3.41)

Here we defined C1 = Cc + Cg,T + Csh, C2 = Cc + Cg,T2 + CJ and CΣ = 2CJ + Cg.
Now we have to solve Eq. (3.40) to obtain the different Φl. The part containing

Cg

LJ

CJZ0 Z0

LJ,T

Csh

Cg,T2 Cg,T2Cg,T Cg,T

Cc Cc

L R 1 2 3 N+10

Cg

LJ

CJ

LJ,S,T

Csh

Cg,T2 Cg,T2Cg,T Cg,T

Cc Cc

L R 1 2 3 N+10

∞

(a)

(b)

Figure 3.11 – Circuit diagram of the sample measured in the experi-
ment. (a) Lumped element model of the sample with the
input and output lines of Z0 = 50 Ω. (b) Semi-infinite
linearized model used for obtaining an analytical expres-
sion for the transmon phase shift δφ.

only array nodes can be solved by the ansatz30

ϕl(ω) =
1
ϕ0

Φl(ω) = N cos [ka (l − 1)− φ] with l = 1, 2, 3, . . . (3.42)
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In this expression a is the length of the unit cell of the array, ϕ0 is the reduced
flux quantum, N is the amplitude of the wave and k is the wave number of a wave
that propagates in the chain at a frequency ω. We include a phase shift φ that is
sensitive to the transmon at one end of the chain. From this phase shift φ we are
going to obtain all the information about the coupling between the transmon and
the array as well as about the transmon itself.

The wave number k can be obtained from the dispersion relation for a bare
array, Eq. (3.43). For a detailed derivation of this expression see Appendix A.4.1.

k =
2
a

arccot

√(
4CJ

Cg
+ 1
) [(ωp

ω

)2
− 1
]

. (3.43)

Here ωp = 1/
√

LJ
(
CJ + Cg/4

)
is the plasma frequency of the array. In order to

obtain the phase shift φ as a function of the circuit parameters we need to solve
the equations in Eq. (3.40) involving the transmon islands. These are

1
LJ,T,S

(ΦL −ΦR) = ω2 (C1ΦL − CshΦR) , (3.44)

1
LJ,T,S

(ΦR −ΦL) = ω2 (−CshΦL + C1ΦR − CcΦ1) , (3.45)

1
LJ

(Φ1 −Φ2) = ω2 (−CcΦR + C2Φ1 − CJΦ2) . (3.46)

First from Eqs. (3.44) and (3.45) we eliminate ΦL and obtain ΦR as a function of
Φ1.

ΦR =
Cc
[
ω2C1 − 1/LJ,T,S

]
(C1 − Csh)

[
(C1 + Csh)ω2 − 2/LJ,T,S

]Φ1 (3.47)

Substituing this into Eq. (3.46) and using the expression for k in Eq. (3.43) we
arrive to

Cg

2 [1− cos (ka)]
(Φ1 −Φ2) = CeffΦ1, (3.48)

where Ceff is given by

Ceff(ω) = C2 − CJ −
C2

c
(
ω2C1 − 1/LJ,T,S

)
(C1 − Csh)

[
(C1 + Csh)ω2 − 2/LJ,T,S

] . (3.49)

In Appendix A.4.2 the different steps followed to arrive to these expressions are
given. This effective capacitance Ceff is related to the impedance to ground seen
by the first site of the chain, island 1. This is directly related to the linearized
transmon qubit. Depending of the parameters of the qubit this capacitance will
have a different value.

Using the mode definition in Eq. (3.42) for Φ1 and Φ2 in Eq. (3.48) we obtain

tan φ =

[
1− 2Ceff(ω)

Cg

]
tan

(
ka
2

)
. (3.50)
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Finally using again the expression for k in Eq. (3.43) we get to the final expression
for the phase shift φ,

tan φ =

[
1− 2Ceff(ω)

Cg

]√
Cg

Cg + 4CJ

1√(
ωp
ω

)2
− 1

. (3.51)

The first term including Ceff is related to the transmon qubit. It is the only part in
the expression where the transmon qubit parameters appear. The second term is
related to the array and does not depend on the transmon qubit parameters.

3.4.2 Effect of the transmon in the mode phase
The value of φ is directly related to the presence of the transmon qubit. We can
see that if LJ,T,S → ∞ in Eq. (3.49) the effective capacitance Ceff does not depend
on frequency anymore. It is given by the effective capacitance to ground formed
by capacitors Cg,T2, Cg,T, Cc and Csh in Fig. 3.11 (b). This makes sense because in
this regime the transmon does not contribute to the dynamics of the system.

Experimentally we can tune the transmon inductance LJ,T,S via an external
magnetic flux ΦT by using a squid. For ΦT = Φ0/2 the transmon inductance
goes to infinity and it decouples from the array. For ΦT 6= Φ0/2 it has a finite
inductance and couples to the chain via Ceff. To measure the influence of the
transmon qubit in the circuit we define the transmon phase shift δφ as

δφ = φ (ΦT 6= Φ0/2)− φ (ΦT = Φ0/2) . (3.52)

We can get some insight into the meaning of δφ by comparing the system eigen-
modes for ΦT = Φ0/2 and ΦT 6= Φ0/2. In Fig. 3.12 we plot the eigenmodes given
by Eq. (3.42) at the transmon frequency for the two different cases. In blue we plot
the uncoupled eigenmode (ΦT = Φ0/2) and in red the coupled one (ΦT 6= Φ0/2).
It is clear that the presence of the transmon qubit induces a phase shift δφ in the
eigenmodes of the system.

It is expected for the phase shift δφ to be smaller when the mode frequency is
far detuned from the transmon frequency. In Fig. 3.13 (a) the phase shift is plotted
as a function of the mode frequency. It is a step-like function that goes from 0 to
π. This behavior can be understood if we observe the eigenmodes of the system
for different detunings δ = ωT − ωk, see Fig. 3.13 (b). The lower plot shows an
eigenmode with a lower frequency than ωT (orange dot in Fig. 3.13 (a)). As it can
be seen, the coupled and uncoupled modes overlap, i.e. the phase shift φ is almost
zero. However, whenever the mode frequency becomes closer to the transmon
frequency a phase shift appears ( middle plot and green dot in Fig. 3.13 (a)). At
this point the hybridization between the transmon and the modes in the array is
maximum. Finally, for modes with frequencies above the transmon frequency the
transmon phase shift converges to π (top plot and purple dot in Fig. 3.13 (a)). The
two modes in the upper plot in Fig. 3.13 (b) are exactly the same mode but with
a π shift. Therefore for frequencies far above the transmon qubit frequency we
recover the bare modes of the array. This shows intuitively that the width of the
step-like function of δφ(ω) is a measure of the number of modes hybridized with
the transmon.
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Chain site

l

uncoupled ( T = 0/2)
coupled ( T 0/2)

Figure 3.12 – Eigenmode of the system for ΦT = Φ0/2 (blue) and
ΦT 6= Φ0/2 (red). The parameters for the simulation are
given in Tables 2.1 and 3.1 taking L0 = LJ,T,S.

(a) (b)

Figure 3.13 – (a) Phase shift δφ as a function of frequency. Each of the
dots correspond to a mode in (b). (b) Comparison between
ΦT = Φ0/2 (blue) and ΦT 6= Φ0/2 (red) for several
detunings δ.
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In Fig. 3.14 we plot δφ as a function of frequency for several values of the
coupling capacitance Cc. We change LJ,T,S to keep the transmon frequency ωT
constant. It is clear that by increasing Cc the width of the phase shift becomes
larger, i.e. the transmon influences modes far away from its resonance frequency.
This is a clear signature of the increment in the coupling.

Another interesting feature is the low frequency tail of δφ(ω). This tail is a
combination of two effects: a large coupling capacitance Cc and an array with
high characteristic impedance Z0 =

√
LJ/Cg. At frequencies far detuned from the

resonance frequency of the transmon there should be no phase shift. The coupling
capacitors Cc have a high impedance at this frequencies and therefore the whole
transmon qubit behaves as an open. This can be seen from the Taylor expansion
of Ceff for low frequencies,

Ceff = Cc + Cg,T2 −
C2

c

2
(
Cc + Cg,T

) + 1
4

C2
c LJ,T,Sω2 + C̃ (ω) . (3.53)

Here C̃ (ω) ≤ 3 fF for frequencies up to 2 GHz. It is clear that at low frequencies if
Cc is small then Ceff is independent of frequency and δφ = 0. However when the
value of Cc is increased its impedance is reduced and Ceff depends on frequency
via the last term proportional to LJ,T,S. Therefore δφ 6= 0. However for this to
happen, we need to impedance match the transmon qubit to the array. Otherwise
all the signal would be reflected at the transmon-array interface and no phase shift
would occur.

0 2 4 6 8 10
Frequency (GHz)

0

/2 (r
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)

Ccoupling = 0.2Cc

Ccoupling = 0.5Cc

Ccoupling = Cc

Ccoupling = 2Cc

Ccoupling = 5Cc

Figure 3.14 – Phase shift δφ for several coupling capacitances. The value
of Cc = 119 fF is the one of the experiment. The value of
LJ,T,S is changed to keep the same resonance frequency for
all curves.
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3.4.3 Link between the transmon phase shift and the relative frequency
shift

Until now we have shown how we can obtain qualitative information about the
coupling between the array and the transmon qubit via the phase shift that the
latter induces in the eigenmodes of the system. Measuring this phase shift directly
would be a difficult task. That is why in this section we are going to link the phase
shift to an easily measurable quantity, the relative frequency shift.

Intuitive explanation

If we come back to the plot in Fig. 3.12 we see that the mode shifts in the x-axis as
a function of EJ,T due to a phase shift. However, the frequency of the mode is not
altered. This is possible because the model we used to obtain these curves assumes
a semi-infinite chain, i.e. it can propagate modes at all frequencies. In other words,
all wave numbers k are allowed. However, when dealing with a finite size chain
this cannot happen, only the modes with specific kn can propagate. Therefore
the phase shift induces a shift in the resonance frequency of the mode. In order
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Figure 3.15 – Explanation of the relative frequency shift. The color map
gives the transmission of the system obtained with ABCD
matrices and the parameters in Tables 2.1 and 3.1. In this
case we use N = 4700. The orange dots show the modes at
ΦT = −Φ0/2. The red dots show the modes at ΦT = 0.
The horizontal dashed lines are just a guide to the eye
for the bare spectrum, i.e. if the transmon qubit were not
present.

to measure this frequency shift at ΦT = 0 first we measure the frequency of the
modes at ΦT = Φ0/2 as a reference. Then we compare the frequency of the modes
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at this flux with the frequency of the modes at ΦT = Φ0/2 (in the example we
take Φ = −Φ0/2 which is the same because the system is periodic). As it can be
seen in Fig. 3.15, due to the presence of the transmon qubit the modes are shifted
in frequency. We define the relative frequency shift as

δφn = π
ωn (Φ0/2)−ωn (ΦT)

ωn (Φ0/2)−ωn−1 (Φ0/2)
. (3.54)

This quantity goes to zero for ω � ωT and to π for ω � ωT. It is straightforward
to obtain this quantity experimentally. As shown in Fig. 3.15 we only need to
obtain the eigenfrequencies at ΦT = −Φ0/2 and ΦT 6= Φ0/2 and introduce these
values in Eq. (3.54). We will show now that this quantity is equivalent to the phase
shift given in Eqs. (3.51) and (3.52).

Proof

First we assume that the array is grounded to the right hand side although this is
not important in the thermodynamic limit. Second, we introduce the transmon at
the left end modifying the modes of the system. They are given by

ϕn ∝ cos (knal − φn) for l = 1, 2, 3, . . . , N. (3.55)

Here the φn is the phase shift introduced by the transmon in mode n. As the array
is grounded at site l = N, we obtain the following expression for the kn,

knaN − φn = π (n− 1/2)→ kna = k0
na +

φn

N
, (3.56)

where the k0
n is the wavenumber for the eigenmode n of the bare array. In order

to obtain the different frequencies in Eq. (3.54) we consider a dispersion relation
of the form ωn = ω(kna). For sufficiently large N we can expand the dispersion
relation around k0

na,

ωn = ω(k0
na) +

φn

N
∂ω (ka)
∂ (ka)

∣∣∣∣
k=k0

n

+O
(

N−2
)

. (3.57)

Similarly we can expand ωn−1 around k0
na. First we write

ωn−1 = ω

(
k0

na− π

Na
+

φn−1

N

)
. (3.58)

Here we used the fact that k0
n−1 = k0

n − π/Na. Now if we expand this expression
around k0

na we obtain

ωn−1 = ω(k0
na) +

(
φn−1

N
− π

Na

)
∂ω (ka)
∂ (ka)

∣∣∣∣
k=k0

n

+O
(

N−2
)

. (3.59)

Keeping in mind that we are obtaining these expressions with an error of O
(

N−2)
we can write φn−1 = φn introducing an error that can be ignored for large N. We
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can therefore write Eq. (3.59) in the following form

ωn−1 = ωn −
π

Na
∂ω (k)
∂ (ka)

∣∣∣∣
k=k0

n

. (3.60)

We finally obtain the terms in Eq. (3.54),

ωn (ΦT = Φ0/2) = ω(k0
na) +

φn (ΦT = Φ0/2)
N

∂ω (k)
∂ (ka)

∣∣∣∣
k=k0

n

(3.61)

ωn (ΦT 6= Φ0/2) = ω(k0
na) +

φn (ΦT 6= Φ0/2)
N

∂ω (k)
∂ (ka)

∣∣∣∣
k=k0

n

(3.62)

ωn−1 (ΦT = Φ0/2) = ωn (ΦT = Φ0/2)− π

N
∂ω (k)
∂ (ka)

∣∣∣∣
k=k0

n

. (3.63)

Introducing these three equations into Eq. (3.54) and recalling that φn = φ (ωn)
we obtain the expression in Eq. (3.52). Therefore for sufficiently large N the phase
shift and the relative frequency shift are the same. In Fig. 3.16 we plot the ex-
pression for the frequency shift in Eq. (3.54) for different N values. The points are
obtained from ABCD matrices simulations and give a step-like function similar to
the analytical transmon phase shift δφ. From these curves we can directly see the
number of modes coupled to the linearized transmon. These are the points in δφn
in the step, between the two flat regions. As it can be seen, as N increases we have
more modes coupled. In addition, we observe that the frequency shift lies on top
of the analytical expression in Eq. (3.52) for an infinite array.

3.4.4 Relation between the phase shift and the impurity response function
Usually what is measured in Circuit qed experiments is the spectroscopic line
shape S(ω) of the qubit, see e.g. Schuster et al. 12 . S(ω) gives the qubit response
to a driving field of frequency ω. This line shape can be obtained via the Fourier
transform of the charge-charge, charge-phase and phase-phase correlation func-
tions. In this section we link the transmon phase shift δφ to its spectroscopic line
shape. To do so we are going to focus on the correlation function of the supercon-
ducting phase given by

C[ϕ,ϕ] = 〈[ϕ̂T(t), ϕ̂T(0)]〉 . (3.64)

Its Fourier transform gives the spectral density C̃[ϕ,ϕ],

C̃[ϕ,ϕ] =
2ES

h̄ωT
Re
∫ ∞

0

dt
2π

eiωt 〈[ϕ̂(t), ϕ̂(0)]〉, (3.65)

where we chose the unitless prefactor for later convenience.
In order to obtain this quantity we turn to the quantum mechanical problem.

With each mode ω we define a canonical creation and annihilation operator bω

and b†
ω. They are related to the phase operator in each of the islands as

ϕ̂l =
1√
2

∫ ωp

0
dωϕl(ω)

(
bω + b†

ω

)
. (3.66)
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Figure 3.16 – Frequency shift for different number of sites in the array
N. The points are obtained from ABCD matrices simula-
tions. The solid black line shows the phase shift δφ in the
thermodynamic limit given by Eq. (3.52).

The profile ϕl(ω) is given in Eq. (3.42). The spectral density C̃[ϕ,ϕ] for this operator
is given by (see Appendix Section A.4.3)

C̃[ϕ,ϕ] =
ES

ωT
ϕ(ω)2. (3.67)

We define the operator ϕ̂T related to the transmon dynamics,

ϕ̂T = ϕ̂R − ϕ̂L. (3.68)

In this case the spectral density is given by

C̃[ϕ,ϕ] =
ES

ωT
(ϕR(ω)− ϕL(ω))2 . (3.69)

We can obtain ϕR(ω)− ϕL(ω) using Eqs. (3.44) to (3.46),

ϕR(ω)− ϕL(ω) = N
LJ,T,SCcω2

LJ,T,S (C1 + Csh)ω2 − 2
cos φ. (3.70)

The only missing part is the normalization factor N. It can be obtained (see Ap-
pendix A.4.3) imposing the following normalization condition in the modes ϕl(ω),

∑
l,s=L,R,1,2,...

ϕ0
2ϕl(ω) L̂

−1
0 [l, s]ϕs(ω

′) = ωδ
(
ω−ω′

)
. (3.71)
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It is given by

N =

√
h̄ω

πEJ [1− cos (ka)]
∂ka
∂ω

. (3.72)

In Fig. 3.17 we compare the spectral density C̃[ϕ,ϕ] with the derivative of δφ.
As it can be seen they overlap near the transmon resonance frequency. This means
that the derivative of δφ is a good estimate of ΓT and ωT.
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Figure 3.17 – Comparison between the spectral density C̃[ϕ,ϕ] and the
derivative of the transmon phase shift δφ. In gray the
transmon resonance frequency ωT and width ΓT are
given. For the calculation the real sample parameters were
used.
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Circuit design and fabrication 4

This chapter is dedicated to the design and fabrication of the samples presented in
this work. First we give a general description of the electron beam lithography. We
introduce the Bridge Free Fabrication technique used to produce Josephson junc-
tions and discuss the major technical problems that we met in the lithography pro-
cess and their solutions. Second we present a detailed study of the reproducibility
of the fabrication process and the aging of the Josephson junctions. Finally we
discuss the circuit geometry and the simulation of the circuit parameters.

4.1 Circuit fabrication with e-beam lithography

The electron beam lithography (e-beam lithography) consists on using an electron
beam to write a structure on top of a substrate. First the sample is covered with
a resist. Then the resist is exposed to the electron beam to create the desired
pattern. Afterward it is immersed in a developer. This gives the desired mask.
Then some metal is deposited over the mask and finally, in a process known as
lift-off, the resist is removed leaving the desired structure on top of the substrate.
For a detailed description of the lithography process refer to Levinson 91 . In this
work, in order to speed up the fabrication process, all samples were fabricated in
a single step of e-beam lithography.

The e-beam writer used during this work is the model nB5 from NANOBEAM
LTD. It is shown in Fig. 4.1. It was acquired by the Néel Institute at the beginning
of my PhD. An important part of my PhD work has been to develop all the fabri-
cation process for this e-beam writer. This includes performing dose tests for the
arrays of squids and capacitors and solving focus problems.

4.1.1 The Bridge Free Fabrication technique

Among the different structures present in our superconducting circuits, Josephson
junctions are the most important ones. Josephson junction fabrication requires that
two metal layers overlap with a thin oxide barrier in between.

In order to have a high control over the barrier thickness the bottom layer
needs to be oxidized in a controlled way. This means that the sample must be
kept under vacuum between the first and the second metal depositions to avoid
native oxidation of the metal or external pollution. The best way to do this is
to perform the two metal depositions using the same mask, i.e. to perform only
one lithography step. In order to do so an angle evaporation is needed. First one
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Airlock

Anti-vibration platform

Column

Figure 4.1 – E-beam writer used in this work. Picture taken at the
Nanofab cleanroom at the Néel Institut.

aluminum layer is deposited with one angle, then it is oxidized and finally a
second layer is deposited with the opposite angle.

Two resist layers are used, pmma-maa as the bottom layer and pmma as the top
layer. The key point is that the bottom layer is more sensitive to the electrons than
the top layer. As shown in Fig. 4.2 (a) when the electrons hit the substrate they are
scattered in several directions. This scattering depends on the acceleration voltage
used. Higher voltage reduce the scattering significantly91. Due to the scattering the
electrons affect not only the exposed area but its surroundings. This phenomenon
is called proximity effect. As illustrated in Fig. 4.2 (b) due to the different sensitivity
the bottom resist is more affected than the top one. This creates an undercut δ0 that
is crucial for Josephson junction fabrication. In the Niemeyer-Dolan technique92,93

a suspended bridge of resist is created (see Fig. 4.2 (b) left). It is used as a mask to
fabricate Josephson junctions. This process is illustrated in Fig. 4.3. First a metal
deposition is performed at one angle θ. Then this metal is oxidized in a pure
oxygen atmosphere. Finally a second deposition is performed with the opposite
angle minus θ. Thanks to the suspended bridge a junction is created in the middle.

Despite its wide use this technique has three major drawbacks. First, due to
the suspended bridge, the substrate area where the junction is fabricated cannot
be cleaned beforehand. This means that the metal is deposited on a surface with
some residual resist94. Second, there is always a shadow pattern at both sides of
the junction, Fig. 4.3 (c). This metallic islands might create undesired charging
effects. This might be a concern when fabricating complex structures as the arrays
of squids used in this work. Finally, for large junctions the bridge of resist becomes
quite fragile and might collapse. In order to avoid these issues we use a different
technique, the Bridge Free Fabrication (bff) technique95. As the previous one this
technique uses two resist layers. However, in this case no bridge is involved.

The idea of the bff is to make use of an asymmetry in the undercut whenever
we want to keep only one of the two metal depositions. This means that a con-
trolled undercut δ is needed. As explained before, by using a high acceleration
voltage we reduce the proximity effect. This reduces the possibility of undesired
undercut δ0. We divide the structure in two layers, one written at high dose and
the other written at low dose, see Fig. 4.4 (a). After the development, thanks to

76



4.1 Circuit fabrication with e-beam lithography

(b)

PMMA
PMMA-MAA

δ0 = undercut

δ0

Suspended bridge

δ0

(a) e-

Low acceleration voltage High acceleration voltage
20 kV to 30 kV 80 kV to 100 kV 

1 µm

Figure 4.2 – (a) Electrons are scattered by the resist and the substrate
over an area wider than the scanned pattern. Due to its
higher sensitivity the lower resist is more affected than the
upper one. A higher acceleration voltage reduces the af-
fected area. (b) After the development an undercut δ0 is
created. With the proper design this leads to a suspended
bridge of resist that can be used for Josephson junction fab-
rication. When using a higher acceleration voltage this un-
dercut becomes smaller.
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Figure 4.3 – The Niemeyer-Dolan technique. (a) A first metal deposition
is performed with an angle θ. (b) Then the metal is oxidized
in a pure oxygen atmosphere. (c) A second evaporation at
angle minus θ creates the junction under the suspended
bridge. We include usual dimensions in Josephson junction
fabrication.

the higher sensitivity of the lower resist layer, we obtain a fully controlled un-
dercut δ at the part exposed to low dose, see Fig. 4.4 (b). In this work we used
δ = 700 nm. At high dose there is still some small undercut δ0 but it can usu-
ally be neglected. It is found to be around 40 nm for an acceleration voltage of
100 kV95. Using this technique we choose to have parts with no undercut, asym-
metric undercut and symmetric undercut depending on the purpose. As shown

(a) (b)

e-

Low dose High dose

δ δ0

Figure 4.4 – Controlled undercut. (a) Two different layers are used. One
is written with low dose (left) and the other with high dose
(right). At high doses both resists are exposed, however at
low dose only the lower resist is affected. (b) After develop-
ment the part written at low dose gives the undercut δ and
the part written at high dose gives the pattern mask. There
is always some residual undercut δ0 ∼ 40 nm in the part
written at high dose.

in Fig. 4.5 thanks to this asymmetric undercut Josephson junctions can be fabri-
cated with no suspended bridge. Whenever we want to create a wire we use an
asymmetric undercut. One of the angles reaches the substrate and the other hits
the resist wall (Fig. 4.5 (a) upper and lower panel) and is removed during the lift-
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off. Then for creating a junction a symmetric undercut is used overlapping both
metal depositions (Fig. 4.5 (a) middle panel). In Fig. 4.5 (b) a Scanning Electron
Microscope (sem) image of a Josephson junction fabricated with this technique is
shown.

300 nm

θ -θ

(a) (b)

First evaporation
Second evaporation

1 µm

Figure 4.5 – Bridge Free Fabrication technique. (a) The two angles in the
metal deposition (the oxidation step is not shown) for three
different parts. Top panel and bottom panel are wires and
middle panel is the junction. At angle θ metal is deposited
on the substrate for the upper and middle panel (orange),
however for the bottom panel the metal hits the resist wall.
A second evaporation at angle minus θ deposits metal in
the middle and bottom panel (green) but not in the upper
panel. After lift-off only the metal on the substrate remains.
(b) Josephson junction fabricated with this technique with
the different metal depositions in different colors.

Finally, given the fact that there is no suspended bridge involved in this tech-
nique, the substrate is easily accessible. This means that we can remove any resid-
ual resist on the surface prior to the evaporation using Reactive Ion Etching (rie).
This residual resist is known to affect the quality of the junctions94.

Detailed explanation of the bff technique

When using any angle evaporation technique the different geometrical parame-
ters, i.e. the resists thickness, the undercut size, the evaporation angle and the
metal thickness should be designed properly so the desired junction is obtained.

First of all, one should choose properly the thickness of the metal deposition.
If we denote the thickness of the first metal deposition as t1 and of the second
as t2, we need to have t2 > t1. As illustrated in Fig. 4.6, this is needed in order
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to obtain a good metallic contact after the second deposition. In our case we use
t1 = 20 nm and t2 = 50 nm.

t2 t1

t2 = t1 t2 > t1

(a) (b)

t1 =  20 nm t2 =  50 nm

Figure 4.6 – Josephson junction after the two depositions. (a) When both
layers have similar thickness there might be a discontinuity
at the edges of the junction. (b) The problem can be solved
by increasing the thickness of the second metal layer.

Regarding the bff technique, we show in this section the relation between the
different geometrical parameters for the Josephson junction fabrication. To do so
we reproduce the middle panel of Fig. 4.5 (a) with greater detail in Fig. 4.7. Here
d1 and d2 are the resist thickness of the bottom and upper layer respectively. θ is
the evaporation angle and δ the size of the undercut. Finally we call Lmask the size
of the gap in the upper resist layer. This gap is the part that is written at high
dose. To make things clearer we define an x axis whose origin is the beginning of
the upper resist gap.

In the first evaporation (orange) metal is deposited from x1 to x2. Doing some
trigonometry we see that

x1 = (d1 + d2) tan θ, (4.1)

x2 = Lmask + d1 tan θ. (4.2)

Therefore the length of the first evaporation is

Lmask

x0 x1 x2z2z1

d 1
d 2

δ

Lmask

t1

Ljunction

-θ θ

t2

Figure 4.7 – Close-up of the middle panel in Fig. 4.5 (a).

L1 = x2 − x1 = Lmask − d2 tan θ. (4.3)
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We see that it is shorter than the designed length Lmask. Now we follow the same
procedure to obtain the length of the second deposition L2 = z2 − z1. But first we
have to notice that after the first deposition a metal layer of thickness t1 is already
on top of the last resist layer. This will affect slightly the second deposition. We
have

z1 = −d1 tan θ, (4.4)

z2 = Lmask − t1 − (d1 + d2 + t1) tan θ. (4.5)

This gives

L2 = z2 − z1 = Lmask − d2 tan θ − t1 (1 + tan θ) . (4.6)

We see that the second deposition is smaller than the first one, L2 < L1. Now we
can obtain the junction size Ljunction

Ljunction = z2 − x1 = Lmask − t1 (1 + tan θ)− 2 (d1 + d2) tan θ. (4.7)

This means that whenever we are designing a junction, we have to choose Lmask
to obtain the desired Ljunction. From Eq. (4.7) we obtain

Lmask = Ljunction + t1 (1 + tan θ) + 2 (d1 + d2) tan θ. (4.8)

We have to choose the proper undercut δ in order to not to have metal de-
posited on the resist wall. This condition reads x2 − z1 ≤ Lmask + 2δ which gives

δ ≥ d1 tan θ. (4.9)

This means that the undercut should be wide enough for the deposited metal to
fit. On the other hand, when designing a wire, see Fig. 4.5 top and bottom panel,
we need to deposit metal only at one of the angles. This puts a constraint on the
wire width Lwire. For the first angle (orange) the constraint reads x1 > Lwire,θ
which gives

Lwire,θ < (d1 + d2) tan θ − δ0. (4.10)

For the second angle (green) the constraint is z2 < 0 which gives

Lwire, -θ < (d1 + d2) tan θ + t1 (1 + tan θ)− δ0. (4.11)

These constraints guarantees that the wire shadows are fully removed during lift-
off.

Wires resistance

One important consequence of the described process is how the wires size de-
pends on whether they were deposited with angle θ or minus θ. This means that
in this technique the wire resistance depends on whether it was fabricated with
angle θ or minus θ.

First, as explained before, we use a different thickness for the first and the
second layer, t2 > t1. Second, as shown in Eqs. (4.3) and (4.6) the width of the
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wire depends on the deposition angle, L2 < L1. The resistance per unit length of
a wire is given by

Rl = ρ
1

width× thickness
, (4.12)

where ρ is the resistivity of the material. Assuming that both wires are made of
the same material, we have for the ratio of resistances Rθ/R−θ ≡ R1/R2

R1

R2
=

t2L2

t1L1
=

t2

t1

(
1− t1

1 + tan θ

Lmask − d1 tan θ

)
. (4.13)

In this work we used t1 = 20 nm, t2 = 50 nm, θ = 35◦, d1 = 250 µm and
Lmask = 350 nm. These parameters give R1/R2 ∼ 3 which is consistent with the
experimentally found value of 3.2± 0.8. This difference in resistance must be kept
in mind when performing room temperature dc measurements as will be ex-
plained in Section 4.2.

Structure design

The design of the structure is done in a cad program in files with the .gds
extension. These files contain not only the structure we want to write but the
different layers we want to use. Each layer is related to a different dose.

As explained before, for writing Josephson junctions two layers are used, one
with high dose for the mask and one with low dose for the undercut. An example
of the different junctions used in this work is shown in Fig. 4.8 with their respec-
tive pattern files. We use two different designs for the Josephson junctions. For
fabricating the array of squids we need big junctions, several micrometers long
and therefore the design shown in Fig. 4.8 (a), (c) and (d) is well suited. It is com-
pact and reliable for these sizes. However when fabricating small junctions, in the
nanometer regime, this design is not that reliable. A small error in the evapora-
tion angle gives a strong deviation in the junction area. By using the design in
Fig. 4.8 (b) we see that even if the angle is not perfect, the variation in the area
is not that big and moreover we are sure that both depositions will overlap. For
the array of squids we connect several of them in series, see Fig. 4.8 (d). It is very
important to use an alternating undercut for the wires. This is done to avoid a
shunt in the structures.

4.1.2 Focus

The basic idea behind e-beam lithography is that using a beam of electrons we
write structures in the nanometer scale on the surface of a given substrate. How-
ever, depending on the size of the structure we want to write, it might be necessary
to move the stage where the substrate lies.

To do this the structure is divided in squares called main fields (in our case
300 µm× 300 µm) and subfields (20 µm× 20 µm). Between any two of these main
fields the stage moves mechanically. Between two subfields the electron beam
moves using coarse deflection coils. Therefore it becomes a crucial task to focus
properly the electron beam in order to stitch all these fields together, see Fig. 4.9 (a).

82



4.1 Circuit fabrication with e-beam lithography

100 nm 1 µm

3 µm

Layer 1: High dose Layer 2: Low dose

300 nm

(a) (b) (c)

(d)

Alternating undercut

Figure 4.8 – Pattern files (top) with the Scanning Electron Microscope
(sem) image of their corresponding structures (bottom).
Two layers are used, one for the structure (layer 1) and one
for the undercut (layer 2). (a) Josephson junction design for
big junctions. (b) Josephson junction design for small junc-
tions. (c) squid formed by two different junctions designed
as in (a). (d) Array of squids. The alternating undercut in
the wires avoids shunts in the structures.
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With the proper focus the beam goes from one subfield to another without leav-
ing any gap. However, if the beam is not properly focused it leaves a space be-
tween subfields that is not written leading to gaps in the structures as shown in
Fig. 4.9 (b). This is called a stitching error. This error is larger at the edges of the
main fields. As it can be seen this error effectively breaks the structure at several

(a)

(b)

Si

Al

20 µm

Stitching errors

Subfield length

Shorter subfield length

Gap

Figure 4.9 – (a) Graphical explanation for the stitching error. When the
beam is properly focused (solid black line) there is no gap be-
tween the subfields, shown in orange, green and red. When
the beam is not properly focused (dashed black line) a gap
appears between them.(b) Example of stitching error show-
ing the gap between the subfields.

spots. In order to obtain the best possible focus and avoid the stitching errors we
write focus marks on the wafer. This marks are 8 µm× 8 µm squares made of gold,
see Fig. 4.10. Once we have these gold marks the e-beam can use them to focus.
It measures the contour of the square at different heights until the measured con-
tour fits the known size of the mark (8 µm× 8 µm). At this point the focus is good
enough for writing.

One important feature of the e-beam writer used in this work is the focus map.
This allows to readjust the focus dynamically during the writing. The surface of
the substrate is fitted with a plane to take into account any tilt in the substrate.
This feature becomes crucial when writing over large surfaces as it is done with
the arrays of squids in this work.
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8 µm

Au
Si

200 µm

Figure 4.10 – Optical image showing the arrow marks to help the user
find the focus marks. In the inset a focus mark is shown, a
8 µm× 8 µm square. Both structures are made of gold.

4.1.3 Dose tests

Choosing the correct dose for the different parts of the circuit to be written is very
important to obtain an optimum result. Due to the proximity effect the electrons
do not only affect the desired area but can propagate several micrometers and
affect their surroundings91.

The points more sensitive to the proximity effect are those where several struc-
tures are packed together. This includes arrays of Josephson junctions, big struc-
tures (pads) next to small structures (junctions) and interdigital capacitors. As ex-
plained before, in Josephson junction arrays the side of the undercut for the wires
is alternated to avoid a shunt in the junctions. However, if too high dose is used
an undercut might appear on both sides. This means that during the metal depo-
sition both angles reach the substrate creating a shunt in the array, see Fig. 4.11.
This is specially true when writing big junctions (Ljunction > 5 µm). To solve this
problem we divide each junction in two layers, see Fig. 4.12 (a). The first layer
is written at a normal dose and the second layer at a lower dose. A dose test is
shown in Fig. 4.13 (a). We vary the dose at layer 3 for an array of squids. As it
can be seen, at too low dose the junctions are not well defined and at too high
dose the junctions are shunted. To avoid the proximity effect between junctions
and contact pads we include long narrow arms between each pad and each junc-
tion, see Fig. 4.12 (b). These arms are between 50 µm to 300 µm long. Because these
arms are quite narrow, their proximity effect on the surroundings is lower. In this
way we protect the Josephson junction from the dose applied to the contact pad.
Given the narrowness of these arms a slightly higher dose is used. Finally, for the
interdigital capacitors we performed a dose test to obtain the right dose for the
fingers, see Fig. 4.13 (b).
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Layer 1: High dose

Layer 2: Low dose

(a) (b)

First evaporation

Second evaporation

Figure 4.11 – Proximity effect in squids.(a) With no proximity effect,
the desired pattern is obtained.(b) With proximity effect
part of the shadow pattern of the wires reaches the sub-
strate.

4.1.4 Detailed fabrication process

In this section the different steps in the fabrication process are described in detail.
The exact recipe for the whole process can be found in Appendix C. The first
aspect to point out about our fabrication process is both its high success rate
(∼ 90 %, limited mainly by the oxide thickness variation) and its high throughput.
All our samples were fabricated on 2 inch intrinsic silicon wafers. In each of these
wafers we write several samples (from 9 up to 20 depending on the single chip
size). Given the fact that the full fabrication process takes one week this gives as
many as 20 samples per week. In addition, thanks to the large size of the wafer, the
thickness of the spin coated resist is much more homogeneous than for a single
chip.

In Fig. 4.14 (a) a drawing of the front side of the wafer is shown. The dashed
line divides the wafer in several chips. The yellow squares represent the focus
marks. There are two types of focus marks. The global marks (outside the dashed
lines) are used for obtaining the right focus for the whole wafer. They allow us
to define a global coordinate system as well. Due to the presence of some inho-
mogeneity in the resist thickness it is important to perform a local focus in each
of the samples individually. The local marks (inside each of the chips) are used
for this purpose. In Fig. 4.14 (b) the bottom part of the wafer is shown. It is gold
plated to be used as the ground of the circuit. A photograph of the wafer after the
whole fabrication process is shown in Fig. 4.14 (c). Once the fabrication is finished
the wafer is diced in individual chips as the one in Fig. 4.14 (d). The different
fabrication steps are described in the following paragraphs.
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(b)

Layer 4: Low dose Layer 5: High dose

Layer 1: High dose Layer 2: Low dose

Layer 3: Medium dose

(a)

Strong proximity effect

Pad

Arm

100 µm

Al

Si

Figure 4.12 – (a) squid array pattern. In orange the points where
the squid might be shunted due to proximity effect
are shown. For arrays with big junctions a third layer
(layer 3) with intermediate dose is used in order to reduce
the proximity effect.(b) Long narrow arms between pads
(layer 4) and structures. Due to their narrowness a layer
with a slightly higher dose is used (layer 5).
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(a)

1 µm

Too low dose

Too high dose

Right dose

100 µm

(b)

4 C/m2

8 C/m2

11 C/m2

6 C/m2

10 C/m2

14 C/m2

Figure 4.13 – Dose tests for samples fabricated with an acceleration volt-
age of 80 kV. (a) Close-up of three different arrays of
squids with different doses in layer 3. At low dose the
junctions are broken and at high dose the junctions are
shunted. (b) Interdigital capacitors for different doses.
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2 in = 50.8 mm

9.9 mm
Silicon Gold

(a) (b)

(c) (d)

9.9 mm

Test structures

Figure 4.14 – Two inch wafer used in the fabrication process. (a) Front
part of the wafer. Several chips can be written in one single
wafer. In yellow the focus marks are shown, 8 µm× 8 µm
squares (not to scale). (b) Backside of the wafer gold plated
to ensure a good ground. (c) Photograph of a wafer with
the different chips already written with structures. (d) A
single chip after dicing the two inch wafer.
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Gold plating

As will be explained later in Section 4.3.1, our circuits are designed in the mi-
crostrip geometry. In this geometry the center conductor is placed over the sub-
strate while the ground is placed below. We have to ensure a good metallic contact
between the sample and the sample holder to avoid losses. To do so we gold plate
the bottom face of the two inch wafer. First we evaporate a 10 nm thick layer of
titanium to allow the gold to stick to the silicon substrate and then a 200 nm thick
layer of gold.

Writing of the focus marks

Prior to the deposition of the resists we bake the wafer for some minutes. This
removes the adsorbed water at the surface. We then spin coat pmma 3%a on the
wafer and bake it. We write both the local and the global marks plus the dic-
ing marks. We make sure that the focus marks are centered on the main fields.
Then we develop the structure and perform first a titanium evaporation (10 nm)
followed by a gold evaporation (50 nm). Finally we do a five hours lift-off in N-
Methyl-2-pyrrolidone (nmp).

Writing the structures

As explained in Section 4.1.1 we need two layers of resist, pmma-maa
b and pmma

c.
We first spin coat and bake the pmma-maa (d1 = 750 nm) and then we repeat
the process with pmma (d2 = 250 nm). We then load the sample in the e-beam
writer to write the desired pattern. Once the writing is finished we perform the
development. We use as a developer Methyl isobutyl ketone (mibk-ipa) diluted in
isopropanol (ipa) in proportion 1 to 3.

After the development we evaporate the Al on the sample. As a first step
we clean the sample using oxygen rie. This removes the remaining of resist that
adhere to the wafer surface even after development94. We then load the sam-
ple in the PLASSYS R© evaporator and perform the evaporation at high vacuum
(5× 10−8 mbar). In order to obtain a reliable vacuum and reduce the presence of
water at most the sample is loaded on the evening and evaporated the morning
after. Therefore the chamber and load lock are pumped for more than ten hours
reaching a pressure of ∼ 1× 10−8 mbar. Between the two metal depositions an
oxidation is performed using pure oxygen at 4 mbar. We then perform a lift-off in
nmp at 80 ◦C during several hours.

Dicing

After the whole fabrication process we dice the two inch wafer to obtain the indi-
vidual chips that are introduced in the cryostat. To protect the samples during the
dicing we spin coat optical resist s1818 on top of the wafer without baking.

aPMMA 950K AR-P 679.04 diluted in ethyl lactate (3 volumes of AR-P per volume of ethyl
lactate)

bAR-P 617.14 diluted in AR 600.07 (9/5)
cPMMA 950K AR-P 679.04 diluted in ethyl lactate (4 volumes of AR-P per volume of ethyl

lactate)
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4.1 Circuit fabrication with e-beam lithography

4.1.5 Writing process
In this section we introduce in detail the different files created to write the desired
pattern at the desired spot in the two inch wafer. First we briefly describe the
Python scripts used to create the pattern file and then we give specific details on
the files managed by the e-beam system.

Designing the structures with Python

During this work we had to fabricate several samples with arrays of squids of dif-
ferent sizes in order to find the best parameters for the experiment. Doing so by
hand in a reproducible way is not easy. In order to create the pattern files automat-
ically we wrote several Python scripts, see Appendix B.2. The base library for the
scripts is called gdsCAD. This library allows to create different basic shapes and
then save the design in the .gds format. First we defined a class for each of the
desired components, i.e. single Josephson junctions, squids and arrays of squids
(see Fig. 4.8). Then we defined some templates to automatize the creation of the
.gds files, e.g. a template for creating test structures for the dc measurements.

An example of the flexibility of this approach is the pattern shown in Fig. 4.15.
We can modulate the size of each junction following any function, in this case a
cosine. By doing this we modulate the inductance, self-capacitance and capaci-
tance to ground of each of the sites in the array. In this way we can engineer the
dispersion relation of the modes propagating along this array. For example, when
modulated with a cosine function we can open a gap in the dispersion relation.

20 µm

(a)

(b)

Figure 4.15 – (a) Pattern design for a cosine modulated chain created
with Python. (b) sem picture of a real sample (different
design than the one in (a)).

E-beam file system

After designing the patterns it is necessary to prepare the different files for the
e-beam system to write them in the proper place. As mentioned in Section 4.1.4
we write several samples on a 2 inch wafer. This means that we need to arrange
properly the different structures over the wafer. The system uses three types of
files
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— Nanobeam pattern file (.npf). This file contains the pattern to be written.
It specifies the different layers, the mean fields and the sub fields. Usually
patterns are created in a .gds file and then converted into .npf format
using a software called nbPat which is given with the e-beam writer.

— Nanobeam job file (.njf). This file contains all the necessary information
to write the different .npf files over the 2 inch wafer. It gives the position
of the focus marks, both global and local, the path to the different .npf
files and the dose associated to each of their layers. It is convenient to create
two .njf files. In the first one a low current is used (∼ 1 nA) to write the
small structures i.e. Josephson junctions and wires. The second one is writ-
ten at high current (∼ 12 nA) and contains the big structures, i.e. pads and
capacitors.

— Nanobeam batch file (.nbf). This file is used to execute several .njf files
one after the other. The desired writing parameters such as the acceleration
voltage and the writing current are specified in this file. They can be specified
for each of the .njf files independently.

A detailed explanation of each of these files is given in Appendix B.1.

4.2 dc measurements

Until now we have focused on the fabrication of the superconducting circuits. In
order to evaluate our process we perform room temperature dc measurements of
several test structures. This allows to check the reproducibility of the process and
the aging of the junctions.

4.2.1 Measurement setup

The measurement consists on a dc resistance measurement. With a current sourced

we apply a dc current I. Using a voltmetere we measure the voltage drop V across
the sample, see Fig. 4.16. We make this for several I values and obtain an IV curve.
From the slope of this curve we obtain the resistance of the sample.

Contrary to the usual 4-point probes method here we use a 2-point measure-
ment. This reduces the number of pads needed per test structure (two instead of
four) which greatly simplifies the structure design and reduces the area needed
in the chip. As will be explained later, we remove the overall resistance in the
setup by varying the number of junctions in the test structures and performing a
linear fit afterward. The measurement of the IV curve and the estimation of the
resistance is automated via a Python script, see Appendix B.3.

4.2.2 Reproducibility of the fabrication process

The most sensitive part in the structures is the oxide barrier of the Josephson junc-
tions. As will be explained later in Section 4.2.4, the critical current Ic of a junction

dKeithley 2400 SourceMeter R©

eKeithley 2000 Multimeter R©
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V

I

DUTSample

Current source

Voltmeter Probe station

(a) (b)

Contact pins

Sample

(c)

Figure 4.16 – Experimental setup for the dc measurements. (a) Circuit
diagram of the measurement. (b) Measurement setup in-
cluding a current source, a voltmeter, a probe station and
a computer to run the measurement scripts. (c) Zoom in
showing the sample and the contact pins.

depends exponentially on the barrier thickness. Therefore a high reproducibility
in the fabrication process depends on a high reproducibility in Ic.

The value for Ic can be obtained from the normal state resistance of the Joseph-
son junction Rn. The relation between both is given by the Ambegaokar-Baratoff
formula96, Eq. (4.14).

Ic(T) =
π∆Al

2e
tanh

(
∆Al

2kBT

)
1

Rn
(4.14)

Here ∆Al = 210 µeV is the superconducting gap of aluminum for thin films and
kB is the Boltzmann constant. In the experiment we measure at T = 20 mK and
therefore ∆Al/2kBT ∼ 6× 104. This means that tanh(∆Al/2kBT) is approximated
to one leading to the simplified equation:

Ic =
π∆Al

2e
1

Rn
. (4.15)

As explained before we obtain the room temperature resistance of the junction
R300 K from the slope of the IV curve. If we want to obtain a good estimation
for Rn, resistance at T ∼ 4 K, we need to correct for the temperature effects. The
resistance of a tunnel junction can decrease between 30 % and 50 % with increasing
temperature97. This decrease comes from the thermal broadening of the Fermi-
Dirac distribution98 i.e. at high temperatures electrons have more energy available
for tunneling through the junction. To take into account this effect we introduce a
constant β0 (Eq. (4.16)). This factor is found to be around 1.3 for an oxide thickness
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between 1 nm to 2 nm.

Rn = β0R300 K (4.16)

We perform dc measurements on one hundred test structures. They consists of
an asymmetric squid connected at the left and the right to two aluminum square
pads of 200 µm× 200 µm. The dimensions of the junctions are 3.2 µm× 0.2 µm
and 2.0 µm× 0.2 µm. We measure the IV curve of 100 squids obtaining R300 K for
each of them. The obtained histogram is shown in Fig. 4.17 along with a fit to a
Gaussian (solid line). The mean value x and the standard deviation s for R300 K of
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Figure 4.17 – Histogram for the room temperature resistance of the
squids. The junctions dimensions in each of the squids
are 3.2 µm× 0.2 µm and 2.0 µm× 0.2 µm. The solid line
is a fit with a Gaussian to the center point of each bin.

this 100 junctions is

x = 1184 Ω s = 35 Ω. (4.17)

This gives a fabrication error (s/x) of 3 % among samples fabricated in the same
evaporation step.

4.2.3 Accurate measurement of the critical current
Although useful for obtaining the reproducibility of the fabrication process, the
above method is not accurate to obtain the room temperature resistance of the
junctions. The reason is that we do not remove the overall resistance of the setup,
i.e. cables, on chip wires and contact resistance between the pads and the contact
pins.

In order to remove this overall resistance we perform dc measurements of
several test structures with an increasing number of Josephson junctions. From
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these measurements we obtain a linear dependence of the resistance with the
number of junctions. Because in each measurement we keep the setup constant
we remove any additional resistance created by the setup. From the slope of the
linear fit to the data we obtain a good estimate for the room temperature resistance
per junction. Once we have this resistance we can estimate the Ic per junction from
Eqs. (4.15) and (4.16).

There is however one caveat: as explained in Section 4.1.1, due to the different
wire thickness, the wire resistance depends on whether they were evaporated at
angle θ or minus θ. This means that the overall resistance will be different between
odd and even number of junctions. To keep the setup resistance constant we use
only an odd number of junctions in the test structures, see Fig. 4.18. In Fig. 4.19

we show an example of a linear fit for several test squids. The dimensions are the
same as before, two Josephson junctions of 3.2 µm× 0.2 µm and 2.0 µm× 0.2 µm.
We extract a resistance per squid of R300 K = 453 Ω and an offset of Roffset = 311 Ω.
It is important to point out that although identical, these squids belong to a differ-
ent wafer than the ones in Fig. 4.17 and thus were fabricated in different oxidation
conditions. This is the explanation for the difference in resistance between the two.

2 µm

100 µm

Figure 4.18 – Test structures. From top to bottom the number of junc-
tions increases. We use always an odd number of junc-
tions. The white arrow indicates where the test structure
is located.

4.2.4 Josephson junction aging

An important aspect of the fabrication of Josephson junctions is their aging. Due
to the diffusion of oxygen into the junctions the thickness of the oxide barrier
increases with time99. This leads to an increase in R300 K (decrease in Ic) that can
suppress the tunneling through the junction.
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Figure 4.19 – Linear fit of the room temperature resistance for
several squids of dimensions 3.2 µm× 0.2 µm and
2.0 µm× 0.2 µm. From the slope we can obtain the re-
sistance per squid while removing the setup offset.

The plasma frequency as a fabrication constant

A decrease in Ic can be related to a decrease in the plasma frequency of the junc-
tions ωp = 1

√
LJCJ and therefore the plasma frequency of the array of squids, see

Sections 2.1.1 and 2.2.1.
This plasma frequency depends only on the thickness of the oxide barrier t.

Given the dimensions of usual Josephson junctions it is safe to assume that they
form an infinite parallel plate capacitor. Then we write CJ ∝ A/t where A denotes
the junction area. A well-known experimental relation for CJ is39,100

CJ = 45 fF/µm2A. (4.18)

On the other hand, the Josephson inductance can be replaced by the critical current
of the junction LJ = ϕ0/Ic. The critical current of the junction depends linearly
on A and exponentially on t for barrier thicknesses in the nm range and barrier
heights in the eV range101. We therefore obtain

ωp =
1√
LJCJ

=
√

ϕ0

√
Ic

CJ
∝

√
Ae−t/2
√

A/t
=
√

te−t/2. (4.19)

Therefore, the only geometrical parameter left is the thickness of the insulating
barrier t. Moreover, the dependence on the Josephson inductance LJ is exponen-
tial. This means that for an increase in barrier thickness ∆t the capacitance CJ can
be taken as constant in relation to the inductance LJ . For a reproducible fabrica-
tion process the plasma frequency of the array of squids should be constant. It
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4.3 Circuit parameters

therefore constitutes a good proxy for the quality of the fabrication process.

Experimental results

We kept track of the aging of the junctions by measuring the room temperature
resistance of the test structures over time using the method described before. Two
identical evaporators were used, Evaporator 1 and Evaporator 2. While using Evap-
orator 1 a severe increase of the room temperature resistance of the junctions was
observed within weeks, see Fig. 4.20 in green. To avoid this problem we switched
to Evaporator 2. Although nominally identical there are two main differences be-
tween both evaporators. Unlike Evaporator 1, Evaporator 2 is fully automatized
and therefore enhances sample reproducibility. More importantly Evaporator 2

counts with a good maintenance which keeps it always working at optimal condi-
tions. This avoids, for example, the pollution of the aluminum crucible with metal
from other crucibles. Due to the change in evaporator the Josephson aging was
practically eliminated, see Fig. 4.20 in blue.
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Figure 4.20 – Room temperature resistance for several test structures as
a function of time. In green two samples fabricated with
Evaporator 1 and in blue two samples fabricated with
Evaporator 2. As it can be seen the first ones aged much
more than the second ones.

4.3 Circuit parameters

Before the fabrication of the devices it is important to make some predictions of
the several parameters that play a role in the circuit. One needs to make a link
between the real circuit design, i.e. the specific materials used and its geometry,
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and the lumped element model that represents that design. In this section we
focus on the specific geometry of the circuits. Then we introduce the method used
to predict the sample parameters before fabrication.

4.3.1 Circuit geometry
As mentioned in Section 2.2.1, a transmission line has two conductors. Depending
on how these conductors are placed we will have a different circuit geometry. As
a very common example coaxial cables use an inner conductor surrounded by a
dielectric. The outer conductor is an outer cylinder around this dielectric. When
working with integrated circuits one has to change to more suitable geometries.
In this work we chose to use the microstrip geometry102. This geometry is shown in
Fig. 4.21.

It consists of a ground plane at the bottom face of the chip and a metal layer on
the top. This metal layer plays the role of the inner conductor in the coaxial cable.
The dielectric is the combination of the wafer, in our case silicon, and vacuum. The
advantage of this geometry is that we can write our samples in one lithography
step. Several analytic expressions have been found for this and other geometries as
a function of the geometrical parameters W, t and H 102. We use them to get a first
estimation of the dimensions of the components. Then we get more quantitative
results using a software to simulate our system.

Ground

Center conductor

Dielectric

W

H

t

Figure 4.21 – Microstrip geometry. It consists of a center conductor of
thickness t and width W over a dielectric layer of thickness
H. The ground plane lies at the bottom of the dielectric.

4.3.2 Estimation of the capacitances of the system
In order to estimate the capacitances of the system we use an Electromagnetic
simulation software (em software)f. This software solves Maxwell equations in
three dimensions using the method of moments103 for a given circuit design and
returns the scattering parameters for the circuit, i.e. the transmission (S21) and
reflection (S11) coefficients. It takes into account the substrate material and its
thickness as well as the metal used. Lumped elements can be included in the
design that are assumed ideal by the em software. In this case we are going to
simulate the coupling capacitors shown in Fig. 4.13 (b) in addition to the stray
capacitances given by the transmon qubit squid design.

fIn this work we used a software called Sonnet R© .
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Coupling capacitors

A drawing of the capacitors we are going to simulate is given in Fig. 4.22 (a). The

L0
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Cc Cc

Cg,T,0Cg,T2 Cg,T,0 Cg,T2Csh,0

I1 I2
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L0
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Port 2
Zright

100 µm(a)

(b)

Figure 4.22 – (a) Real capacitor design. It consists of aluminum on a
silicon substrate 300 µm thick. (b) Lumped element model
used to simulate the capacitances of the system.

circuit consists of aluminum on top of a 300 µm thick silicon substrate. Due to
the fact that we work with superconducting circuits we model the aluminum as a
lossless metal. The capacitors themselves are connected to the left and to the right
to input and output ports of characteristic impedances Zleft and Zright respectively.
We add a linear inductor of inductance L0 between the capacitors. This inductor
gives a resonance frequency that will be used later to fit the simulated data.

With the em software we can obtain the transmission of the circuit as a function
of frequency for any values of Zleft, Zright and L0. Because we are only interested
in simulating the capacitors, we can choose these values at convenience. We set
L0 = 18.1 nH because it gives a resonance frequency close to the one measured in
the experiment.

In Fig. 4.22 (b) the lumped element circuit used to model these capacitors is
shown . We include seven capacitors. Assuming the system is symmetric we obtain
four capacitances; Cc is the capacitance between the capacitors plates, Cg,T,0 and
Cg,T2 are the capacitance to ground of each of the four plates and Csh,0 is the
shunting capacitance between the two capacitors. We include the input and output
ports of impedances Zleft and Zright and the inductor L0.

As explained in Section 3.2.2, for low Zleft and Zright the capacitance Cg,T2 is
going to be shunted, i.e. it is not going to affect the transmission of the circuit.
We therefore perform a first em simulation setting Zleft = Zright = 50 Ω plotted
in Fig. 4.23 (blue circles). From this simulation we extract the capacitances Cc,
Cg,T,0 and Csh,0 by fitting the transmission for the circuit in Fig. 4.22 (b) using the
ABCD matrix method described in Section 2.2.2. The result is plotted as a solid
line in Fig. 4.23 (a). The position and width of the peak in transmission depends on
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Chapter 4 Circuit design and fabrication

the three capacitances. However, the position of the dip in transmission depends
only in the value of Csh,0. We can therefore obtain Csh,0 and then independently
fit Cc and Cg,T,0 from the peak position and width. This gives three out of the
four capacitance values in Fig. 4.22 (b). In order to fit the last capacitance, Cg,T2,
we perform a second em simulation setting Zleft = 50 Ω and Zright = 3000 Ω,
Fig. 4.23 (b) blue circles. Now Cg,T2 affects the transmission of the circuit. We obtain
the transmission for the lumped element circuit and fit the simulated data varying
only Cg,T2, Fig. 4.23 (b) solid line. In this way we obtain the four capacitances
independently. The error in the capacitances is obtained as the range where the
agreement between the em simulation and the ABCD matrix data was within
10 %. There is however one capacitance in the system that cannot be simulated
using em software, the self-capacitance of the Josephson junction CJ,T. In order to
estimate it we use the empirical relation in Eq. (4.18). The error in this capacitance
is given by the error in the measurement of the junction area using a Scanning
Electron Microscope (sem). For a junction of dimensions 250 nm× 250 nm this
error is around 20 nm for each length. The obtained capacitances for the system
are summarized in Table 4.1.

Stray capacitances from the transmon squid

As will be shown in Section 7.1, the transmon qubit has a squid with a large loop
(∼ 55 µm× 1.2 µm). Due to its large size, the capacitances associated to this squid

are not negligible. In Fig. 4.24 (a) the squid design with the different capacitances
is given. The lumped element model used for simulating the system is shown in
Fig. 4.24 (b)

We follow the same procedure as before. Given the small number of fitting
parameters (Csh,S and Cg,S) we can perform a single fit with Zleft = 50 Ω and
Zright = 3000 Ω. The result of the fit is shown in Fig. 4.25 with the obtained capac-
itance values. The squid increases both the shunting capacitance and the ground
capacitance of the transmon qubit. All the transmon qubit capacitances, including
those from the coupling capacitors and from the squid, are given in Table 4.1.

Capacitance Value (fF)

Cg,T2 33± 1
Cg,T = Cg,T,0 + Cg,S 48± 2
Cc 119± 2
Csh = Csh,0 + Csh,S 6.9± 0.1
CJ,T 5.2± 0.3

Table 4.1 – Simulated capacitances for the measured sample. The first
capacitances were obtained using em simulation software.
The last one was obtained using the empirical relation in
Eq. (4.18).
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Cc = 119 ± 2 fF

Cg,T,0 = 43 ± 2 fF

Csh,0 = 4.4 ± 0.1 fF

(a)

(b)

Cg,T2 = 33 ± 1 fF

Figure 4.23 – Capacitances estimation. Simulated transmission from the
em software (blue circles) and fit from the lumped element
model, orange solid line. (a) First simulation with Zleft =
Zright = 50 Ω. (b) Second simulation with Zleft = 50 Ω
and Zright = 3000 Ω.
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Figure 4.24 – (a) Real design of the squid of the transmon qubit. In the
inset the shunting capacitance Csh,S and test inductance
L0 are shown. (b) Lumped element model used to simulate
the capacitances of the system.

0 5 10 15 20 25 30
Frequency (GHz)

80

70

60

50

40

30

20

10

S 2
1 (

dB
)

Simulated data
Fit with ABCD matrices

Csh, S = 2.5 ± 0.1 fF
Cg, S = 4.7 ± 0.3 fF

Figure 4.25 – squid capacitances estimation. Simulated transmission
(blue circles) and fit from the lumped element model, or-
ange solid line. The simulation was performed setting
Zleft = 50 Ω and Zright = 3000 Ω.
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Experimental setup 5

This chapter contains all the information related to how the different samples were
measured. First we introduce the cryostat where the experiments were performed.
Then we introduce the different upgrades realized during my PhD: thermalization
of the microwave components, a hydrogen filter for the mixture, magnetic shield-
ing of the sample and radiation filtering at the input lines. Finally we describe the
microwave setup as well as the sample holder.

5.1 The dilution refrigerator

When measuring superconducting quantum circuits it is important to ensure that
there are no thermal excitations in the system. The relevant transition frequencies
in these circuits are in the GHz range.

In order to measure these transitions we need to reach a temperature where the
thermal excitations in the circuits are negligible. If we denote the mean number
of thermal photons as a function of frequency and temperature by n(ω, T), we
need to work at a temperature where n(ω, T)� 1/2, below the quantum vacuum
oscillations. n(ω, T) is given by the Bose-Einstein distribution,

n(ω, T) =
1

e
h̄ω

kBT − 1
. (5.1)

In Fig. 5.1 we show the average number of photons as a function of frequency for
four different temperatures. We show frequencies from 0.3 GHz to 20 GHz which
is the range of the energy transitions in superconducting quantum circuits. The
limit n(ω, T) = 1/2 is shown as a horizontal dashed line. As it can be seen we
need to reach a temperature as low as 20 mK to reduce the thermal excitations
in the system below this limit. Even at this temperature there are some thermal
excitations for the lowest frequencies, see inset in Fig. 5.1. This means that for long
arrays of squids the lowest frequency modes are going to be affected by thermal
photons.

In order to reach temperatures of 20 mK we use a dilution refrigerator. For a
detailed description of the working principle of a dilution refrigerator refer to De
Waele 104 and Pobell 105 . Here we describe the refrigerator where we performed
the measurements pointing out the upgrades introduced during my PhD.
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Figure 5.1 – Average number of photons as a function of their frequency
for several values of temperature. The dashed line marks
the limit n(ω, T) = 1/2. The curves are obtained using
the Bose-Einstein distribution. A zoom in for frequencies
below 1 GHz for T = 20 mK is given in the inset.

5.1.1 The Inverse Dilution Refrigerator

The working principle of the Inverse Dilution Refrigerator (idr) used in this work
is the same as the usual one. Its main peculiarity is that it is inverted, the coldest
part is at the top of the fridge and the warmest at the bottom. It uses two different
flows. The primary one is the usual 3He/4He flow of dilution refrigerators. The
secondary one is a 4He flow used for cooling down the cryostat to 4 K. The cryostat
lies on top of a 100 L 4He dewar from where it takes the 4He for this flow, see
Fig. 5.2 (a). This dewar is kept slightly over pressured to ensure a continuous flow
during operation. When cooling down, a pump is used to increase the helium
flow. The 4He consumption during operation is around 13 L per day, therefore it
needs to be refilled at least once a week.

The fridge is divided in several stages each related to one temperature, see
Fig. 5.3. Each of these stages counts with a metal plate to thermalize the different
parts of the cryostat and the different microwave components. The first two stages
are the 100 K stage and the 20 K stage. The next one is the 4 K stage. The helium
from the 4He dewar is stored in the 4 K pot at this stage. The primary cooling
cycle is thermally connected to the 4 K pot. The next stage is the 800 mK stage
and is where the still lies. The last two stages are in the same plate. The outer
ring of the plate is the 40 mK stage and contains the cold plate. This cold plate
is the link between the continuous and the discrete heat exchanger. The inner
part is at 20 mK and is thermally connected to the mixing chamber. Both parts are
mechanically connected via a poor heat conductor (stainless steel) to reduce the
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Cryostat

(a)

4He dewar

Infrared screens
Vacuum screen(b)

Heating blanket

100 K
20 K

4 K

Figure 5.2 – Inverse Dilution Refrigerator. (a) General picture of the
idr. The cryostat lies on top of a helium dewar. (b) Vacuum
screen and the three infrared radiation screens anchored at
the 100 K, 20 K and 4 K stage respectively. A heating blan-
ket around the vacuum screen speeds up the warm up.
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heat flow from the 40 mK stage to the 20 mK stage. We anchor the sample we want
to measure at 20 mK.

To avoid infrared radiation from warmer stages heating colder ones highly
reflective screens are used, see Fig. 5.2 (b). These are mirror polished aluminum
screens that we anchor at each of the stages’ plates. Finally the outermost screen
covers the whole cryostat and keeps it under vacuum. It is wrapped with a heating
blanket to speed up the warming up of the fridge. The fridge operation is fully
automated. The idr cools down from room temperature to base temperature in
less than ten hours. Using the heating blanket it can warm up in less than two
hours.

5.1.2 Nitrogen and hydrogen traps

The closed circulation cycle of 3He goes from room temperature to 20 mK. If we
would have some impurity in the cycle it would solidify at a given stage in the
fridge clogging the 3He circulation. To avoid that a nitrogen trap is used. It consists
of a very porous material (activated charcoal) that at low temperatures traps any
liquid that goes through it. To cool it down we sink it in liquid nitrogen (70 K) and
circulate the mixture through it, see Fig. 5.4 (a). Everything with a condensation
temperature above 70 K is trapped there and does not reach the cryostat. The trap
needs to be warmed up and pumped every month to keep it empty.

Any impurity with a boiling point below 70 K still goes through the trap. Dur-
ing my PhD the cryostat clogged frequently after one or two days of operation
despite the nitrogen trap. Hydrogen, with a boiling point of 10 K, was getting
trapped between the 20 K stage and the 4 K stage. This hydrogen is known to
come from the oil of the different pumps and the grease of the various seals in the
setup. A hydrogen filtera, Fig. 5.4 (b), was installed right after the nitrogen trap.
It uses a metal powder to adsorb the Hydrogen. After the installation of this filter
the cryostat could operate during weeks without clogging.

5.1.3 Thermalization of the microwave components
The components we use for the experiment must be thermally connected to the
cryostat. Otherwise they will release heat during the cool down and the cryo-
stat will not reach its base temperature. Most of the components are anchored to
their respective stage via copper brackets, see Fig. 5.5 (a). This ensures that the
component is at the same temperature as the plate.

In the case of coaxial cables, they link stages at different temperatures. This
might create a thermal shortcut between the two stages with heat from the warmer
stage reaching the colder one. To avoid this the cables need to be long enough so
there is a temperature gradient along them. Following the approach in Dumur 106

we can model a coaxial cable as an homogeneous metal cylinder of length L and
cross section S with a linear thermal conductivity κ(T) = κ0T. If the cable links
a stage with temperature T2 with a stage with temperature T1 (T2 > T1) the heat
load arriving to the colder stage is given by

P =
κ0S
2L

(
T2

2 − T2
1

)
. (5.2)

ahttp://www.nupure.com/Pages/PF_Series.htm
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power supply

DC filtering for
the external coil

Figure 5.3 – Open cryostat showing the different stages and the different
parts of the dilution refrigerator. The temperature decreases
from bottom to top. The sample holder is placed at the top
of the cryostat anchored to the mixing chamber. At the bot-
tom the input and output lines as well as the power supply
for the amplifier and the connection for the external coil
are shown. At the right the two preamplifiers used for the
thermometers measurement can be seen.
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Figure 5.4 – (a) Nitrogen trap inside a nitrogen dewar. The mixture cir-
culates through the trap leaving the impurities trapped in-
side. (b) Hydrogen trap. It eliminates the hydrogen via ad-
sorption by a metallic powder. It is used at room tempera-
ture.

The cooling power for the idr is around P0 ∼ 1 µW at the mixing chamber just
above base temperature (20 mK). If we use a standard coaxial cable made of
copper (κ0 = 4200 W/(m K2)) with a cross section of S = 1.8 mm2 connecting
the still (T2 = 800 mK) and the mixing chamber (T1 = 20 mK) we would need
a cable around two kilometers long in order to get a heat load lower than P0.
We therefore use stainless steel cablesb with a much lower thermal conductivity,
κ0 = 4.3× 10−3 W/(m K2). In the setup we use three cables of length L = 40 cm
which give a heat load P = 18 nW << P0.

The important point now is to make sure that each portion of the cable is
thermalized at each of the stages it goes through. This thermalization consists of
a copper braid soldered to the external conductor of the cable, see Fig. 5.5 (b). At
the other end of the copper braid we put a hook so we can anchor the braid to
the stage plate. This is done for several stages. Finally at the cold plate we use a
through to both thermalize and make a stable connection, see Fig. 5.5 (c).

Finally, due to the fact that the inner and outer conductors are thermally iso-
lated from each other, we use microwave attenuators at the input line between
the cables to thermalize the inner conductor. On top of that, these attenuators
thermalize the photons arriving to the sample from room temperature to the cyo-
stat’s base temperature106. Regarding the output lines, to avoid thermal noise from
warmer stages interfering with our outgoing signal we use two isolators in series,
Fig. 5.5 (a). All the thermal noise coming from the warmer stages is directed by

bReference for the cables: SC-219/50-SS-SS from COAX CO., LTD.
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these isolators to a 50 Ω load where it is dissipated.
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Figure 5.5 – Thermalization of the microwave components. (a) Most
components are thermalized via a copper bracket. In the im-
age two isolators are anchored to the 20 mK stage. (b) Wires
are thermalized at each stage using a copper braid. (c) At
the 40 mK stage we use a through for thermalization and
for mechanical stability.

5.1.4 Magnetic and radiation filtering
To screen the external magnetic field at the sample we place it inside a mu-metal
screen. The term mu-metal refers to a metal with high magnetic permeability µ.
When an external magnetic field reaches the screen it penetrates its walls but not
its interior. In this work we used a copper screen and we wrapped it with Metglasc,
see Fig. 5.7 (a).

Regarding external radiation, it can enter the cryostat and excite quasi particles
in the circuits107. It has been shown108,109,110 that these quasi particles influence
the coherence and relaxation of superconducting qubits. This radiation can enter
directly into the cryostat through the different screens or through the coaxial ca-
bles. To avoid the former we coated the interior of the mu-metal screen with black

cMetglas 2714A Magnetic Alloy
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coating107, Fig. 5.7 (a). This coating consists of silicon balls, carbon powder and
black STYCAST R©d.

For the radiation coming from the coaxial cables we use home made dissipative
filters, see Fig. 5.7 (b). They consists of a short section of a coaxial cable where
the inner conductor is made of silver-plated copper and the outer conductor of
copper. The filter is impedance matched to the 50 Ω cables to avoid reflections.
For the dielectric we use a microwave absorbing materiale that filters out very
high frequency radiation (> 20 GHz). In Fig. 5.6 we plot the transmission S21
and reflection S11 for the filter shown in Fig. 5.7 (b). Our measurement range
stops at 20 GHz and therefore we cannot measure the cut-off frequency of the
filter. However we see a slope in transmission that is related to the high-frequency
filtering.

(a) (b)

Figure 5.6 – (a) S21 and (b) S11 parameters for the filter in Fig. 5.7 (b).

5.2 Microwave setup

In order to probe our system we perform microwave transmission measurements
using a Vector Network Analyzerf (vna). The vna has two ports that can both
generate and detect microwave signals. Sweeping the frequency in the GHz range
the vna obtains the amplitude and phase of the desired scattering parameter as
a function of frequency. To perform these transmission measurements we need
to connect the vna at room temperature to our sample inside the dilution fridge
at 20 mK. As mentioned before, we use microwave attenuators to thermalize the
inner conductor of the input cables and to attenuate the black body radiation of
the higher temperature stages. In addition, these attenuators reduce the electrical
power arriving to the sample. This makes it possible to reach power levels cor-
responding to one microwave photon times unit bandwidth. We need to amplify
the outgoing signal from the sample to be able to detect it with the vna. We use
two amplifiers, a HEMT amplifierg at 4 K and a standard amplifierh at room tem-
perature. The former defines the signal to noise ratio and the latter amplifies the
signal for the vna detection. As will be explained later, see Chapter 6, in order

dSTYCAST R©
2850 FT. Emerson & Cumming.

eRS-4000HT Series Solid Form Microwave Absorber. Resin System Corporation.
fR&S R© ZNB20

gLNF-LNC1_12a
hMITEQ JS4
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12.5 cm

5 cm

(a) (b)

Dissipative epoxy

Silver-coated copper

Copper

6 cm

Figure 5.7 – (a) Mu-metal screen used to shield the sample against exter-
nal magnetic fields. The inner part of the screen was coated
with a radiation absorber (bottom). (b) Home made radia-
tion filters. As inner conductor we use silver-coated copper,
copper as the outer conductor and a microwave absorbing
epoxy (see main text) as the dielectric.
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Figure 5.8 – Experimental setup. The measurement consists in mi-
crowave transmission measurements through the sample
using a vna. The external magnetic flux is applied via a
superconducting coil in purple. For the two tone measure-
ments a microwave source is used.
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to measure outside our setup bandwidth we perform a two tone measurement. It
uses two microwave tones, one for probing the system and the other for driving
it. The first tone is applied with the vna. For the second tone we use a microwave
sourcei. They are both connected to the input line via a power combinerj.

The external magnetic flux is applied via a superconducting coil anchored to
the upper part of the sample holder. We use a current sourcek to apply a dc

current to the coil. The sample holder with the sample and the external coil are
both inside the mu-metal shield. The whole microwave setup is shown in Fig. 5.8.

5.2.1 The sample holder

To perform the transmission measurements we fit the sample in a sample holder.
The input and output pads of the sample are connected to the input and output
ports of the sample holder. On the other end, these ports can be directly connected
to the input and output lines of the microwave setup. In this way the transmission
through the sample can be measured. In addition, the sample holder is anchored
to the cryostat and therefore thermalizes the sample.

Description

The sample holder consists of two parts, see Fig. 5.9 (a). The lower part is a foot
that is anchored to the mixing chamber. It provides the thermal contact between
the cryostat and the sample. The upper part is where the chip is placed, see
Fig. 5.9 (a) right picture. It has four coaxial cables which are directly soldered to the
sample holder. Inside it the cables were cut in half exposing the inner conductor
where the sample can be directly wire bounded. This design ensures a light-tight
sample holder, i.e. the unwanted radiation reaching the sample through the in-
put and output ports is reduced at most. However, this comes with a drawback,
whenever the inner conductor bends or is damaged the sample holder needs to
be refurbished.

The sample is glued to the sample holder using silver conducting adhesive
paintl. This paste ensures a good electrical contact between the sample and the
sample holder. Care needs to be taken so the silver does not reach the connec-
tors shunting them to ground. The superconducting coil is screwed on top of the
sample holder as shown in Fig. 5.9 (b). The sample holder together with the super-
conducting coil is designed to fit inside the mu-metal screen shown in Fig. 5.7 (a).
This sample holder was used to perform all the measurements presented in this
work.

Characteristics

To characterize the sample holder we measure its transmission (S21) and reflection
(S11) in the vna frequency range (100 kHz to 20 GHz). A microstrip through is in-
stalled instead of the sample. We perform the measurement for the two pairs of

iSMB 100A
jZFRSC-183-S+

kHP 3245A
lRS Pro Bottle of Silver Conductive Adhesive Paint. Stock No: 186-3600

113

https://cdn.rohde-schwarz.com/pws/dl_downloads/dl_common_library/dl_brochures_and_datasheets/pdf_1/service_support_30/SMB100A_dat-sw_en_5213-8396-22_v0900.pdf
https://ww2.minicircuits.com/pdfs/ZFRSC-183+.pdf
http://www.testequipmenthq.com/datasheets/Agilent-3245A-Datasheet.pdf
http://docs-europe.electrocomponents.com/webdocs/1513/0900766b815139c0.pdf


Chapter 5 Experimental setup

(a)

(b)

Sample

Coil

Ports

4 cm8 
cm

Figure 5.9 – (a) Sample holder used in this work. The sample is placed
in the upper part and wire bonded directly to the inner
conductor of the coaxial cables, see right picture. The foot
connects the sample holder to the mixing chamber of the di-
lution fridge.(b) The superconducting coil (right) is placed
on top of the sample holder (left).
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5.2 Microwave setup

ports. The obtained curves are shown in Fig. 5.10. As it can be seen, the transmis-
sion is above −4 dB and reflection is below −10 dB for ports 2 and 4. For ports 1

and 3 there was a finite conductance to ground coming from the silver paint that
is responsible for the high reflection at high frequencies.

(a)

(b)

Figure 5.10 – (a) S21 and (b) S11 parameters for the sample holder in
Fig. 5.9 for its four ports.
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Characterization of the arrays of
squids 6

As a tunable high impedance environment we use an array of squids. Here we
present the transmission measurements of several of these arrays and observe the
flux modulation of their modes. Finally we fit the dispersion relation of one of
them to obtain its parameters.

6.1 Measured samples

During my PhD several arrays of squids were measured. They are all fabricated on
a 300 µm thick intrinsic silicon substrate. The dimension of the chip is 1 cm× 1 cm
(1 cm× 0.45 cm for some samples). A photograph of one of these samples is shown
in Fig. 6.1. The two 50 Ω pads can be seen at both ends of the chip. In the inset an

1 cm

1 µm

50 Ω output
pad

50 Ω input
pad

Figure 6.1 – Photograph of a sample containing an array of asymmetric
squids galvanically coupled to two ports. The substrate is
silicon and the metal is aluminum. The two 50 Ω input and
output pads are located at both ends of the chip. The inset
contains an sem picture of the array. In blue the Josephson
junctions are shown.

sem picture of one part of the array is given. It can be seen that for this array the
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Chapter 6 Characterization of the arrays of squids

squids are asymmetric, i.e. one junction is larger than the other. As will be shown
later this has an effect on the flux modulation of the modes of the array.

6.2 Transmission measurements

We perform transmission measurements of the sample using a vna. We obtain S21
as a function of the applied microwave frequency. To perform the measurements
the sample is mounted in the sample holder shown in Fig. 5.9 and wire bonded to
its input and output ports. We use two different geometries for the arrays. In the
first one the array is side coupled to a transmission line while in the second one it
is in line coupled.

6.2.1 Side coupled array

The array is capacitively coupled at one side of a 50 Ω transmission line, see
Fig. 6.2. When measuring the transmission line we obtain a dip at each of the
resonance frequencies of the array. The advantage of this configuration is that we
can obtain the internal and external quality factors from the measured dips. The
amplitude and the phase of one of the resonances of an array of length N = 500 is
shown in Fig. 6.3. We fit each of the resonances using the expression for the trans-
mission S21 of side coupled resonator111,112. The expression is given in Eq. (6.1).

S21 (ω) =
1 + 2iQintω̃

1 + Qint
Qc

+ 2iQintω̃

ω̃ =
ω−ωr

ωr
.

(6.1)

Here Qint and Qc are the internal and coupled quality factors of the resonance and
ωr is its resonance frequency. A fit of one of these resonances is given in Fig. 6.3
with a red dashed line for both amplitude and phase. As it can be seen we obtain
an internal quality factor of around Qint ∼ 104. The fact that Qint > Qc shows that
the losses in the array are mainly given by its coupling to the transmission line.

6.2.2 In line coupled arrays

In this configuration the arrays are galvanically coupled to two ports at both ends.
The impedance of these ports is approximatelya 50 Ω. As discussed in Section 2.2.2
there is an impedance mismatch between the input and output 50 Ω pads and the
array. Because of this some of the microwave signal is reflected and some is trans-
mitted at the boundary between the array and the 50 Ω pads. This gives rise to
an interference phenomena similar to the one in a Fabry-Pérot interferometer. For
some frequencies ωk standing waves (both for voltage and current) are formed, see
Fig. 6.4. These frequencies are the eigenfrequencies of the array and the standing
waves are its eigenmodes.

aThe wire bonds act as small inductors but generally they can be neglected if several of them
are used.

118



6.2 Transmission measurements

LJ CJ

Cg

Cin

Cout

Cg,in

Csh

Port 1
Z0 = 50 Ω

Port 2
Z0 = 50 Ω

1 µm

200 µm

Transmission line
Z0 = 50 Ω

(a)

(b)

Figure 6.2 – Side coupled array. (a) Circuit diagram of the sample. A
capacitance Cin couples the array to the transmission line.
The other capacitances of the system are given. (b) Optical
image of the sample. The 50 Ω transmission line is shown at
the left. The inset shows an Scanning Electron Microscope
(sem) image of the array (blue square).
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Chapter 6 Characterization of the arrays of squids

Qint = 1.1×104

Qc = 2.9×103

ωr = 2.767 GHz

(a)

(b)

Figure 6.3 – Fit of one of the resonances of the array using Eq. (6.1) for
both (a) the amplitude and (b) the phase.
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6.2 Transmission measurements

Port 1
Z0 = 50 Ω

Port 2

Voltage

Current

Z0 = 50 Ω

Figure 6.4 – Representation of the voltage (green) and current (purple)
corresponding to the first mode of the array.

For each ωk we measure a peak in transmission, see Fig. 6.5. This is simi-
lar to the result obtained using ABCD matrices in Section 2.2.2. The width of
these resonances is directly related to the losses in the system. We perform a
fit with a Lorentzian of one of the resonances and obtain a width of Γarray =

(6.18± 0.02)MHz. This gives a quality factor of Q = (7.20± 0.02)× 102 for the
resonance at 4.45 GHz. This value is comparable to the quality factor obtained us-
ing ABCD matrices for an array with the same parameters and for the same mode
frequency, QABCD = 6.9× 102. Given the fact that all arrays are fabricated follow-
ing the same fabrication procedure, we can assume that the internal quality factors
of the arrays are the same. If we compare the obtained Q for this array with the
internal quality factor obtained previously for the side coupled array Qint ∼ 104,
we observe that the width of the resonances is mainly given by the coupling to
the 50 Ω input and output ports.

3 4 5 6 7
Frequency (GHz)

50

40

30

20

S 2
1 (

dB
)

Lorentzian fit

Figure 6.5 – Transmission through the array as a function of the mi-
crowave frequency. In red a fit to a Lorentzian of one of the
peaks is shown.
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Chapter 6 Characterization of the arrays of squids

Flux tuning

Each of the sites in the array contains a squid. Therefore we can tune the eigenfre-
quencies of the array via an external magnetic flux ΦA. This flux tunes the critical
current of the squids following Eq. (2.10). This changes the inductance of each of
the squids in the array and hence its dispersion relation according to

ω (k, ΦA) =
1√

LJ (ΦA)CJ

√√√√ 1− cos (ka)

1− cos (ka) + Cg
2CJ

. (6.2)

Here LJ (ΦA) is modulated via Eq. (6.3). As already mentioned in Section 2.1.1, d
is the asymmetry between the junctions in the squid.

LJ (ΦA) =
LJ∣∣∣cos

(
π ΦA

Φ0

)∣∣∣√1 + d2 tan2
(

π ΦA
Φ0

) . (6.3)

In Fig. 6.6 we show the transmission of two different samples as a function
of frequency and the applied magnetic flux ΦA. The first sample, Fig. 6.6 (a), is
an array of squids with 500 symmetric squids. The second one, Fig. 6.6 (b), is
the array of 5394 asymmetric squids from Fig. 6.1. It is clear that the Free Spectral
Range (fsr) becomes smaller the longer the array. For coupling a system to several
modes it is important to reduce the fsr so it becomes comparable to the coupling
strength. This was the main motivation for increasing the length of the array. The
difference in the asymmetry can be also observed in Fig. 6.6. For the symmetric
chain all the modes go to zero for ΦA = ±Φ0/2. However for the asymmetric one
we see that the modes reach a minimum frequency. At this point the fsr is highly
reduced. A zoom in of this region (red square in Fig. 6.6 (b)) is shown in Fig. 6.7.
All the modes of the array are tuned without any loss of visibility. This is a direct
proof of the low disorder present in the array86.

6.3 Dispersion relation

From now on the results correspond to the in line coupled array shown in Fig. 6.6 (b).
From the dispersion relation in Eq. (6.2) we can obtain the parameters of the array.
To fit the dispersion relation we need to measure its eigenfrequencies in a wide
frequency range, from 0.1 GHz to 20 GHz. We are however limited to the band-
width of the microwave readout setup, from 2.5 GHz to 13 GHz. To overcome this
difficulty we perform what is known as a two tone measurement46,86. We take ad-
vantage of the fact that the array is not completely linear. As a consequence, when
applying a microwave tone at a given resonance of the chain, the other resonant
frequencies are shifted. This is known as the cross Kerr effect86,113. With the vna

we measure the transmission of the system at a constant frequency ωvna . This
frequency is set to an eigenfrequency of the array, ωvna = ω1. With a microwave
source we apply a second tone at a variable frequency ωmw. Whenever this sec-
ond tone matches a resonance of the system, the resonance ω1 moves to ω̃1 due
to the cross Kerr effect. Because of this, ωvna is no longer a resonance frequency
of the circuit and we measure a dip in transmission. In this way we obtain all
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6.3 Dispersion relation

(a)

(b)

Figure 6.6 – Transmission measurement as a function of the applied
magnetic flux ΦA for two different samples, (a) short sam-
ple (N = 500) and (b) long sample (N = 5394).
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Figure 6.7 – Zoom in for the region around ΦA = Φ0/2, red square in
Fig. 6.6 (b).

the resonances of the array. Due to the fact that the vna is only measuring at one
frequency, we are not limited by the bandwidth of the microwave readout setup
anymore. We are only limited by the range of the microwave source used, in this
case from 100 kHz to 20 GHz, and the input microwave bandwidth. In Fig. 6.8 we
show a two tone measurement for the sample with N = 5394. It can clearly be
seen that the dips disappear above 17 GHz. This is the plasma frequency of the
array, above it no mode propagates. We fit each of the dips to a Lorentzian line
shape in order to obtain the position of each resonance frequency. The fit is not
very accurate for the width of the dip. This is because for the two tone measure-
ment we need to use high microwave power. At high power the resonances are not
Lorentzians anymore. However this fit gives the resonance frequency with enough
accuracy, see Fig. 6.8 inset.

From each of the resonances in Fig. 6.8 we obtain a point in Fig. 6.9 (a). We
denote the lowest mode as the first mode, n = 1 and label the following ones
successively. We fit the obtained data points in Fig. 6.9 (a) with the expression for
the dispersion relation obtained from the lumped element model, Eq. (6.2). As
shown in Section 2.2.2, we can approximate the two 50 Ω pads as connections to
ground. We therefore impose closed boundary conditions to the array obtaining
the allowed kn values for the eigenfrequencies,

kn =
nπ

Na
. (6.4)

Introducing this expression in Eq. (6.2) we fit the data points in Fig. 6.9 (a) as a
function of the mode index n. We point out that in the fit of the dispersion relation,
the effect of CJ and LJ cannot be distinguished for CJ � Cg. Therefore we need to
fix one of them. As previously done in Section 4.2.4, we can estimate CJ from the
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Figure 6.8 – Two tone measurement of the array of squids. For this
measurement we set ωvna = 7.168 GHz. The vna power
at room temperature was set to Pvna = −30 dbm and the
microwave source power to Pmw = −30 dbm. The inset
shows a Lorentzian fit (red) of one of the resonances.

junction area A using Eq. (4.18), reproduced here,

CJ = 45 fF/µm2 × A. (6.5)

Therefore we obtain CJ from the junction area and fit only LJ and Cg. The obtained
parameters are listed in Table 6.1.

Lumped element model
LJ (1.30± 0.06) nH
CJ (46.8± 0.5) fF
Cg (0.07± 0.01) fF

Table 6.1 – Parameters for the array of squids extracted from the fit of
the dispersion relation. The errors give a maximum discrep-
ancy between theory and experiment of 10 %.
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Figure 6.9 – Fit of the dispersion relation of the array.
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Transmon qubit coupled to an
array of squids 7

The main experimental results are given in this chapter. We couple a transmon
qubit to an array of squids. First we give a description of the measured sample,
then we describe the different measurements performed and finally we use the
phase shift introduced in Section 3.4 to obtain the coupling strength, the transmon
qubit frequency and the number of modes coupled to the transmon.

7.1 The sample

The sample consists of a transmon qubit coupled to an array of 4700 squids. The
qubit is placed at one end of the array. It is capacitively coupled to the array at
one side and to a 50 Ω pad at the other side. The array is galvanically coupled
at one end to a 50 Ω pad. The circuit is the one discussed in Section 3.4. It is
reproduced in Fig. 7.1 (a). As it can be seen, we have a squid in the transmon
qubit and squids in the array. The area of the squid loop in the transmon qubit
is around thirty times larger than the area of the squids in the array. If we denote
as ΦT the flux inside the squid for the transmon qubit and ΦA the flux inside the
squids in the array, given the difference in loop area, we expect ΦT ∼ 30×ΦT for
the same magnetic field. This gives two totally different periods with respect to
the applied magnetic field. As will be explained later, this allows us to study the
system at different coupling regimes. An optical picture of the sample is given in
Fig. 7.1 (b). As with the arrays, the substrate is silicon and the metal is aluminum.
The coupling capacitors are the interdigital capacitors explained in Section 4.3.2.
The value for the different capacitances is given in Table 4.1.

7.2 Transmission measurements

We probe the system by measuring the transmission S21 through it. As explained
in Section 6.2, due to the impedance mismatch between the system and the two
50 Ω pads we obtain several peaks in transmission, see Fig. 7.2 (a). If we compare
this measurement with the one in Fig. 6.5 (b) for a bare array we can clearly see
a broadening of the peaks due to the presence of the qubit. The reason for this
is that the impedance seen by the array depends on the transmon qubit. At the
transmon resonance this impedance is higher than 50 Ω (and thus more matched)
and therefore the transmission is higher and the width of the resonances of the
array increases.
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Z0 = 50 Ω

200 µm

10 mm(b)

EJ,T

Csh

Cg,T2 Cg,T2Cg,T Cg,T

Cc Cc

Cg

LJ CJ

Z0 = 50 Ω

(a) CJ,T

10 µm 10 µm

200 nm

50 Ω 50 Ω

Figure 7.1 – Measured sample, a transmon qubit coupled to an array
of squids. (a) Circuit diagram of the sample. In red the
transmon qubit and in blue the array. We include the input
and output ports of characteristic impedance Z0 = 50 Ω.
(b) Optical image of the sample. Only a portion of the ar-
ray of squids is shown. The insets show the squid in the
transmon (red) and the squids in the array (blue). The
Josephson junctions for the transmon are given as insets in
the former (red dashed squares).
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Figure 7.2 – Transmission of the circuit as a function of frequency for
ΦT = 0 and ΦA = 0.

7.2.1 Flux tuning

In the same way as with the bare arrays, we can apply a magnetic field via the
external coil. Given the fact that we have squids in the transmon and in the array
we tune both at the same time. The transmission of the circuit as a function of
frequency and magnetic flux in the array ΦA is shown in Fig. 7.3 (a). Two periods
with flux are clearly distinguishable. The long one is related to the squids in the
array and is similar to the one for a bare array in Fig. 6.6 (b). The short one is
related to the squid in the transmon qubit. The ratio between these periods is
given by the ratio of the areas of the squids loops in the transmon and in the
array. A zoom in of the measurement in Fig. 7.3 (a) is given in Fig. 7.3 (b). The
period related to the transmon qubit can clearly be seen as well as the avoided
crossings between the modes of the array and the transmon mode.

If we take a closer look to one of the qubit arcs, Fig. 7.4, we clearly see how the
transmon mode hybridizes with each of the modes in the array. The horizontal
lines are the array modes. They are almost constant in flux due to the difference
in area between the squids. The square root cosine shape is the transmon like
mode. It can be seen in this measurement that the size of the avoided crossings is
comparable to the fsr, given by the frequency difference between two consecutive
modes in the array. This means that at any point in flux the qubit is interacting
not only to the resonant mode but with modes above and below its frequency.
In other words, the qubit is never in the dispersive regime66 with respect to the
modes of the array.
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(a)

(b)

Figure 7.3 – Transmission of the circuit as a function of the magnetic
flux in the array ΦA and the microwave frequency. A zoom
in of the area in the red rectangle is shown in the bottom
plot.
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Figure 7.4 – Transmission spectrum as a function of the applied flux
ΦT and microwave frequency for ΦA = 0. The horizontal
lines are the modes of the array. The transmon frequency
is tuned with ΦT. This tuning can be seen as a series of
avoided crossings with the modes of the array.

7.2.2 Dispersion relation

In a similar way as with the sample in Chapter 6, we can perform a two tone mea-
surement to obtain the resonances of the array. However, in this case the transmon
qubit affects the dispersion relation of the circuit. To avoid this we set ΦT = Φ0/2.
At this point the Josephson energy of the transmon qubit is zero (its inductance is
infinite) and therefore it does not interact with the modes in the array. Therefore
the modes obtained from the two tone measurement are only due to the array. The
two tone measurement is given in Fig. 7.5. The result is similar to the one obtained
for the bare array.

We fit each of the resonances with a Lorentzian to get their center frequency
and then fit the dispersion relation. Contrary to what we did with the bare array,
we choose open/closed boundary conditions. The reason is that for ΦT = Φ0/2
the transmon qubit can be seen as an open. This gives a different condition for the
kn,

kn =

(
n− 1

2

)
π

Na
. (7.1)

Using this condition we fit the obtained peaks with the dispersion relation for a
bare array in Eq. (6.2). The result of the fit is given in Fig. 7.6 (a). The obtained
parameters are given in Table 7.1. In Fig. 7.6 (b) we plot the obtained fsr as a
function of the mode frequency ωk in blue. In red we obtain the theoretical one
obtained from the lumped element model. As we see, for the measurement range
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Figure 7.5 – Two tone measurement of the modes of the array. The fre-
quency trace is taken for ΦT = Φ0/2 and ΦA = 0. The
inset shows a lorentzian fit of one of the dips in red. The
power is set to Pvna = −10 dbm and Pmw = 10 dbm
at room temperature. The frequency of the vna is set to
ωvna = 5.1692 GHz.
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7.3 System-environment interaction

where the qubit is interacting with the array, we obtain fsr ∼ 0.4 GHz, comparable
to the 2gk obtained in Section 3.3.

Lumped element model
LJ (0.33± 0.02) nH
CJ (259± 14) fF
Cg (0.13± 0.01) fF

Table 7.1 – Parameters for the array of squids extracted from the fit of
the dispersion relation. The errors give a maximum discrep-
ancy between theory and experiment of 5 %.

7.2.3 Power dependence

Up to this point we did not measure any non linear behavior in the circuit. A way
of probing this behavior is to measure the transmission of the circuit as a function
of the applied microwave power. For a non linear circuit, the resonance frequency
associated to the qubit should saturate with increasing power19,25,34,57 i.e. the peak
in transmission should disappear. For this measurement we set ΦA = 0 and ΦT =
0. Then we measure S21 with the vna and sweep the vna power, Pvna. In Fig. 7.7 we
show three traces for three different values of power at room temperature, Pvna =
−20 dbm, −10 dbm and 12 dbm. At low power we measure five resonances, same
result as in Fig. 7.2 (a). Four of these resonances are more array-like and the one in
the center is more qubit-like. As expected, with increasing power we observe that
the height of the qubit-like resonance is reduced. At very high power the qubit-like
resonance disappears completely and only the four array-like resonances remain.
In addition these four resonances shift in frequency. This can be better seen in
Fig. 7.8 where we show a color plot of the same type of measurement. We include
dashed lines at the low power position of the peaks. It can clearly be seen that one
resonance disappears and the four other peaks shift inwards. At high power, the
transmon qubit is saturated and does not couple to the array anymore. Therefore
the modes that were coupled to the qubit shift to their bare position. This is a
qualitative signature of multi-mode coupling in this system.

7.3 System-environment interaction

Contrary to other works coupling a qubit to open waveguides19,22, in our sys-
tem each mode of the environment is spectrally resolved. As already shown, this
allows us to obtain the dispersion relation of our environment including its cut-
off frequency. In addition we can use the frequency shift to measure the number
of modes coupled to the qubit, the strength of this coupling and the qubit fre-
quency. Moreover our environment is tunable and we can study different regimes
in qubit-array coupling.
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(a)

(b)

Figure 7.6 – (a) Dispersion relation of the array. The inset shows a col-
orscale plot of the transmission amplitude as function of ΦT
and frequency, with a gray dashed line indicating the fixed
flux value employed to determine the dispersion relation of
the uncoupled array. (b) Free Spectral Range of the array
as a function of the mode frequency ωk, blue dots. In red
the obtained fsr from the lumped element model is shown.
The blue area gives the frequency range where we measure
the qubit-array interaction.
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7.3 System-environment interaction

Figure 7.7 – Transmission for several values of Pvna, −20 dbm top,
−10 dbm middle and 12 dbm bottom.
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Figure 7.8 – Transmission spectrum as a function of the applied power
Pvna and microwave frequency for fixed ΦA = 0 and ΦT =
0. The dashed gray lines indicate the eigenfrequencies at
low power.

7.3.1 Monitoring the environment

A common approach when dealing with Circuit qed systems is to map the circuit
Hamiltonian to a quantum optics Hamiltonian and diagonalize it to obtain the
eigenenergies of the system. Then compare these eigenenergies with the measured
energy spectrum.

It has been shown30,34,85 that our system, a transmon qubit coupled to an array
of Josephson junctions, can be mapped into the spin-boson model or its multi-
level version. We could then in principle obtain this Hamiltonian and diagonalize
it. The size of the Hilbert space would be given by q × (n + 1)m. Here q is the
number of transmon qubit levels involved in the calculation, m is the number
of modes and n is the number of photons allowed per mode. This already is in
the order of 103 for q = 2, n = 1, and m = 10. To capture all the effects of the
ultrastrong coupling regime and the associated counter-rotating terms, we would
need n to be much larger than one, which would give a matrix size greater than
104. Performing a fitting algorithm with this matrix is not optimal.

We therefore follow a different approach. As explained in Section 3.4 we can
obtain all the information we need from our transmon qubit via the phase shift
that it creates in the modes in the array. We first need to linearize the system. In
the case of the array it is straightforward due to the large EJ/EC of its junctions. As
explained in Section 2.2.1 we define a linear Josephson inductance as LJ = ϕ0

2/EJ
and treat the Josephson junctions as linear inductors. For the transmon qubit how-
ever this is not that easy due to the fact that the ratio EJ,T/EC,T is not that large.
However, we can use the scha described in Section 2.3 to obtain an harmonic
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7.3 System-environment interaction

approximation of the transmon qubit which still accounts for the vacuum phase
fluctuations. We can then solve the system as in Section 3.4 and use the transmon
phase shift δφ to obtain the coupling strength ΓT, the transmon frequency ωT and
the number of coupled modes. Experimentally we measure the frequency shift
induced by the transmon qubit in the modes of the array. This frequency shift is
given in Eq. (3.54) and reproduced here,

δφn(ΦA, ΦT) = π
ωn (ΦA, Φ0/2)−ωn (ΦA, ΦT)

ωn (ΦA, Φ0/2)−ωn−1 (ΦA, Φ0/2)
. (7.2)

In order to obtain δφn we fit each resonance of the system with a Lorentzian
to obtain its center frequency. We can do this at several values of ΦA and ΦT. In
this way we obtain the center frequency of each of the modes as a function of
ΦA and ΦT. Then from Eq. (7.2) we obtain δφn(ΦA, ΦT). There is however one
caveat. When working close to ΦA ∼ 0 the array modes are flat and therefore
we can easily compare modes for ΦT = Φ0/2 and modes with ΦT 6= Φ0/2, see
Fig. 7.9 (a). However for ΦA 6= 0 there is a slope as a function of flux. To overcome
this difficulty we proceed as follows. We take two traces as reference, one at ΦT =
−Φ0/2 and the other at ΦT = Φ0/2, orange squares in Fig. 7.9 (b). Then for each
of the modes we obtain the straight line joining them. Now whenever we want to
obtain δφ we choose as bare modes, i.e. ωn (Φ0/2, ΦA) the correspondent point
in this straight line, green squares. We therefore remove the slope with flux in
the δφn, Fig. 7.9 (b) right plot. We obtain similar curves as the ones in Fig. 3.16.
The number of modes coupled to the transmon can be directly obtained from the
plots. We obtain ∼ 8 for the upper plot and ∼ 11 for the lower one. This is related
to the reduction in the Free Spectral Range at high impedances.

Before comparing the experimentally obtained δφn and the theoretical one δφ
we need to determine the only unknown parameter in the system, the Josephson
energy of the transmon EJ,T. We can determine it from the transmon frequency
ωT directly using Eq. (2.88) as

h̄ωT =
√

EJ,TEC,T −
EC,T

8
. (7.3)

The charging energy is directly given by the system capacitances in Eq. (3.34). The
transmon maximum frequency, ωT,max, is obtained as follows. For each value of
ΦA and ΦT we obtain δφn as shown in Fig. 7.9. We can fit these curves with an arc-
tangent and obtain their width Γδφ and their center frequency ωδφ. As explained
in Section 3.4.4, this width Γδφ and frequency ωδφ give the width and frequency
associated to the transmon qubit. Therefore from now on we refer to them as ΓT
and ωT. For each transmon period, usually with ΦT ∈ [−0.3 Φ0, 0.3 Φ0], we obtain
ωT (ΦT).

The flux dependence of the transmon frequency can be obtained from the Ic
modulation in a squid, see Section 2.1.1. This modulation gives a flux dependent
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(a)

(b)

Figure 7.9 – Frequency shift explanation. From the measurements on the
left we can get the frequency shift δφn and obtain the curves
on the right. The gray dashed lines in the plots on the right
represent the limit values of δφ, 0 and π. (a) For ΦA ∼ 0
we can directly obtain the frequency shift. (b) For ΦA 6= 0
we need to correct for the slope of the array modes with
respect to flux.
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qubit frequency given by

h̄ωT (ΦT) = h̄ωT,max

√∣∣∣∣cos
(

π
ΦT

Φ0

)∣∣∣∣− EC,T

8
,

h̄ωT,max =
√

EJ,T,maxEC,T.

(7.4)

Using Eq. (7.4) we perform a fit of ωT (ΦT) to obtain ωT,max. From the value of
ωT,max and the obtained EC,T from the system capacitances we obtain EJ,T,max. All
the transmon related energies are given in Table 7.2.

Energy (GHz)

ωT,max/2π 4.65± 0.01
EJ,T,max/h 10.2± 0.4
EC,T/h 2.4± 0.1

Table 7.2 – Energies for the transmon qubit.

Now we have all the parameters that define the system. We can obtain the
phase shift δφ using the analytical expression in Eq. (3.52) and compare the result
with the obtained experimental data. This is done for one arc in Fig. 7.10. As it can
be seen, there is a good agreement between theory and experiment with no fitting
parameter. A similarly good agreement is present in all arcs, see Appendix D.

ΦA

Figure 7.10 – Comparison between the experimental phase shift δφn
and the theoretical one δφ with no fitting parameter. The
curves are taken for several values of ΦA. In the inset the
transmon period from where the data is taken is shown.
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7.3.2 Tuning the system-environment coupling

As we pointed out earlier, one of the advantages of the system presented in this
work is that we can easily tune the environment. By using squids in the array we
can tune it using an external magnetic flux. In Fig. 7.11 we plot several transmon
periods for different fluxes in the array ΦA. This gives a different impedance Zarray
in the array. From these figures we see that with increasing impedance the fsr is

Figure 7.11 – Several transmon qubit periods for different array
impedances Zarray.

reduced. This increases the number of modes the transmon couples to. However,
as will be shown later, the coupling decreases. At too high impedance the coupling
is reduced due to capacitances Cg,T and Cg,T2. One could think that the decrease in
the coupling strength could be directly seen in the size of the avoided crossings.
However we have to keep in mind that whenever the coupling strength is in the
order of the fsr, the avoided crossing is not a good measure of the coupling
strength anymore. For the same array and transmon parameters the size of the
avoided crossings would depend on the length of the array.

Following the method described in the previous section, we can obtain the
width of the transmon ΓT (ΦA, 0) = ΓT,max (ΦA) for different values of ΦA. We
obtain for each ΦA and ΦT a phase shift curve that we fit with an arctangent to
obtain ωT (ΦA, ΦT) and ΓT (ΦA, ΦT). We take as ΓT,max the ΓT closest to ΦT = 0.
The obtained ΓT,max are given in Fig. 7.12 as blue dots. The error bar comes from
the error in the different fits. We follow the same procedure with the theoretical
phase shift given in Eq. (3.52), we fit each curve with an arctangent to obtain
a theoretical transmon width. The result is shown in Fig. 7.12 as a blue shaded
area. The area represents the interval in the theoretical transmon width given by
the errors in the estimation of the system parameters. The agreement between
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theory and experiment is quite good keeping in mind we did not use any fitting
parameter. It can clearly be seen how the environment system coupling depends
on the impedance of the former. For the parameters in this system we are more
impedance matched at ΦA = 0 than at ΦA = ±0.5 Φ0 and therefore the coupling
is reduced with increasing impedance.

Figure 7.12 – Transmon qubit maximum width as a function of the flux
in the array ΦA. The blue dots are experimental data. The
error bars come from the error in the fitting procedure. The
blue shaded area is the theoretical curve. The area repre-
sents the error in the estimation of the system parameters.

If we compare the obtained transmon qubit width ΓT (ΦA = 0, ΦT = 0) with its
maximum frequency ωT,max in Table 7.2 we obtain a ratio ΓT/ωT,max ∼ 8 % close to
the ultra strong coupling regime. However, due to the fact that the qubit frequency
is tunable, we can tune it to lower values to increase the coupling. In this way, if
we take the minimum qubit frequency ωT (ΦA = 0.2 Φ0, ΦT = 0.3 Φ0) = 3.6 GHz
for which we have a value for the width we obtain a ratio of 10 % thus reaching
the ultra strong coupling regime14,15.
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Conclusion

In this work we have obtained a deep understanding of a complex circuit contain-
ing a transmon qubit capacitively coupled to a mesoscopic environment consisting
of an array of 4700 squids.

On the theoretical side, we have reviewed some results regarding capacitive
coupling between a circuit and its environment. Regarding the transmon-array
circuit, we have shown a new technique to obtain the transmon properties as well
as the number of modes coupled to it via the phase shift it induces in the modes of
the array. This was particularly challenging since all the ingredients of many-body
physics are at play in such circuit: high density of modes, ultra-strong coupling
and non-linearity comparable to the relevant energy scales.

The fabrication process for the array of squids was fully developed during this
project in a new e-beam writer. It involved solving usual lithography problems
such as stitching errors and proximity effect over large substrates, two inch wafers.
In addition, a serious aging problem forced us to move from one evaporator to
another once the fabrication process was stabilized. However, as we have shown,
we obtained a high reproducibility in Josephson junction fabrication, via room
temperature DC measurements.

The transmission measurements performed on the sample show the simulta-
neous coupling of the transmon qubit to several modes in the array. Thanks to the
phase shift induced by the transmon in the modes of the array we have shown that
up to 10 modes are effectively coupled to the transmon. Moreover, we could ob-
tain from this phase shift its frequency ωT and its width ΓT related to the coupling
strength between the transmon and the array. We get a ratio ΓT/ωT ∼ 10 % thus
entering in the ultra strong coupling regime. In addition our experiment sits in the
very interesting and new regime where the nonlinearity and the coupling of the
transmon qubit are similar to the free spectral range of its environment. Finally
we obtained a good data theory agreement with no fitting parameter showing that
the finite array of squids behaves as an infinite dissipative environment.

Perspectives

In this section we include some new lines of investigation that can directly be
followed from the results presented in this manuscript.
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Different environments
During my PhD thesis we considered an array of squids to fabricate a high
impedance environment. However, different implementations as using other ma-
terials or shaping the junctions in the array can be studied. In this section we
develop these ideas.

Disordered superconductors

The main topic of my work is the coupling of a system to a high impedance en-
vironment. It has been shown that disordered superconductors such as InOx114,
granular aluminum115, NbN116 and MoRe28,117 show a very high kinetic induc-
tance and therefore can be used to fabricate high impedance transmission lines.
As a preliminary result we measured a microwave resonator made of InOx. It con-
sists of a thin wire of length 7010 µm and width 1 µm capacitively coupled via two
identical capacitors of capacitance Cc to input and output 50 Ω pads, see Fig. 5 (a).
The thickness of the deposited InOx layer is 40 nm. It was fabricated on a silicon
substrate. The pads are made of gold. In Fig. 5 (b) an optical picture of the sam-
ple is shown. In Fig. 5 (c) an sem of the area in the blue rectangle in Fig. 5 (b) is
given. We performed transmission measurements of the InOx resonator similar to

(a)

Z0

Cc

Z0

Cc

Z, k

l = 7010 µm

Au InOx

100 µm

(b)

Si

1 µm

(c)

Figure 5 – Measured InOx resonator. (a) Circuit diagram of the sample.
It consists of a transmission line of impedance Z and prop-
agation constant k coupled via capacitances Cc to input and
output 50 Ω ports. (b) Optical image of the sample showing
one of the coupling capacitors and one 50 Ω pad. The pads
are made of gold. The substrate is silicon. (c) sem image of
the InOx wire. It corresponds to the blue square in (b).

the ones presented in the manuscript. In a similar way as with the chain, there is
an impedance mismatch between the resonator and the 50 Ω pads. This creates a
Fabry-Pérot interferometer that gives several resonances in transmission, Fig. 6 (a).
In addition, the coupling capacitors Cc modify the width of this resonances. For
fitting the dispersion relation we performed two tone measurements and fitted
each resonance with a Lorentzian to obtain its frequency. The obtained frequen-
cies are shown in Fig. 6 (b). As it can be seen the dispersion relation does not follow
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(a)

(b)

Figure 6 – (a) Transmission of the InOx resonator as a function of fre-
quency. (b) Measured dispersion relation (blue circles) with
fit (red circles). In the inset the difference between the fit and
the experimental data is given as a percentage of the experi-
mental value.
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a linear law. This deviation from the linear behavior has been predicted theoret-
ically118,119 for modes propagating along a superconducting wire but has never
been measured. We perform a fit using the first equation in Camarota et al. 119

that models the plasma modes propagating along a transmission line as a wire of
radius r0 using London equations,

ω2
k =

r2
0

ε0µ0ελ2
L(T)

k2 ln
(

1
kr0

)
. (7.5)

Here, λL is the London penetration depth of InOx. The fit is shown as red dots
in Fig. 6 (b) and describes perfectly the experimental data with a deviation of
less than 0.2 %, see inset in Fig. 6 (b). The deviation from the linear behavior is
given by the logarithmic term in Eq. (7.5) which comes from long range Coulomb
interactions119. The obtained parameters are r0 = 0.2 µm and λL = 14 µm. From
these values a kinetic inductance per square can be calculated120 giving LK ∼
6 nH/sq.

Using the value for the capacitance per unit length for the microstrip geom-
etry102 we can estimate the characteristic impedance of the line to be around
Z0 ∼ 8 kΩ which is comparable to the one obtained with the arrays of squids.
The lack of knowledge about the exact value of λL for InOx did not allow us to
check the consistency of the obtained parameters. However, if a new experiment
is performed including dc lines and a Hall bar a proper characterization of the
material could be done.

A final feature of the InOx resonator is that its plasma frequency seems to be
at very high frequencies. Therefore the coupling strength between a qubit and an
InOx transmission line will not be affected by it anymore.

Engineered dispersion relations

As already mentioned in Chapter 4 we can fabricate arrays of squids with some
modulation in the junctions’ areas. This gives a modulation in the inductance of
the array. As already shown in optical systems121 and Circuit qed architectures54

this modulation opens several gaps in the dispersion of the medium.
We measured the transmission of one array of squids with a cosine modula-

tion, see Fig. 7. As it can be seen it shows a gap in transmission. This gap is given
by the period of the cosine modulation. This gap in the dispersion relation can
be used as a Purcell filter122 to reduce the qubit’s relaxation rate into the envi-
ronment. It might be also useful in the optimization of Traveling Wave Parametric
Amplifiers (twpa)123 or to study the formation of bound states when a qubit is
placed on the edge of such gaps54.

Different system

Giving how versatile superconducting circuits are, we can think of replacing the
transmon qubit by some other impurity and study how this impurity interacts
with the environment. New experiments are being carried out in the group where
a single junction is galvanically coupled to the array of squids. In this case no cou-
pling capacitors are needed and therefore we remove the parasitic capacitances to
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Figure 7 – Transmission measurement of a chain of squids with a co-
sine modulation. The gap in the dispersion relation is shown
in gray.

ground that reduced the coupling in the transmon-array circuit. The circuit dia-
gram of this new design is shown in Fig. 8. The Hamiltonian of this circuit can be
mapped to the sine-Gordon Hamiltonian124. From the lumped element diagram in

EJ,T CJ,T

Cg

LJ CJ

Z0 Z0

Figure 8 – Circuit diagram of a single Josephson junction (red) galvani-
cally coupled to an array of squids (blue).

Fig. 8 we can get an intuition of the resulting transmission spectrum. For very low
or very high frequencies the single junction does not play any role and we measure
a bare array. However, at ω = 1/

√
LJ,TCJ,T, we measure a dip in transmission com-

ing from the single junction. This is the antiresonance described in Section 3.2.2.
As discussed there, classically it should not depend on the impedance of the en-
vironment. However, due to many-body quantum effects24,34,52, the Josephson en-
ergy of the junction EJ,T = ϕ2

0/LJ,T should be renormalized due to the coupling to
the high impedance environment. Therefore if we measure a shift in this frequency
it will be a direct and quantitative proof of a quantum many-body effect.
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Calculations A
A.1 Characteristic impedance of a periodic transmission line

Lets assume an array whose unit cell of length a is given by a series impedance
Zs and an impedance to ground Zg, see Fig. A.1. From Fig. A.1 we see that the

Il Il+1

l-1 l l+1

a

Zs

Zg

Zs

Zg

Zs

Zg

Zs

Zg

Vl Vl+1

Figure A.1 – Circuit diagram showing an infinite array of impedances
in series Zs and impedances to ground Zg. The length of
the unit cell is a.

voltages and the currents need to fulfill the following equations,

Vl+1 = Vl − Zs Il+1, (A.1)

Il+1 = Il −
Vl
Zg

. (A.2)

We can decouple these equations in the following way. We take Eq. (A.1) and
evaluate it at l giving

Vl = Vl−1 − Zs Il. (A.3)

Then using Eqs. (A.1) and (A.2) we obtain another expression for Vl,

Vl = Vl+1 + Zs

(
Il −

Vl
Zg

)
. (A.4)
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Equating these two expressions we remove the dependence in Il. Doing this for
both voltage and current we obtain

Zs

Zg
Vl = Vl+1 + Vl−1 − 2Vl, (A.5)

Zs

Zg
Il = Il+1 + Il−1 − 2Il. (A.6)

This is the discrete form of the wave equations in Eq. (2.19). In principle, an exact
expression for the impedance of the line can be obtained for the discrete array.
However, the result is the same as the one for a continuous array as long as Zg �
Zs which is the case of the arrays in this work. We therefore go to the continuous
limit in Eqs. (A.1) and (A.5) and obtain

∂V
∂x

= −Zs I, (A.7)

∂2V
∂x2 = γ2V. (A.8)

Here we defined the propagation constant as

γ =

√
Zs

Zg
. (A.9)

Now we use as ansatz the plane wave defined in Eq. (2.21) for the voltage and
introduce it in Eqs. (A.7) and (A.8). This gives

V+
0

I+0
=
−V−0

I−0
= Z0 =

√
ZsZg. (A.10)

For the linearized array of squids we therefore obtain

Z0 (ω) =

√
LJ

Cg (1− LJCJω2)
. (A.11)

A.2 Linear Hamiltonian in eigenmodes

We start with the definition of the charge and flux operators,

Q̂n =

√
h̄
2

N

∑
k=1

ξn,k

(
ak + a†

k

)
Φ̂n = i

√
h̄
2

N

∑
k=1

πn,k

(
ak− a†

k

)
. (A.12)
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We impose the commutation relations for the creation and annihilation operators
and for the charge and flux operators,

[an, a†
m] = δn,m [an, am] = 0 [a†

n, a†
m] = 0, (A.13)

[Φ̂n, Q̂m] = ih̄δn,m [Φ̂n, Φ̂m] = 0 [Q̂n, Q̂m] = 0. (A.14)

The flux charge commutator is given by

[
Φ̂n, Q̂m

]
=i

h̄
2

{
N

∑
k=1

πn,k

(
ak− a†

k

) N

∑
k′=1

ξm,k′
(

ak′ + a†
k′

)}

− i
h̄
2

{
N

∑
k′=1

ξm,k′
(

ak′ + a†
k′

) N

∑
k=1

πn,k

(
ak− a†

k

)} (A.15)

Given the commutation relations, all the terms in this expression are zero except
for k = k′. This gives[

Φ̂n, Q̂m

]
= i

h̄
2 ∑

k
πm,k

{(
ak− a†

k

) (
ak + a†

k

)
−
(

ak + a†
k

) (
ak− a†

k

)}
ξn,k

= i
h̄
2 ∑

k
πm,k

{
2
[
ak, a†

k

]}
ξn,k = ih̄δn,m.

(A.16)

Taking into account that
[
ak, a†

k
]
= 1 we obtain

∑
k

πm,kξn,k = δn,m, (A.17)

which means

πξT = I. (A.18)

A.3 scha derivation for the full system

Here we give a detailed derivation of the scha equation in Eq. (2.93) of the main
text. We start with the full Hamitlonian of the system,

H =
(2e)2

2 ∑
l,s

Ĉ
−1
l,s n̂l n̂s +∑

l

EJ

2
(ϕ̂l − ϕ̂l+1)

2 − EJ,T cos ϕ̂T. (A.19)

We rewrite it as

H = H0−EJ,T cos ϕ̂T. (A.20)

We use as trial state the ground state |Ψ〉 of the harmonic Hamiltonian

Htrial = H0 +
ES

2
ϕ̂2

T. (A.21)
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Now we impose the variational principle in the full Hamiltonian,

∂

∂ES
〈Ψ| H |Ψ〉 = 0. (A.22)

We express the full Hamiltonian H with respect to the trial one Htrial,

∂

∂ES
〈Ψ| Htrial−EJ,T cos ϕ̂T −

ES

2
ϕ̂2

T |Ψ〉 = 0. (A.23)

The first term gives

∂ 〈Ψ| Htrial |Ψ〉
∂ES

= EΨ

(
∂ 〈Ψ|
∂ES

|Ψ〉+ 〈Ψ| ∂ |Ψ〉
∂ES

)
+

1
2
〈Ψ| ϕ̂2

T |Ψ〉

= EΨ
∂ 〈Ψ|Ψ〉

∂ES︸ ︷︷ ︸
=0

+
1
2
〈Ψ| ϕ̂2

T |Ψ〉
(A.24)

Introducing this in Eq. (A.23) and simplifying we obtain

ES = −2EJ,T

∂
∂ES
〈Ψ| cos ϕ̂T |Ψ〉

∂
∂ES
〈Ψ| ϕ̂2

T |Ψ〉
. (A.25)

Now we express ϕ̂T in terms of the normal modes of Htrial,

ϕ̂T = ∑
k

ϕk

(
ak + a†

k

)
. (A.26)

Therefore the cosine term is given by

cos ϕ̂T =
1
2

(
eiϕ̂T + e−iϕ̂T

)
=

1
2

ei ∑k ϕk(ak + a†
k) + h.c.

=
1
2

(
ei ∑k ϕk a†

k

) (
ei ∑k ϕk ak

) (
e−

1
2 ∑k ϕ2

k

)
+ h.c..

(A.27)

In the last step we used the Baker-Campbell-Hausdorff formula. We are evaluating
the expected value for the ground state, then

ak |Ψ〉 = 0. (A.28)

We therefore obtain

〈Ψ| cos ϕ̂T |Ψ〉 =
1
2
〈Ψ| ei ∑k ϕk a†

k︸ ︷︷ ︸
〈Ψ|

ei ∑k ϕk ak |Ψ〉︸ ︷︷ ︸
|Ψ〉

e−
1
2 ∑k ϕ2

k + h.c. =

=e−
1
2 ∑k ϕ2

k .

(A.29)
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We can relate this expression to the expected value 〈Ψ| ϕ̂2
T |Ψ〉 by noting that

〈Ψ| ϕ̂2
T |Ψ〉 = ∑

k,k′
ϕk ϕk′ 〈Ψ|

(
ak + a†

k

) (
ak′ + a†

k′

)
|Ψ〉 = ∑

k
ϕ2

k. (A.30)

Now substituting Eq. (A.30) in Eq. (A.29) we obtain

〈Ψ| cos ϕ̂T |Ψ〉 = e−
1
2 〈Ψ|ϕ̂2

T|Ψ〉. (A.31)

Now we can obtain the elements in the expression for ES in Eq. (A.25),

∂

∂ES
〈Ψ| cos ϕ̂T |Ψ〉 = −

1
2

[
∂

∂ES
〈Ψ| ϕ̂2

T |Ψ〉
]

e−
1
2 〈Ψ|ϕ̂2

T|Ψ〉. (A.32)

Introducing this in Eq. (A.25) we obtain the scha equation in Eq. (2.93) in the
main text.

A.4 TPS calculations

A.4.1 Dispersion relation

We want to obtain the expression in Eq. (3.43) in the main text. We start with the
dispersion relation of the array,

ω2
k =

1
LJCJ

1− cos (ka)

1− cos (ka) + Cg
2CJ

. (A.33)

Using the plasma frequency ωp = 1/
√

LJ
(
CJ + Cg/4

)
and the trigonometric re-

lation 1− cos x = 2 sin2 x/2 we obtain

ω2
k = ω2

p

(
1 +

Cg

4CJ

) 2 sin2
(

ka
2

)
2 sin2

(
ka
2

)
+

Cg
2CJ

 . (A.34)

To get to the desired expression we need to obtain the cotangent as a function of
the sine. They are related via

cot2 x =
1

sin2 x
− 1. (A.35)

From Eq. (A.34) we obtain

cot2
(

ka
2

)
=

1

sin2
(

ka
2

) − 1 =

(
4CJ

Cg
+ 1
)((

ωp

ωk

)2

− 1

)
. (A.36)

This already gives Eq. (3.43).
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A.4.2 Solving the system of equations
We want to solve the system of equations given by Eqs. (3.44) to (3.46) in the main
text. We reproduce it here;

1
LJ,T,S

(ΦL −ΦR) = ω2 (C1ΦL − CshΦR) , (A.37)

1
LJ,T,S

(ΦR −ΦL) = ω2 (−CshΦL + C1ΦR − CcΦ1) , (A.38)

1
LJ

(Φ1 −Φ2) = ω2 (−CcΦR + C2Φ1 − CJΦ2) . (A.39)

Combining Eqs. (A.37) and (A.38) we obtain

ΦR =
Cc
[
ω2C1 − 1/LJ,T,S

]
(C1 − Csh)

[
(C1 + Csh)ω2 − 2/LJ,T,S

]Φ1 = M (ω)Φ1 (A.40)

Now use Eqs. (A.39) and (A.40) to obtain an expression relating Φ2 and Φ1.
We rewrite Eq. (A.39) as

1
LJω2 (Φ1 −Φ2) = (−CcΦR + C2Φ1 − CJΦ2) . (A.41)

We can substitute ω in this expression using the dispersion relation for the chain,
Eq. (A.33). As an intermediate step we obtain

1
LJω2 = CJ +

Cg

2 (1− cos k)
. (A.42)

Inserting this into Eq. (A.39) and simplifying we get

Cg

2 [1− cos (ka)]
(Φ1 −Φ2) = (C2 − CJ − CcM (ω))Φ1 ≡ CeffΦ1. (A.43)

Here we introduced the capacitance Ceff that is given in Eq. (3.49) in the main text.
The final step is to substitute both Φ1 and Φ2 with their mode definition,

Φl = ϕ0N (ω) cos [ka (l − 1)− φ] with l = 1, 2, 3, . . . (A.44)

Φ1 = ϕ0N (ω) cos φ, (A.45)

Φ2 = ϕ0N (ω) cos (ka− φ) . (A.46)

We can take out the phase φ for Φ2 by using the following trigonometric relation

cos(x− y) = cos x cos y + sin x sin y. (A.47)

This gives

Φ2 = ϕ0N (ω) [cos (ka) cos φ + sin (ka) sin φ] . (A.48)
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We can now substitute the expressions for Φ1 and Φ2 in Eq. (A.43). This gives

Cg

2 [1− cos (ka)]
(cos φ− cos (ka) cos φ− sin (ka) sin φ) = Ceff cos φ. (A.49)

We divide at both sides of the expression by cos φ obtaining

Cg

2 [1− cos (ka)]
(1− cos (ka)− sin (ka) tan φ) = Ceff. (A.50)

Now we finally obtain

tan φ =

(
1− 2Ceff

Cg

)(
1− cos (ka)

sin (ka)

)
=

(
1− 2Ceff

Cg

)
tan

(
ka
2

)
. (A.51)

A.4.3 Correlation function of an harmonic system

We want to obtain the correlation function given by

〈[ϕ̂l(t), ϕ̂l(0)]〉 = 〈ϕ̂l(t)ϕ̂l(0)〉 − 〈ϕ̂l(0)ϕ̂l(t)〉 . (A.52)

The discrete definition of ϕ̂l is given by

ϕ̂l = i

√
h̄
2

1
ϕ0

∑
k

πl,k

(
ak− a†

k

)
, (A.53)

where ϕ0 = h̄/2e is the reduced magnetic flux quantum. For the infinite array we
define a continuous function for ϕ̂l given by

ϕ̂l = i
1√
2

∫ ωp

0
dωϕl(ω)

(
bω − b†

ω

)
. (A.54)

Here we defined the bosonic operators bω and b†
ω for mode frequency ω. They

satisfy the commutation relation[
bω, b†

ω′

]
= δ

(
ω−ω′

)
. (A.55)

We introduced also the mode profile ϕl(ω). It is given by Eq. (3.42), reproduced
here for the superconducting phase

ϕl(ω) = N (ω) cos [ka (l − 1)− φ] with l = 1, 2, 3, . . . (A.56)

From the definition in Eq. (A.54) we can get the correlation function in Eq. (A.52).
First we calculate

〈ϕ̂l(t)ϕ̂l(0)〉 =
〈

eiH t ϕ̂l(0)e−iH t ϕ̂l(0)
〉
=

=
∫

dω
∫

dω′ϕl(ω)ϕl(ω
′) 〈0| eiH t

(
bω − b†

ω

)
e−iH t

(
bω′ − b†

ω′

)
|0〉 .

(A.57)
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We introduce the completeness relation in the eigenstates of H∫
dΩ |Ω〉 〈Ω| = I (A.58)

and obtain

〈ϕ̂l(t)ϕ̂l(0)〉 =

=
∫

dω
∫

dω′ϕl(ω)ϕl(ω
′) 〈0| eiH t

(
bω − b†

ω

)
e−iH t

(
bω′ − b†

ω′

)
|0〉 =

=
∫

dω
∫

dω′ϕl(ω)ϕl(ω
′)
∫

dΩ 〈0|
(

bω − b†
ω

)
|Ω〉 e−iΩt 〈Ω|

(
bω′ − b†

ω′

)
|0〉 =

=
∫

dω
∫

dω′ϕl(ω)ϕl(ω
′)
∫

dΩδ (ω−Ω) e−iΩtδ
(
ω′ −Ω

)
=

=
∫

dΩ |ϕl(Ω)|2 e−iΩt.

(A.59)
Finally we obtain for the commutator

〈[ϕ̂l(t), ϕ̂l(0)]〉 =
∫

dΩ |ϕl(Ω)|2
(

e−iΩt − eiΩt
)

(A.60)

The spectral density

We define the spectral density as

C̃[ϕ,ϕ] =
2ES

ωT
Re
∫ ∞

0

dt
2π

eiωt 〈[ϕ̂T(t), ϕ̂T(0)]〉. (A.61)

Introducing Eq. (A.60) we obtain

C̃[ϕ,ϕ] =
2ES

ωT
Re
∫ ∞

0

dt
2π

eiωt
∫ ∞

0
dΩ |ϕl(Ω)|2

(
e−iΩt − eiΩt

)
=

=
2ES

ωT

∫ ∞

0
dΩ |ϕl(Ω)|2 1

2π
[πδ (ω−Ω)] =

=
ES

ωT
ϕl(ω)2

(A.62)

Therefore, for the transmon phase ϕ̂T = ϕ̂R − ϕ̂L we obtain

C̃[ϕ,ϕ] =
ES

ωT
(ϕR(ω)− ϕL(ω))2 (A.63)

Now we need to obtain the normalization constant N in Eq. (A.56) to compute
the correlation function analytically. As it is shown in Eq. (2.57) in the main text,
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the amplitudes ϕl(ω) must fulfill

∑
l,s=L,R,1,2,...

ϕ0
2ϕl(ω) L̂

−1
0 [l, s]ϕs(ω

′) = h̄ωδ
(
ω−ω′

)
. (A.64)

From the mode definition in Eq. (A.56) we can write

ϕ0 ∑
l>1

L̂
−1
0 [l, s]ϕs(ω

′) = 2EJ
[
1− cos

(
k′a
)]

N(ω′) cos
(
lk′a− φ′

)
. (A.65)

As explained in Snyman and Florens 30 , we only need to take into account the
prefactor to δ (ω−ω′) in Eq. (A.64). We now obtain

∑
l,s>1

ϕ0
2ϕl(ω) L̂

−1
0 [l, s]ϕs(ω

′) =

= 2EJ
[
1− cos

(
k′a
)]

N(ω)N(ω′)
∞

∑
l=1

cos (lka− φ) cos
(
lk′a− φ′

)
+

+ finite terms when ω = ω′.

(A.66)

The last sum can be simplified using the following relations,

cos (a− b) cos (c− d) =
1
2
[cos ((a− c)− (b− d)) +

+ cos ((a + c)− (b + d))]

(A.67)

and
∞

∑
l=1

cos (lx + y) = π cos yδ (x mod(2π))− 1
2

. (A.68)

Again, dropping finite terms we arrive to

∞

∑
l=1

cos (lka− φ) cos
(
lk′a− φ′

)
=

π

2
cos

(
φ− φ′

)
δ
(
a(k− k′)

)
=

=
π

2
1

∂ (ka) /∂ω
+ finite terms when k = k′.

(A.69)

We therefore obtain

h̄ωδ
(
ω−ω′

)
=

πEJ [1− cos (ka)]
∂ (ka) /∂ω

δ
(
ω−ω′

)
N(ω)N(ω′) + finite terms. (A.70)

It can be shown30 that this finite terms are zero. Finally we arrive to

N =

√
h̄ω

πEJ [1− cos (ka)]
∂ka
∂ω

. (A.71)
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Scripts B
B.1 NanoBeam files

First all pattern files need to be converted from .gds to .npf. This is easily done
using a specific software provided by the manufacturer. Then we have to prepare
the .njf files. The basic structure of a .njf file is given in the following lines.

1 .global
2 registration (x_g1,y_g1) (x_g2, y_g1)
3 marktype mark_type
4 focus focus_type
5 .end

First we find two global marks to guaranty horizontal alignment and a proper
definition of the distances. Then we need to tell the e-beam to register these marks.
This is done in the first part of the .njf file. With the keywords .global and
.end we define the environment to register these two global marks. First we give
the x, y coordinates for the lower left (x_g1,y_g1) and lower right (x_g2,y_g1)
marks. They are horizontally aligned , that is why we use the same y coordinate
in both. They are registered using the keyword registration. Then we need to
specify the shape of the mark. This is done via the command marktype. For a
8 µm× 8 µm square we set mark_type to sqr8. Finally with the keyword focus
we set the type of focus.

6 .block
7 origin (x_0,y_0)
8 registration (x_u_left, y_u_left)(x_u_right,y_u_right)
9 registration (x_l_left, y_l_left)(x_l_right,y_l_right)
10 marktype mark_type
11 focus focus_type
12 stepsize (x_step, y_step)
13 grid (x_grid, y_grid)
14 base_dose base_dose_value
15
16 pattern pattern_id_1 (x_p1_0, y_p1_0)
17 pattern pattern_id_2 (x_p2_0, y_p2_0)
18 .end

Now we include the structures we want to write. With the keywords .block
and .end we define a block environment with local focus marks. In practice a
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block environment is just a single chip in the two inch wafer. The first thing
to do is to give the x, y coordinates of the lower left corner of the block in the
global coordinate system, i.e. referenced to the origin x_g1,y_g1 defined in the
global environment. To do so we write origin and the coordinates (x_0,y_0).
Next we give to the e-beam the coordinates of the local focus marks in the lo-
cal coordinate system. It is mandatory to give them as shown in the example.
(x_u_left, y_u_left) is the upper left corner, (x_u_right, y_u_right)
is the upper right corner, (x_l_left, y_l_left) is the lower left corner and
(x_l_right, y_l_right) is the lower right corner. We again define the type of
focus mark and the type of focus with the commands marktype and focus. Now
we can create copies of this block and distribute them in a grid. With stepsize
we define the step of the grid (x_step, y_step). With grid we give the size
(x_grid, y_grid), e.g. (3,2) for a 3× 2 matrix. With base_dose we give a
factor that multiplies all the doses in the block. Finally we include all the patterns
we want to write in this block using pattern followed by a pattern id that will be
defined afterward (pattern_id_1 and pattern_id_2 in the example) and the
coordinates of the lower left corner of the pattern in the local coordinate system,
(x_p1_0, y_p1_0) and (x_p2_0, y_p2_0) in the example.

19 .pattern
20 id pattern_id_1
21 filename file_path/_pattern_name_1.npf
22 dose layer_number_1 layer_dose_1
23 dose layer_number_2 layer_dose_2
24 .end
25
26 .pattern
27 id pattern_id_2
28 filename file_path/_pattern_name_2.npf
29 dose layer_number_1 layer_dose_1
30 dose layer_number_2 layer_dose_2
31 .end

It is necessary now to relate the desired pattern .npf files to the given pattern ids.
This is done in the pattern environment between .pattern and .end. First the
id of the structure is given. This has to be the same as the one given previously
with the pattern keyword. The path to the .npf file is given with the command
filename. Then the doses are specified using dose followed by the layer number
and the dose in C/m2. The total dose in a layer is given by the base dose multiplied
by the local dose.

32 .write
33 current current_type
34 .end

Finally we tell the e-beam to write the given structures. For doing so we use
.write and .end. In between we set the current to a current_type.

We are going to use two .njf files. The first one (njf_jj) is for writing the
small structures, Josephson junctions and wires (layers 1, 2 and 3). This layers
are written at low current which ensures a high precision. In the second one
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(njf_PADs) we include the rest of the structures, mainly the big pads and the
arms (layers 4, 5, . . . ). Due to their big size it would take too long to write them at
the same current as the first ones and therefore we use a much higher current. In
order to run both files one after the other we use a .nbf file.

1 loadchuck chuck_number
2
3 run auto_conjugate
4 run nbwrite path/njf_jj -1=mark_1:nr1 -2=mark_2:nr2
5
6 find_db bc=36 datum=8 L=1
7 run auto_conjugate
8 sleeps 3600
9 run auto_conjugate
10 run nbwrite path/njf_PADs -1=mark_1:nr1 -2=mark_2:nr2
11
12 find_db bc=0.9 datum=8
13 unloadchuck
14 run check_gun

First we specify the chuck that should be loaded using loadchuck. With the
command run we run the different files needed for writing. Then we run the
command auto_conjugate which aligns and sets up the column, i.e. sets the
focus, corrects for the astigmatism etc. Then using nbwrite we run the desired
.njf file specifying two global focus marks horizontally aligned, mark_1 and
mark_2. As it can be seen we use two .njf files, one for the junctions and one
for the pads. Between these two files the writing current is increased. This is
done with the find_db command that loads a state from a database with the
desired writing parameters. Finally we unload the chuck and run check_gun.
This procedure allows to check the emission current while the machine is not
being used.

B.2 Python GDS

In this section we include a short example of how to obtain the pattern shown in
Fig. 4.15 (a) using Python. As a first step it is important to be familiar with some
of the classes defined in the gdsCAD documentation. We use mainly

— gdsCAD.core.Cell

— gdsCAD.core.Layout

— gdsCAD.shapes.Rectangle

First we import the needed libraries. From the basic shapes provided by the
library gdsCAD we created our own library called gds_classes which contains
classes for Josephson junctions, squids and wires.

1 import numpy as np
2 import gdsCAD
3 import gds_classes #Structures library
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Now we define the parameters of the squid array.

4 filename = ’cosine_chain’
5
6 #SQUID_parameters
7 junction_width = 0.2
8 width_squid = 0.6
9 height_squid = 4
10 asymmetry = 0.25
11 wire_width = 0.35
12 inner_height = 3.3 #y dimension of layer 3
13
14 number_of_elements = 50 #Number of SQUIDs
15 #in the array

Using the gds_classes we define a single squid. This squid will be later used
to create the array. It is an instance of the SQUID_multi class. This class is used
to define squids with an inner layer, layer 3 in Fig. 4.12.

16 squid = gds_classes.SQUID_multi(x_real=junction_width,
17 y_inner=inner_height,
18 x_squid=width_squid,
19 y_squid=height_squid,
20 asymmetry=asymmetry,
21 wire_y_real=wire_width)

Now we create a chain of these squids. We use the method wired_chain
from the Component class. We specify the element present in the chain (squid)
and the number of elements we want to have (number_of_elements). With the
argument length_vec we can specify the height of the junctions in each of the
squids. If we put a single value the chain will be homogeneous. Because we want
to create a cosine chain we obtain y_height_big_junction_vec accordingly
(not shown). Finally we obtain the pattern with the method get_polygon. This
method return a list of gdsCAD.shapes.Rectangle that we can add to a cell.

22 squid_chain = gds_classes.Component.wired_chain(
23 squid,
24 N=number_of_elements,
25 length_vec=y_height_big_junction_vec)
26
27 squid_chain_polygon = squid_chain.get_polygon()

We create a cell to add squid_chain_polygon using gds.core.Cell. Fi-
nally we create an instance of the class gds.core.Layout and add the created
cell. We can show the layout and save it as a gds file.

28 cell_squid_chain = gdsCAD.core.Cell(’SQUID_chain’)
29 cell_squid_chain.add(squid_chain_polygon)
30
31 layout = gdsCAD.core.Layout(’Sample’)
32 layout.add(cell_total)
33 layout.show()
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34 layout.save(filename + ’.gds’)

B.3 Python dc measurements

Here we include the Python script used to perform the dc measurements. We
put all the needed functions into a class named measurement. For simplicity we
include each of the functions separately. The script performs the following tasks

— Importation of the devices, current source and voltmeter.

— Measurement of the IV curve.

— Linear fit of the IV curve.

— Saving the results.

For importing the devices we use the Python library PyVISA. First we import
the needed libraries.

1 import numpy as np
2 import visa #PyVISA library
3 from scipy.optimize import leastsq #for the linear fit

Then we import the devices

4 current_source = visa.instrument(address_1)
5 voltage_meter = visa.instrument(address_2)

We obtain the IV curve. We use a function reach_target_current to set the
current in the current source. This function depends on the specific current source
used.

6 current_values = np.linspace(c_start,
7 c_end,
8 c_step)
9
10 voltage_values = np.zeroslike(current_values)
11
12 for current_value in current_values:
13 # Set the current
14 reach_target_current(current_source,
15 current_value)
16
17 # Get the voltage
18 v = float(voltage_meter.ask(’:SENSE:DATA?’))
19 voltage_values = np.append(voltage_values, v)

We perform the linear fit using polyfit from numpy.

20 resistance, offset = np.polyfit(current_values,
21 voltage_values,1)
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Finally we save the result in the desired file.

22 filename = ’dc_measurement.dat’
23
24 file = open(filename,’a’)
25 file.write(str(resistance)+’\n’)
26 file.close()
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1. Gold evaporation.

Metal Angle Thickness (nm)

Ti 0◦ 10

Au 0◦ 200

2. Focus marks.

(a) Spin Coating

i. Bake the wafer at 200 ◦C during 2 min
ii. Spin coat the resist

Resist rpm rpm2 Tbaking (◦C) tbaking (min) d (nm) t (s)

pmma 3%a
4000 4000 180 5 150 30

(b) Development: 60 s in mibk-ipa and 30 s in ipa.

(c) Evaporation

Metal Angle Thickness (nm)

Ti 0◦ 10

Au 0◦ 50

(d) Lift off: At least 5 h in nmp at 80 ◦C

3. Writing the structures

(a) rie cleaning: 2 min, O2, 50 W, Pressure: 2× 10−1 mbar

(b) Spin Coating

i. Bake the wafer at 200 ◦C during 2 min
ii. Spin coat the resist

Resist rpm rpm2 Tbaking (◦C) tbaking (min) d (nm) t (s)

pmma-maa 9%b
4000 4000 200 10 750 30

pmma 4%c
5000 5000 180 5 250 30
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(c) Writing. The doses are

Part Dose (C/m2)

Wire 11

Junction 11

Inner junction variable
Undercut 3

Pad 10

Pad arm 12

(d) Development: 60 s in mibk-ipa:ipa 1:3 and 30 s in ipa.

(e) rie cleaning: 15 s, O2, 10 W, Pressure: 7× 10−2 mbar

(f) Evaporation

Evaporation

Metal Angle Thickness (nm)

Al 1 + 35 20

Al 2 - 35 50

Oxidation

tox (min) Pressure (mbar)
5 4

(g) Lift off: At least 5 h in nmp at 80 ◦C. Then 1 min ultrasonics at 60 % power.

4. Dicing. Spin coat the sample with resist to protect the structures. Do not bake the
resist.

Resist rpm rpm2 t s

s1818 4000 4000 30

aPMMA 950K AR-P 679.04 diluted in ethyl lactate (3 volumes of AR-P per volume of ethyl
lactate)

bAR-P 617.14 diluted in AR 600.07 (9/5)
cPMMA 950K AR-P 679.04 diluted in ethyl lactate (4 volumes of AR-P per volume of ethyl

lactate)
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Additional transmon phase shift
data D
Here we give several figures showing the good agreement between the experimen-
tally obtained frequency shift δφn and the theoretical one δφ. The details of the
process followed for obtaining the experimental points are given in Section 7.3.1.
The theoretical curves are given by Eqs. (3.51) and (3.52), reproduced here

δφ = φ (ΦT 6= Φ0/2)− φ (ΦT = Φ0/2) ,

tan φ =

[
1− 2Ceff(ω, ΦT)

Cg

]√
Cg

Cg + 4CJ

1√(
ωp(ΦA)

ω

)2
− 1

.
(D.1)

In Fig. D.1 we show the obtained experimental data with the theoretical curves
obtained from Eq. (D.1). As we see, the data theory agreement is good at several
ΦA and ΦT values with no fitting parameter.
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Figure D.1 – Comparison between the experimentally obtained δφn and
the theoretical one δφ for several values of flux in the array
ΦA and flux in the transmon ΦT.
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