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We study the effects of short-range-correlated disorder arising from chemical dopants or local lattice distor-
tions on the ferromagnetism of 3d double exchange systems. For this, we integrate out the carriers and treat the
resulting disordered spin Hamiltonian within a local random phase approximation, whose reliability is shown
by direct comparison with Monte Carlo simulations. We find large-scale inhomogeneities in the charge, cou-
plings, and spin densities. Compared with the homogeneous case, we obtain larger Curie temperatures �TC� and
very small spin stiffnesses �D�. As a result, the large variations of D

TC
measured in manganites may be explained

by correlated disorder. We also provide a microscopic model for Griffiths phases in double exchange systems.

DOI: 10.1103/PhysRevB.76.020401 PACS number�s�: 75.10.�b, 71.10.�w, 75.47.Lx

Interest in disordered magnetic systems, such as thin
magnetic films of transition-metal alloys �Fe-Ni, Co-Ni,…�,
diluted magnetic semiconductors �Ga1−xMnxAs,
Ge1−xMnx , . . .�, d0 materials �HfO2, CaO,…�, and or manga-
nites �RxA1−xMnO3, where R is a rare-earth ion and A an
alkaline ion� has considerably increased during the last de-
cade. One of the reasons is the potential of some of the
materials to be incorporated in technological devices. Some
of them play a very special role: systems that contain large-
scale inhomogeneities. Inhomogeneities can appear during
the growth of the sample by molecular beam epitaxy, for
example, but can also result from the interplay among many
degrees of freedom �charge, spin, orbital, phonons�. This is,
for example, the case in manganites. It is known that man-
ganites are strongly inhomogeneous at the nanometer scale:
�i� large-scale structures in the charge density were seen by
electron diffraction of thin films,1 or tunneling
spectroscopy;2 �ii� evidence for inhomogeneous spin density
was found in neutron diffuse scattering,3 or NMR;4 �iii� lo-
calized spin waves also suggest the presence of confining
potentials.5 There is also clear evidence of inhomogeneous
structures above TC, which were interpreted6,7 as a Griffiths
phase.8 Their microscopic origin is one of the central issues
of the physics of manganites; it includes phase separation
frustrated by long-range Coulomb interactions,9 chemical
disorders,10,11 and polarons.12,13

In this Rapid Communication we argue that the way the
disorder is modeled is important to understand large-scale
inhomogeneous structures in 3d systems and to explain the
Griffiths phase.6 For this we consider a model where the
disorder is correlated at short distances. This model gives a
possible explanation for the broad and multimodal distribu-
tion of NMR lines,4 or the wide distribution of Curie tem-
peratures TC �Ref. 14� and spin stiffnesses15 measured in
different materials for the same carrier density. The micro-
scopic origin of the correlated disorder could be chemical or
polaronic. For instance, in R1−xAxMnO3 the dopant A2+

which substitutes R3+ creates a strong Coulomb potential in
its neighborhood and in particular in the eight nearest-
neighbor Mn sites surrounding it.16 This is the model of
“color centers” initially discussed by de Gennes.10 Alterna-

tively, local Jahn-Teller distortions can also be seen as a
source of correlated disorder through “cooperative phonons,”
which can be mapped onto the same model.

The 3d-correlated disordered double exchange Hamil-
tonian we consider reads

H = �
ij�

�tijci�
† cj� + H.c.� − JH�

i

S� i · s�i + �
i

�ini, �1�

where tij =−t for nearest neighbors only, S� i is a classical spin

localized at site i ��S� i�=1�, and s�i=ci�
† ��� ���ci�; JH is the

Hund coupling, which is set to �. The on-site potentials �i
may correspond, in particular, to the chemical substitution of
R3+ by A2+ defined by �i=�D�lxl

i, where the sum runs over
the l nearest-neighbor cations of the Mn site i �l=1, . . . ,8�
and �D is the strength of the disorder. We choose randomly x
cationic sites for A for which xl

i=1 �otherwise xl
i=0�. We

emphasize that the disorder is correlated because one dopant
affects simultaneously the eight nearest-neighbor Mn sites.
With these definitions �i takes the discrete values 0, �D,
2�D , . . . ,8�D. From stoichiometry, we would expect the hole
density nh to be equal to x, but in order to include the local
Jahn-Teller distortion picture as well, we allow them to be
different.

The approach we use to study this model is in two steps.
First, for a given configuration of disorder we diagonalize
Eq. �1� in real space, assuming a fully polarized ground state
at zero temperature. This allows us to define an effective
Heisenberg Hamiltonian for the classical spins, Heff

=��ij�JijS� i ·S� j, where the disordered couplings �Jij� are ex-
plicitly calculated in the limit JH→�, using Jij
= tij�ci,↑

† cj,↑� /2.17,18 In the second step, we diagonalize this
Hamiltonian using the self-consistent local random phase ap-
proximation �SC-LRPA�.19 It consists of decoupling higher-
order spin-spin Green’s functions in the equation of motion.
This introduces the local magnetizations �Si

z�, which are self-
consistently determined by using sum rules. Spatial fluctua-
tions due to disorder are thus treated exactly by solving the
equations numerically in real space. This procedure was
shown to be reliable to study dilute magnetic semiconductors
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where the couplings were calculated ab initio.19 SC-LRPA
provides an analytical expression for TC and allows us to
study much larger systems than those used in Monte Carlo.

In Fig. 1, we test this method by comparing TC with that
of Monte Carlo simulations for both the clean system ��i

=0� �Refs. 20–23� and the system with Anderson
disorder.23,24 In the latter case, �i are uncorrelated variables
uniformly distributed within 	− �

2 , �
2

. In Fig. 1�a� �clean

case�, the lines are obtained by studying Heff within a simple
mean-field theory, TC

MF=2J �dashed line�, RPA,
TC

RPA=1.32J25 �dot-dashed line�, and Monte Carlo simula-

tions, TC
MC=1.44J �Ref. 26� �solid line�, J= −1

2z

�K�

N where the
kinetic energy �K� depends on nh. For the clean system, we
recall that TC

RPA=1.32J is obtained analytically using TC
RPA

= 1
3 ��q

1
E�q� �−1, where E�q�=zJ	1−��q�
 is the magnon dis-

persion, z the coordination number, and ��q�= 1
z �ri

eiq.ri.25

This expression actually gives a very good approximation of
TC; the error compared to Monte Carlo calculations is 8%.
Now the comparison with Monte Carlo simulations of the
full double exchange model �symbols� shows that the differ-
ence is within 10%, so the two-step approach is quantita-
tively reliable. Similarly, when Anderson disorder is added,

we have found that the SC-LRPA gives excellent agreement
with Monte Carlo data 	Fig. 1�b�
, stressing that not only are
the thermal fluctuations well treated but also the spatial fluc-
tuations due to disorder.

From now on, we consider the model with correlated dis-
order, as discussed above. In Figs. 2�a�–2�c�, we have plotted
the magnetic couplings Jij in a given layer for various hole
densities �nh=0.1, 0.3, and 0.5, respectively�. They are cal-
culated for a fixed concentration of randomly distributed im-
purities �color centers�, x=0.3, and for a disorder strength,
�D=0.15W �W=12t is the bandwidth�, which is chosen to be
compatible with ab initio calculations.16 At low density 	Fig.
2�a�
, the couplings are extremely inhomogeneous in space:
we observe large clusters of strong couplings, embedded in
regions of weak couplings. The distribution function of �2Jij�
�not shown� is peaked at �−0.003t but has a very long tail

up to a cutoff of −0.3t �the average is J̄=−0.02t�. The regions
of strong couplings correspond to hole-rich regions with me-
tallic properties embedded in a hole-poor matrix, which is
expected to be insulating, thus leading to phase separation.
This tendency will be reinforced if antiferromagnetic super-
exchange couplings are taken into account; the hole-poor
regions will become antiferromagnetic or canted, as ob-
served at very low dopings �droplets in a canted matrix�.3 For
Anderson disorder, we do not have well-defined nanoscale
regions in 3d,24 unless cooperative phonons were included.27

As the concentration of holes increases, the size of the re-
gions of large couplings increases and the system becomes
less inhomogeneous. In this respect, close to half filling �nh

=0.5�, the nature of the disorder becomes less important, as
we shall see. The reason is that carriers with short Fermi
wavelength are less sensitive to the details of the disorder.
Spatial inhomogeneities in the magnetization near TC are di-

rectly seen in the distribution of 	i=limT→TC

�Si
z�

m , where m is
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FIG. 1. �Color online� �a� TC as a function of hole density �clean
case�. Lines are obtained with the effective Heisenberg Hamiltonian
within mean field �dashed line�, RPA �dot dashed line�, and Monte
Carlo �solid line� treatments, and symbols from Monte Carlo simu-
lations of the full double exchange model: MC1 �Ref. 23�, MC2
�Ref. 20�, and MC3 �Ref. 22� �b� TC as a function of the on-site
potential width � for the Anderson disorder �uncorrelated�: The
solid line is obtained with the local RPA and symbols are from
Monte Carlo simulations �Ref. 23�.
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FIG. 2. �Color online� Top row: real-space picture of the mag-
netic couplings 2Jij of the effective model �correlated disorder�, on
one layer of the 123 cube. The dark �white� regions correspond to
large �weak� couplings. Bottom row: real-space distribution of 	i

=limT→TC

�Si
z�

m on the same layer. From left to right, nh=0.1 �a�,�d�,
0.3 �b�,�e�, and 0.5 �c�,�f�. Parameters are x=0.3 and �D=0.15W.
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the averaged magnetization �Fig. 2�. For a nearly homoge-
neous state, 	i is close to 1, as seen in Fig. 2�f�. At low
densities, we see a very inhomogeneous texture of 	i 	Fig.
2�d�
, with local droplets with 	i as high as �4–5, sur-
rounded by a region with very small local magnetizations. In
this case, the distribution of the magnetizations is multimo-
dal. In between 	Fig. 2�b�
, the droplet increases in size and
	i�2 is reduced with respect to Fig. 2�a�; the distribution
has only one broad peak. These results resemble NMR re-
sults where multimodal distributions occur at low dopings
and get broader for higher doping.4

In Fig. 3, we give TC averaged over at least 100 disorder
configurations �symbols�. To see clearly the role of the inho-
mogeneities, we have also indicated what TC would be if we

replace all couplings by their average, defined by J̄
= 1

zN�ijJij = �Jij�dis �lines�. The results are almost identical for
nh close to 0.5 but strongly differ otherwise. Similarly we
have found �not shown� that for Anderson disorder, TC is also
extremely close to that of the homogeneous system calcu-

lated with J̄. However, at lower hole densities where the
couplings are strongly inhomogeneous 	Fig. 2�a�
, we ob-
serve that TC is larger than that of the homogeneous sample.
This happens because of the competition between large �per-

colating� clusters with couplings much stronger than J̄ that
tend to increase TC and thermal fluctuations that reduce it. In
particular, at nh=0.1, TC happens to be close to the mean-

field result TC
MF=2J̄ �dashed line�, as the result of this com-

petition. It is interesting to remark that this picture is differ-
ent from the pure percolation picture where thermal
fluctuations in the clusters win and reduce TC; the difference
is that the distribution is much more inhomogeneous here.
We note that our TC is much smaller than that obtained in
Ref. 28 where the same model was studied. The reason is
that here both spatial and thermal fluctuations are treated
beyond the mean-field virtual crystal approximation.

We now argue that this model gives grounds for a Grif-
fiths phase6,8 above TC. As discussed in Ref. 7, correlations
in the disorder should enhance the Griffiths phenomenon.
Indeed, it is more likely to find large clusters with higher
local “Curie” temperatures, as seen in Fig. 2�a�. We calculate
this temperature TG from the lowest eigenvalue � of Jij, using
TG= 1

3S�S+1����.8 Since this is a mean-field estimation, TG

has to be compared to TC
MF. For nh=0.1, we find a large TG

=0.11t�2.5TC
MF. On the other hand, for nh�0.5, the cou-

plings are much more homogeneous, and we have found a
much smaller region for the Griffiths phase with TG=0.13t
�TC

MF. This is interesting because it shows that TG is weakly
sensitive to nh. Experimentally this phase seems to occur
only in the structurally distorted phase at low dopings,7

which suggests that the origin of correlated disorder is the
local Jahn-Teller distortions, a case that is also covered by
the present model. In fact, it is not clear from our study that
we can exclude the chemical origin of the correlated disorder
because the Griffiths phase shrinks as we increase the carrier
density. A better treatment of thermal fluctuations could pos-
sibly lead to the complete disappearance of the Griffiths
phase for larger dopings.

We now discuss the effect of the inhomogeneities on the
long-wavelength spin excitations at zero temperature. Even
in the presence of disorder, these excitations are well defined
and characterized by a spin stiffness D,18,29 which is calcu-
lated following Ref. 29. Experiments on various manganites
show that the dimensionless ratio D /a2TC �a is the lattice
constant, taken to be 1 in the following� strongly varies with
doping and takes values as small as 0.05 and up to 0.5.15 This
is in contrast with the clean double exchange model, where
D /TC is a constant equal to 0.755 	RPA for the simple cubic
�sc� lattice25
, independent of the hole density. We argue that
the measured small values could be explained with a model
of correlated disorder, but would require unrealistic large
strength of the disorder in the uncorrelated case. Figure 4
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FIG. 3. �Color online� TC �symbols� as a function of hole den-
sity for the model with correlated disorder calculated by SC-LRPA
�averaged over 100 configurations of disorder�. Also given are the
mean-field �dashed line� and RPA with all couplings identical Jij

= J̄ �solid line�. Parameters are x=0.3 and �D=0.15W. Calculations
are done for sizes 163 and 203.
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FIG. 4. �Color online� Dimensionless ratio D /a2TC of the spin
stiffness to the Curie temperature as a function of the hole density
nh, for the correlated and Anderson forms of disorder. The width of
the distribution of potentials was chosen to be the same in both
cases: �D=0.15W �x=0.3� and �=0.80W. Experimental results
�Ref. 15� are divided by the lattice constant of LaMnO3 squared
�a=3.9 Å�.
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gives this ratio, calculated for both models of disorder. Note
that to allow for a direct comparison, the width of the distri-
butions of �i is chosen to be the same. Close to nh=0.5,
D /TC does not really depend on the model, reflecting the
absence of the large-scale inhomogeneities we discussed
above. When nh decreases, however, the spin stiffness is
dominated by large regions of weak couplings 	Fig. 2�a�
: at
nh=0.10, D /TC is 3 times smaller than that obtained with
Anderson disorder. In order to get such small values in the
Anderson disordered case, one would need a value of �
much larger than the bandwidth, which would be difficult to
reconcile with ab initio estimations,16 on the one hand, and
would tend to localize all carriers24 on the other. In Fig. 4 we
have also compared our calculations directly with available
experimental values.15 First we note that the overall quanti-
tative agreement does not mean that �D is quantitatively de-
termined for manganites because other interactions have
been neglected here 	there is anyway a distribution of ratios
for a same doping �see LaSr and LaPb in Fig. 4� for instance,
which could be explained by different �D
. Nevertheless, it is
interesting to see that the trend as a function of the hole
density is already well captured by taking disorder into ac-

count and that a relatively small amount of correlated disor-
der leads to very small values of D /TC, contrary to what
would be needed in the Anderson case.

To conclude, we have found that short-range-correlated
disorder creates large scale spin and charge textures, particu-
larly inhomogeneous at low dopings. Our study suggests that
describing the disorder in a more realistic manner may be a
key point in understanding experiments, as the occurrence of
a Griffiths phase observed for low dopings. In addition, we
have found that correlations in the disorder tend to increase
TC because of the presence of large clusters of strong cou-
plings and decrease the spin stiffness D. This results in very
small ratios D /TC, consistent with what has been measured
in manganites but hardly compatible with Anderson disorder.
The dimensionless ratio D /TC appears as a good measure of
the inhomogeneous character of the magnetic state, a conclu-
sion that may apply beyond manganese oxides.

We thank M. Clusel, M. Hennion, P. Majumdar, Y. Mo-
tome, F. Moussa, and S. Petit for stimulating discussions.
O.C. thanks the ILL for its hospitality.

1 M. Uehara, S. Mori, C. H. Chen, and S. W. Cheong, Nature �Lon-
don� 399, 560 �1999�.

2 M. Fäth, S. Freisem, A. A. Menovsky, Y. Tomioka, J. Aarts, and
J. A. Mydosh, Science 285, 1540 �1999�.

3 M. Hennion, F. Moussa, G. Biotteau, J. Rodríguez-Carvajal, L.
Pinsard, and A. Revcolevschi, Phys. Rev. Lett. 81, 1957 �1998�.

4 G. Allodi, R. De Renzi, and G. Guidi, Phys. Rev. B 57, 1024
�1998�; G. Papavassiliou, M. Pissas, G. Diamantopoulos, M. Be-
lesi, M. Fardis, D. Stamopoulos, A. G. Kontos, M. Hennion, J.
Dolinsek, J.-Ph. Ansermet, and C. Dimitropoulos, Phys. Rev.
Lett. 96, 097201 �2006�.

5 M. Hennion, F. Moussa, P. Lehouelleur, F. Wang, A. Ivanov, Y.
M. Mukovskii, and D. Shulyatev, Phys. Rev. Lett. 94, 057006
�2005�.

6 M. B. Salamon, P. Lin, and S. H. Chun, Phys. Rev. Lett. 88,
197203 �2002�; P. Y. Chan, N. Goldenfeld, and M. Salamon,
ibid. 97, 137201 �2006�.

7 J. Deisenhofer, D. Braak, H.-A. Krug von Nidda, J. Hemberger,
R. M. Eremina, V. A. Ivanshin, A. M. Balbashov, G. Jug, A.
Loidl, T. Kimura, and Y. Tokura, Phys. Rev. Lett. 95, 257202
�2005�.

8 A. J. Bray, Phys. Rev. Lett. 59, 586 �1987�.
9 A. Moreo, S. Yunoki, and E. Dagotto, Science 283, 2034 �1999�;

E. Dagotto, Nanoscale Phase Separation and Colossal Magne-
toresistance �Springer, Berlin, 2002�.

10 P.-G. de Gennes, Phys. Rev. 118, 141 �1960�.
11 E. L. Nagaev, Phys. Rep. 346, 387 �2001�.
12 T. V. Ramakrishnan, H. R. Krishnamurthy, S. R. Hassan, and G.

Venketeswara Pai, Phys. Rev. Lett. 92, 157203 �2004�.

13 V. B. Shenoy, T. Gupta, H. R. Krishnamurthy, and T. V. Ra-
makrishnan, Phys. Rev. Lett. 98, 097201 �2007�.

14 H. Y. Hwang, S.-W. Cheong, P. G. Radaelli, M. Marezio, and B.
Batlogg, Phys. Rev. Lett. 75, 914 �1995�.

15 J. A. Fernandez-Baca, P. Dai, H. Y. Hwang, C. Kloc, and S.-W.
Cheong, Phys. Rev. Lett. 80, 4012 �1998�, and references
therein; see also T. Chatterji, L. P. Regnault, P. Thalmeier, R.
van de Kamp, W. Schmidt, A. Hiess, P. Vorderwisch, R. Surya-
narayanan, G. Dhalenne, and A. Revcolevschi, J. Alloys Compd.
326, 15 �2001�.

16 W. E. Pickett and D. J. Singh, Phys. Rev. B 55, R8642 �1997�.
17 K. Kubo and N. Ohata, J. Phys. Soc. Jpn. 33, 21 �1972�.
18 Y. Motome and N. Furukawa, Phys. Rev. B 71, 014446 �2005�.
19 G. Bouzerar, T. Ziman, and J. Kudrnovsky, Europhys. Lett. 69,

812 �2005�.
20 S. Yunoki, J. Hu, A. L. Malvezzi, A. Moreo, N. Furukawa, and E.

Dagotto, Phys. Rev. Lett. 80, 845 �1998�.
21 M. J. Calderon and L. Brey, Phys. Rev. B 58, 3286 �1998�.
22 J. L. Alonso, L. A. Fernández, F. Guinea, V. Laliena, and V.

Martín-Mayor, Nucl. Phys. B 596, 587 �2001�.
23 Y. Motome and N. Furukawa, Phys. Rev. B 68, 144432 �2003�.
24 S. Kumar and P. Majumdar, Phys. Rev. Lett. 91, 246602 �2003�.
25 H. B. Callen, Phys. Rev. 130, 890 �1963�.
26 K. Chen, A. M. Ferrenberg, and D. P. Landau, Phys. Rev. B 48,

3249 �1993�.
27 S. Kumar, A. P. Kampf, and P. Majumdar, Phys. Rev. Lett. 97,

176403 �2006�.
28 J. Salafranca and L. Brey, Phys. Rev. B 73, 214404 �2006�.
29 G. Bouzerar, arXiv:cond-mat/0610465 �unpublished�.

G. BOUZERAR AND O. CÉPAS PHYSICAL REVIEW B 76, 020401�R� �2007�

RAPID COMMUNICATIONS

020401-4


