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Magnon dispersion and anisotropies in SrCu,(BO3),
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We study the dispersion of the magnons (triplet states) in SrCu,(BOj3), including all symmetry-allowed
Dzyaloshinskii-Moriya interactions [J. Phys. Chem. Solids 4, 241 (1958); Phys. Rev. 120, 91 (1960)]. We can
reduce the complexity of the general Hamiltonian to a simpler form by appropriate rotations of the spin
operators. The resulting Hamiltonian is studied by both perturbation theory and exact numerical diagonaliza-
tion on a 32-site cluster. We argue that the dispersion is dominated by Dzyaloshinskii-Moriya interactions. We
point out which combinations of these anisotropies affect the dispersion to linear order, and extract their

magnitudes.
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I. INTRODUCTION

Strontium copper boron oxide [SrCu,(BO3),] is a two-
dimensional antiferromagnet with no long-range magnetic
order.?> Heisenberg interactions between the S=1/2 mag-
netic moments are strong, and the geometry is such that the
planes of spin dimers are coupled in a way equivalent to
those of the Shastry-Sutherland model.>* This model had
been proposed on purely theoretical grounds, and is remark-
able in that while strongly interacting, it has an exact dimer
ground state, fully isotropic in spin space, up to a critical
value of the coupling.® It is not integrable, however, and
neither the excited states, nor their dispersions are known
exactly. This motivated many studies of the dynamics of this
model. The existence of a compound which is well modeled
by the Shastry-Sutherland Hamiltonian, and what is more, is
in an intermediate range of coupling, not far from a quantum
critical point, is then of great interest. The spin excitations of
SrCu,(BOs3), have been studied extensively by a variety of
experimental techniques (see, e.g., Refs. 5 and 6 and refer-
ences below). Immediate questions are how to extract the
couplings and to what extent SrCu,(BO3), can be described
by the Shastry-Sutherland model.

The first observation is that while the Shastry-Sutherland
model and its ground state are rotationally invariant,
SrCu,(BO3), shows departures from spin isotropy. Electron
spin resonance (ESR),’ far-infrared spectroscopy of forbid-
den transitions,® and neutron inelastic scattering9 or latter
Raman scattering'® have shown the splitting of the spin trip-
let excitations at q=0 and anisotropic behavior with respect
to the direction of an external magnetic field. This was
explained’ as originating from a Dzyaloshinskii-Moriya in-
teraction (a correction of spin-orbit origin)!! whose charac-
teristic vector is oriented perpendicular to the copper planes,
along the ¢ direction of the crystal. While spin-orbit interac-
tions always introduce anisotropies at some energy scale, it
was a surprise that in a frustrated model they could dominate
the dispersion which generally arises from larger, isotropic
couplings. More recently, other components of the vectors
were argued to be required to explain further experimental
findings: another splitting was observed at q=(7,0),'>!? and
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was subsequently associated with in-plane components of the
Dzyaloshinskii-Moriya interactions. In addition, there is an
avoided level crossing when the first-triplet state is about to
cross the ground state for magnetic fields applied along c.
This is not compatible with a single-axis anisotropy along
the same direction and requires additional forms of aniso-
tropy. The level anticrossing was argued to be due to the
nearest-neighbor  Dzyaloshinskii-Moriya interaction,'-1
which was considered as a possible explanation for the
X-band ESR as well.!” All these components are indeed al-
lowed by the symmetry of the crystal structure in the low-
temperature phase of SrCu,(BOj3),,'82 whose copper planes
are slightly buckled. Were it not buckled (as in the high-
temperature phase'®), these components would have van-
ished. It was for this reason that they were neglected in the
original interpretation of the neutron inelastic scattering.’
Nonetheless, because the symmetry is slightly broken, these
interactions are expected to be present and define a smaller
energy scale.

A precise model for SrCu,(BO3), must therefore include,
in addition to the larger Heisenberg couplings, a complex
pattern of Dzyaloshinskii-Moriya interactions. Since their
relative strengths are not precisely known, it is difficult to
establish a hierarchy among them, other than the probable
dominance of the c-axis component.

In this paper, we argue, on the basis of exact transforma-
tions and numerical diagonalizations, that we can simplify
the model and determine the parameters of the transformed
model by studying the dispersion of the triplet states. The
dispersion of the triplet states of the Shastry-Sutherland
model, taken alone, is very small, and this is why smaller
interactions are relevant, and even turn out to be dominant.’
It is natural to consider Dzyaloshinskii-Moriya interactions
since they are linear in the ratio of the spin-orbit coupling to
the crystal-field splitting A, which is estimated from the g
factor, i.e., g—_Z, to be about 0.1. They are, however, peculiar
in that they are usually expected to have little effect on the
spectrum, at most A>2! It has even been claimed that
Dzyaloshinskii-Moriya interactions and second-order sym-
metric anisotropic couplings conspire to restore the rotational
invariance of the spin excitation spectrum.?! While this can
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be true for single-band models in certain geometries, here the
frustration of the lattice makes such arguments inapplicable,
as we shall see. We can, in fact, classify the Dzyaloshinskii-
Moriya components into reducible components (that can be
reduced to \? effects) and irreducible components that have
effects on the dispersion linear in the spin-orbit coupling.
The latter thus defines a larger energy scale which will be the
focus of our discussion.

The problem then is to calculate the spin excitation spec-
trum reliably. If only isotropic interactions are considered,
SrCu,(BOs3), is very close in parameter space (J'/J=0.62) to
a quantum critical point,* (J'/J=0.68), which separates the
dimer phase (which is known exactly) from a phase that is
not known exactly but may be quadrumerized.?>* Perturba-
tive approaches to the excitations may therefore turn out to
be inaccurate. For instance, the splitting of the q=0 triplet
energy is given by 6=D' g(J'/J), which is linear in D', and
involves a function g(J'/J) with g(0)=4, but g(J'/J)=2.0
for J'/J=0.62.° This is difficult to calculate by perturbative
techniques because of the proximity with the quantum criti-
cal point. Therefore, in order to explain the dispersion of the
first-triplet states in SrCu,(BOs),, we need not only to in-
clude the relevant Dzyaloshinskii-Moriya interactions, but
also to go beyond the perturbative techniques used earlier for
the dispersion.#>2¢ Indeed, even carried at high order in
perturbation theory, such calculations may tend to overesti-
mate the dispersion, as we shall see. For these reasons, we
have carried out an exact numerical study of the model, in-
cluding the Dzyaloshinskii-Moriya interactions.

In addition to symmetry-allowed components of the
Dzyaloshinskii-Moriya vectors, other components that are
not allowed by the measured crystal symmetry were
invoked?”-?® as possible explanations for the specific heat and
the ESR “forbidden” transition. We shall not consider them
here because, on one hand, no distortions of the crystal struc-
ture that would allow them have been reported so far,19:20
and electric-dipole transitions provide a symmetry-
preserving alternative to explain forbidden transitions.?? Al-
though it is not clear whether ESR is of magnetic-dipole or
electric-dipole nature, it has been shown that the forbidden
transitions observed by far-infrared spectroscopy were
clearly electric dipole.® Even if the ESR transitions were
magnetic dipole, they could possibly be explained by finite-
temperature effects.’! These components, not allowed by the
symmetry, seem therefore unnecessary at our current state of
knowledge.

Those components which are allowed by symmetry, how-
ever, are most probably important in understanding refined
experiments, such as the high-field plateau phases,?>33 where
typical condensation energies are much smaller than the iso-
tropic couplings. For instance, the 1/8 plateau width is of
order of 1 K and it is questionable whether Heisenberg mod-
els alone capture the essential superstructure of that phase.
This provides further motivation to quantify to what extent
the isotropic model applies to SrCu,(BOj3),, and in what cir-
cumstances the anisotropic couplings can be safely ne-
glected.

The paper is organized as follows. In sec. II, we give the
dispersion of the first-triplet excitations for the Heisenberg
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Shastry-Sutherland model. In Sec. III A, we present the an-
isotropic model for SrCu,(BO;), with Dzyaloshinskii-
Moriya interactions, and in Sec. III B map it onto a simpler
model. We then calculate the magnon dispersion both pertur-
batively (Sec. IV) and by exact diagonalization of finite lat-
tices (Sec. V). We discuss experimental results in Sec. VI
and extract the couplings that previously could not be quan-
tified by comparing exact spectra with experimental results.

II. DISPERSION OF THE LOWEST TRIPLET
EXCITATION OF THE SHASTRY-SUTHERLAND MODEL

We first consider the Shastry-Sutherland model® (with no
Dzyaloshinskii-Moriya interaction), as originally used* to de-
scribe SrCu,(BO3),:

H=EJSZS]+EJISZS], (1)

nn nnn

where nn stands for nearest neighbors (intradimer) and nnn
for next-nearest neighbors (interdimer). The lattice of cou-
plings is as shown in Fig. 2: nearest-neighbor couplings are
on the diagonals in every second square of the lattice of
next-nearest-neighbor couplings (in the real lattice, the
angles are such that the diagonals are shorter). The strengths
of the Heisenberg couplings are J=85 K for the nearest-
neighbor coupling, and J' =54 for the next-nearest-neighbor
coupling, as determined* from susceptibility measurements.
An interplane coupling is present, but it is small (J”=8 K)
and frustrated.* We therefore restrict ourselves to a two-
dimensional version of the model and neglect J”. The ratio
J'1J~0.62-0.63 was confirmed to be consistent with the
ratio of the first Raman-active singlet energy to the first-
triplet energy,” a measure independent of the magnetic sus-
ceptibility.

We calculate a few low-lying states of the Shastry-
Sutherland model [Hamiltonian (1)] on a 32-site cluster us-
ing exact diagonalization. This cluster is particularly attrac-
tive compared to smaller ones, not only because it has
smaller finite-size effects, but also because it allows access to
the important symmetry points (7/2,7/2), (w,), and
(7,0).3* The results are given in Fig. 1 for J'/J=0.62.

The gap between the ground state and the triplet state is
0.442J for the 32-site cluster and essentially independent of
the system size, as shown in Table I. Yet the absence of
finite-size effects on the gap does not mean that all energies
have reached their thermodynamic limit. In fact, the disper-
sion of the 16-site cluster is much flatter than that of the 20-
or 32-site clusters. It has appeared before (but for the simple
square lattice) that the 16-site cluster can be quite special
compared with larger clusters.>> Comparison of the band-
widths of the 20-site and 32-site clusters is also difficult be-
cause the reciprocal points are not identical. In particular, the
bandwidth of the 20-site cluster is inherently smaller because
of the absence of the (7, ) reciprocal point: the only non-
zero point in reciprocal space is at (2?77 , 4?”) Therefore, while
finite-size effects are definitely smaller than Table I might
suggest, it is not possible to quantify them at present. In
absolute values, the bandwidth of the 32-site cluster remains
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FIG. 1. (Color online) Dispersion relation of the first-triplet ex-
citation of the Heisenberg Shastry-Sutherland model (diamonds), as
calculated by exact numerical diagonalization on a 32-site cluster,
for J'/J=0.62. The vertical axis shows the excitation energy of
those states with respect to the ground state. The degeneracy of the
two triplets at (7/2,7/2) is slightly lifted, reflecting the two dimers
per unit cell. Singlet states nearby are shown as open circles.

very small, ~0.023/, i.e., about 2 K. We note that it is
smaller than that of the perturbative calculation,?>?¢ although
this may be explained in part by finite-size effects, but is also
qualitatively different in shape. Consistent with the fact that
there are two dimers per unit cell, we have, in fact, not one
but two triplet states which are degenerate at high-symmetry
points of the reciprocal space. The degeneracies are slightly
lifted for intermediate ¢ values. This splitting was shown to
occur at higher order, (J'/J)'°, in perturbation theory.?® The
gap and especially the dispersion relation are, in fact, much
more affected by the smaller anisotropic interactions, as will
be shown in the next section.

III. MODEL AND EXACT MAPPING

A. General anisotropic model

We now consider a model with Dzyaloshinskii-Moriya
interactions based on the symmetries of the low-temperature
phase.’®2° The model contains isotropic couplings* and
both interdimer®'? and intradimer Dzyaloshinskii-Moriya
interactions.'* It reads

TABLE I. The spin gap and bandwidth of the first-triplet exci-
tation in the Shastry-Sutherland model for different cluster sizes.

Cluster size Spin gap Bandwidth
16 0.460 1257 0.003 157
20 0.451441J 0.01598J*
32 0.442 0267 0.023 16J

#The bandwidth of the 20-site cluster cannot be directly compared
with the others because of the absence of the (7, ) reciprocal
point.

PHYSICAL REVIEW B 75, 144422 (2007)

ml\ mz/

6\\\\ /,/'é”
Djs
s/ Y 5 o7
—F X7
ol e
o B d ,r',;ns
2 @ 3 _»~ 4
— | 7o, |6
A% ® .
b ® A AN\
1 4
X X ’/®
a
z,C
FIG. 2. (Color online) Shastry-Sutherland lattice with

Dzyaloshinskii-Moriya interactions allowed by the symmetries of
SrCu,(BO3),. The colored (short gray) arrows are the components
of the Dzyaloshinskii-Moriya vectors for each bond [the long ar-
rows show the prescription for the order of the operators, a black
arrow from i to j indicates that we should take D-(S;X'S;) with the
given D]. m; and m, are mirror planes, but the (ab) plane is not a
mirror plane in the low-temperature phase. This allows for all in-
plane components of D.

nn

+E[]'Si'Sj+D£j'(Si><sj)]s ()

nnn

where nn stands for nearest neighbors (intradimer) and nnn
for next-nearest neighbors (interdimer). The different com-
ponents of the vectors D;; and Dl-’j are given in Fig. 2. They
are obtained by using transformation properties of
pseudovectors and the symmetries of the crystal structure.'!
For instance, when a bond connecting two spins belongs to a
mirror plane, the Dzyaloshinskii-Moriya vector must be per-
pendicular to it. In the high-temperature phase (7> 400 K),"
the (ab) plane is a mirror plane and the allowed components
(only the interdimer ones) must therefore be parallel to the
crystallographic ¢ axis. This is the D;;=D' &_ (&, is the unit
vector along z=c) we considered before. In the low-
temperature phase, the (ab) plane is slightly buckled, and
some other in-plane components are allowed, but are ex-
pected to be smaller.'” The remaining m,, m, mirror planes
allow wus to determine the complete pattern of
Dzyaloshinskii-Moriya vectors. The in-plane components of
D/, can be decomposed into staggered DH"S and nonstaggered
D, s orthogonal components. We obtain

Dl’] = Dli,sés,ij + Dli,nséns,ij + Dléz’ (3)

where the unit vectors are, respectively, &,;,=+¢&, and &,

é,
)
=+, (dimers A) or &,;,==&, and &,,;;==¢, (dimers B)
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(Fig. 2). The intradimer vector D;; has only in-plane compo-
nents,

Dij=Déij’ (4)

with the unit vector €;,=&, (dimers A) or &;=¢, (dimers B).
Note that because the interaction is a vector product of spins,
we have to be careful with the order of the operators in the
definitions. The order is defined in Fig. 2 for each bond by
the black arrows. For instance, for the bond 1 — 2, we define
D{,=D; &,+D, & ~D'¢&. The strengths of three of these
four couplings, D, Dﬁ’s, Dﬁm, are unknown. In the next para-
graph, we show how to simplify Hamiltonian (2) such as to
eliminate two of these couplings. Eventually, only one pa-
rameter remains to be determined, and we will determine it
with the help of the magnon dispersion at finite wave vector.

B. Mapping

We map Hamiltonian (2) onto a simpler Hamiltonian with
no intradimer and no uniform Dzyaloshinskii-Moriya inter-
actions by means of rotations?! of spin operators. Contrary to
previous situations where this approach has been applied,?!-3
it turns out here that we cannot eliminate all components
because of the frustration of the lattice, but we can nonethe-
less simplify the model. For this, we perform two sorts of
rotations. First, we rotate the two spin operators of the
dimers in opposite directions and apply the same operation to
all unit cells. Second, we rotate the spin operators from
dimer to dimer by applying the same operation to the two
spin operators of the same dimer. The first transformation
uses local rotations (the same for all unit cells) for the two
spins i and j of dimer i,j, that are defined by

Sl’ = 'R(@/Z,é,})sl

ij>
(5)

with tan 6=D/J,*! where D and & are defined by Eq. (4).
The second spin j of the same dimer is rotated in the oppo-
site sense (60— —6). For the second dimer of the unit cell, the
spins are rotated similarly, about an axis that is perpendicular
to the previous &, according to the local D;; (see Fig. 2).

We now restrict consideration to terms that are linear in
the Dzyaloshinskii-Moriya coupling strength in transforma-
tion (5), because we are looking for linear effects in the
dispersion of excitations. In fact, transformation (5) does
produce some anisotropic exchange of order D?/J,?! which
we neglect because (i) we have not taken into account real
anisotropic couplings, which occur at the same order of mag-
nitude, and more importantly, (ii) the spectrum is fully domi-
nated by effects that are linear in D, as we shall show.

In terms of the primed spins, Hamiltonian (2) is mapped
onto (up to terms of order D?/J)

0 6 0
= (1 —cos —)[é,-j -8;]&;;+cos =S, —sin =S, X &
2 2 2

H=2JS] -S|+ 2 [J'S-S/+D/- (S| xSN], (6)

nn nnn

where the D]; are now modified: the staggered ¢ component
is unchanged, whereas the strengths of the in-plane compo-
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nents (either staggered or uniform) are modified according to

4

DH,ns DH,ns+ D, (7)
Bl Bl 2J
b+ D (8)
— . N
Il,s Il,s 27
D' —D'. )

This is an exact transformation that is valid at all orders in
J'1J. As a second step, we now proceed to eliminate the
nonstaggered component of le]-, which is defined by its
strength Dy, [Eq. (7)] and a vector direction either along x
or y (see Fig. 2). This is made possible because the D”’m sum
up to zero along any closed loop of the lattice. When going
around closed loops, the rotation angles are fixed by the
Dzyaloshinskii-Moriya strength and sign; therefore, there is
a compatibility condition for the last spin.>’ Consider, for
instance, the closed loop (2-8-5-3-2) in Fig. 2; the sum of the
Dy, is zero along this loop. Note, however, that the sum of
the D, does not vanish, nor does the sum of the D, along
(5-7-6-5), for instance, so these cannot be eliminated. We
now rotate the operators accordingly and restrict to the first-

order terms in D :

Si=R(6,8,)R(1,8,)S;. (10)
In this  expression, 6,=(D|,/J)R;-€, —and
=(Dy,/J")R;-€,, where €, are unit vectors along the x and

y directions. R; is the position of the dimer to which the spin
i belongs, in units of the interdimer spacing. The two spins of
the same dimer are rotated in the same way, so as not to
generate other intradimer Dzyaloshinskii-Moriya interac-
tions. The final Hamiltonian becomes

nn nnn
ﬁ{jzﬁllés,ij'i'ﬁlév (12)
~ J’' ~
DH:DH,,H'z_JD’ D, =D, (13)

where &, ;; is the unit vector along the interdimer staggered
Dzyaloshinskii-Moriya vector, defined in Fig. 2. The trans-
formed model (11) is simpler and can be used instead of the
original Hamiltonian (2), as far as energies are concerned.
The remaining Dzyaloshinskii-Moriya components (12),
which we call irreducible, cannot be eliminated by rotations.
Geometrically, this is because they do not sum to zero when
turning around closed loops of the Shastry-Sutherland lattice.
As a consequence, linear effects are present in the spectrum.

We shall proceed with Hamiltonian (11) since the two
Hamiltonians have exactly the same energy spectrum up to
terms of order D?/J, DH”%H/ J. Note that this is valid only at
zero magnetic field: at finite fields along z, for instance, the
first transformation creates a staggered transverse field®
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(which must already be present according to the local envi-
ronment surrounding the copper ions'#) and the second trans-
formation creates rotating fields.

IV. PERTURBATIVE CALCULATION OF THE
EXCITATION SPECTRUM

We calculate the magnon dispersion and dynamical struc-
ture factor of model (11) by first-order perturbation theory in
the Dzyaloshinskii-Moriya couplings and J'/J.>!? Since the
latter is not small for SrCu,(BO3), (J'/J=0.62-0.63), we
will supplement this approximation with exact numerical re-
sults in Sec. V, but perturbation theory already gives some
qualitative insights into the problem.

We start with the exact dimer ground state, which is a
product of singlets on each dimer. We consider the following
one-particle excited states, which consist of promoting a
dimer into a triplet state with $°=0,+1 quantum number.
They are the eigenstates for zero J' and D, and we use first-

order perturbation theory in J'/J, [~)H, and D . Because there
are two dimers per unit cell, there are two such triplet states
depending on which dimer A or B is in the triplet state. When

D | is added, the total rotation invariance is broken but S* is
still a good quantum number, thanks to the rotation about c.
In this case, the eigenstates within this subspace of states are
given by’

. 1 .

SL’q’ i>:T§(|SZ’q’A>ilS~’q’B>)’ (14)
V

with $°=0,+1 the z component of the total spin of a dimer

and |Sz,q,A) the Fourier transform of the triplet state on

dimer A of unit cell i, |S%,i,A). Now, in addition, we consider

the effect of interdimer staggered components of the

Dzyaloshinskii-Moriya vectors i.e., model (11). D breaks the
rotation invariance about ¢ and therefore mixes various $°
components of Eq. (14). The Hamiltonian within the sub-
space of Eq. (14) splits into two blocks. The first block for

(|+ 1 9q5 +>s O’q’_>’ -1 9q’ +>) reads
J+D,f(q) -iDg(q) 0
iDig(q)" J iDg(q) | (15)
0 -iDgl@" J-D,fl@
where  we  have  f(q)=2cos(q,/2)cos(q,/2) and

2(q)=—{sin[(q,+4s)/2]+i sin[(q,— )/ 21}/\2,  q=(q,, ).
The lattice spacing is taken such that a=1. The second block
for the three other states is identical up to the change
(Dy,D,)——(Dy,D ). The six resulting triplet states are de-
noted by |t('l”) and have energies (twice degenerate because of
identical blocks)

E*(q)=J £ D’ f(q)’ + 2Dg(q)P=J=

E

0 |

E'q)=1J. (16)

The dispersion relations of “triplet” states (16) are given in
Fig. 3. They are valid only at first order in J'/J and higher-
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FIG. 3. (J'/J—0) Dispersion relation and dynamical structure
factor (gray scale) of the first- triplet excitations in the limit of small
J'1J. Note that the overall dimer form factor M, is not included in
the picture. For (77,0), the middle mode has no intensity. For the

clarity of the picture, D 1 =0.1J and EH=O.05J were used.

order corrections are not included here. We shall see below
how the overall shape and degeneracies are modified when
one goes beyond perturbation theory. For the moment, this
defines two splittings at q=(0,0) and q=(7,0) that are given
by

So0=4D, =4D', (17)
’/_~ — ’ J,
5(%0) = 2\’2DH =242 D”J + Z]D s (18)

where the right-hand sides give the expressions of the split-
tings in terms of the original couplings of Fig. 2, according
to transformations (8) and (9). It is interesting to note that
measuring these splittings at different wave vectors allows,
in principle, separation of the two couplings. This is because
of the different staggering patterns of the Dzyaloshinskii-
Moriya vectors in space, which is itself a consequence of the
crystal symmetry.

In order to compare with neutron inelastic scattering at
finite wave vectors, we have computed the neutron cross
section, given by3®

d*o
(dwdﬂ) “%S (q)(w~-E"(q)), (19)

-3 (00- %é><OIS§|tg”><tZ’IS£3qIO>. 0)

Note that Sf]k is, strictly speaking, the real spin operator, not
that obtained after the transformations are performed, S(‘;. We

can, in fact, replace Sfl' by 58‘ because it implies small inten-
sity corrections, of order D/J, which we shall discuss later in
the paper. The cross section involves calculating all matrix
elements. Some do not contribute for special directions of
the reciprocal vector, such as for those along the reciprocal
line q=(¢,0) (q parallel to a gives geometrical factors
4./4*=1, ¢;=q;=0), and only (#|S?|0) and (£;|S|0) con-

144422-5



CHENG et al.
0.50 T T T
o

rQ (o] ] e}
Z045- :

(o] 0]

| | | |
0400,y ) @0) 0.0)

q

FIG. 4. (Color online) Same as Fig. 1 but for Hamiltonian (11)

with J'/J=0.62, D, =0.02J and D;=0.005J. The lines are guides
for the eyes and join together states which would correspond to
S=+1 (triangles), —1 (squares), and 0 (diamonds) in the limit
EH—>0. Note that some of them are indistinguishable for the upper
mode.

tribute. For q=(g,q) and q=(g,0), the intensities have the
form

~ 2
So(q)=<2DTJ(q)> Mg+, (21)
q
~ 2
Si(q)=[%+(w) }Mq+ RN (22)
q

where My =sin’ q- §+sin® q- &' is the form factor of the unit
cell, 28 and 26" being the vectors along dimers A and B (Fig.
2). The dots represent corrections of order (’)(D,D””m),
whereas the intensities are O(1). We will come back to this
when discussing the effect of D and DH'J”. For q=(m,q), the
q dependence comes only from the geometrical factor:

q2

SO((”?Q)): 7T2+q2MQ+ B (23)
1277 + ¢
S(ma) =3y Myt 8

The intensities [Eqs. (21)—(24)] are represented in gray scale
in Fig. 3 (M, is not included). We see, in particular, that the
intensity of the middle mode at (w,¢=0) is zero. This is
consistent with the presence of only two modes in neutron-
scattering experiments at that wave vector,'>!3 and allows us
to identify these modes as the lower and upper modes (as
will be confirmed by their energies later as well).

V. EXACT NUMERICAL DIAGONALIZATION

We calculate a few low-lying states of Hamiltonian (11)
on the 32-site cluster using exact diagonalization. Note that

the D, term in Eq. (11) breaks spin rotational symmetry and
the dimension of the Hilbert space now becomes ~5 X 108,
as compared to ~7X 107 for the 32-site cluster of the
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FIG. 5. (Color online) (a) Effect of D | on the q=0 triplet (dia-
monds) and singlet energies (open circles) when D;=0 and (b) ef-
fect of Dy on the q=(,0) states when D, =0.02J. Numbers are

calculated using exact diagonalization on the 32-site cluster. The
lines are linear fittings to triplet energies.

Shastry-Sutherland model. Results are shown in Fig. 4. The
parameters are J'/J=0.62, L~)l=0.021, and 5”=0.005J. It is
to be compared with Fig. 1 which corresponds to D l:[~)”
=0. Since §° is no longer a good quantum number, degenera-
cies in those triplet states in Fig. 1 are lifted. Nevertheless,
they can still be grouped together according to whether their
energies increase, decrease, or remain unchanged in the pres-
ence of a weak magnetic field along the ¢ direction, which
correspond to S°=+1, —1, and O respectively, in the limit

EH—>O. In Fig. 4, states belonging to the same group at dif-
ferent q are joined together by a line. Note that the middle
state, which corresponds to the $°=0 and indicated by dia-
monds, is almost unchanged with respect to Fig. 1. However,
the others acquire a larger dispersion that in any case remains
small compared to the gap. Next, we study in detail the ef-

fects of D | and EH on the splitting of the first-triplet state.
Figure 5(a) shows the splitting in the q=0 triplet state at

various D, and D;=0. We found that a small D, (~0.005J)
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has no noticeable effect on the splitting of the q=0 states.
Therefore, Fig. 5(a) can be regarded as showing the effect of

D, on the splitting of those states. Figure 5(b) shows the
splitting of the first-triplet state at q=(r,0) at D, =0.02J and

various 5”. It is clear that the effect of 5“ is to modify the
dispersion around the reciprocal point (7,0). At (7,0), Fig.
5(b) shows that the energies change linearly as function of
the coupling, except at very small EH. In this region, a very
small gap already exists, and is given by D, (J'/J)® (where
a>1). In absolute values, we have found a gap of
1.6 X 1073J (for D, =0.02J). The tiny gap is amplified by D,
and the effect is perturbative in the strength of the
Dzyaloshinskii-Moriya interactions. Note that the slopes,
however, are a function of J'/J and are nonperturbative in
this coupling. First, for values of J'/J close to the critical
point, the separation of the components as in Eqs. (17) and

(18) is no longer exactly true, but the effect of D, at q=0
remains small (and conversely) in the regime of interest. Sec-
ond, the prefactors of the splittings between the upper and
lower modes are modified compared to the perturbative re-
sults. From linear fittings as shown in Fig. 5, the splitting at

q=0 is found to be ~2.08D, instead of 4D, in Eq. (17).
This compares very favorably with a previous calculation
using the 20-site cluster,” thus showing that size effects are

small. Similarly, at q=(7,0) the splitting is ~2.80D; instead

of 2\2D; in Eq. (18). Note that the renormalization at
q=(,0) is, in fact, very small compared to that at q=0, and
solves the puzzle previously noticed,'® as we shall explain
below.

The spectra show other minor features: at q=0, for in-
stance, the lowest state is split into two (Fig. 4). This is to be
expected when there are several anisotropy axes and no
Kramers degeneracy in a system with an even number of
spins per unit cell. We can simply understand these additional
splittings by perturbation theory: couplings with higher-

energy states open gaps which scale as ﬁﬁ (which we verified
by exact diagonalization). The exact calculation shows other
\? effects. We cannot make quantitative comparison of ef-
fects at this order to real experiments because anisotropic
superexchange is also present at order A and is neglected in
the present work. \? effects may perhaps be accessible to
ESR at q=0, but it might be difficult to disentangle the
second-order effects of the Dzyaloshinskii-Moriya interac-
tion from that of real asymmetric couplings.

VI. EXTRACTING THE COUPLINGS FROM
EXPERIMENTS

Triplet states. We now use these results to extract the
anisotropic couplings from neutron-inelastic-scattering ex-
periments. At q=0, we have seen that the energy is un-
changed between the 20-site cluster’ and the present 32-site
cluster, so the estimation of D' =0.18 meV is unmodified.
Regarding the intensity at =0, earlier perturbative
calculation’ compares well with exact numerical diagonal-
ization on a 20-site cluster,® so we have not carried out
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(OI,O) (TEI,TE) (7510) (OI,O)
q

FIG. 6. (Color online) Magnon dispersion: exact diagonalization
with Dzyaloshinskii-Moriya interactions (diamonds) and experi-
mental data from Ref. 12 (circles). The lines are guides for the eyes.
Parameters are D, =0.18 meV and 5”=0.07 meV. J'/J was kept
equal to 0.62. This is responsible for the shift in the overall scale of
the calculated energies.

intensity calculations on the 32-site problem, but will rely on
perturbative results. At q=(7,0), we have seen indeed that
the intensity of the middle mode is zero (Sec. IV). This is
consistent with the observation of vanishing intensity for the
middle mode in neutron scattering.'>!3 The splitting seen at
q=(,0) can therefore be interpreted as the gap between the
lower and upper states. As we have seen, the splitting at
q=(m,0) is given by Dyf(J'/J), with f(0)=2\2 and
/(0.62)=2.80 (which is, in fact, within 1% of the perturba-

tive result). This allows us to extract 5“ ~0.07 meV, taking a
splitting 8(7r,0)=0.2 meV.!>!3 This is the value we ex-
tracted before relying on the perturbative expression.'?> We
have here calculated the renormalization coefficient at (77,0),
and shown that coefficient is quite different from that at
(0,0); therefore, applying the same renormalization to both
splittings'> leads to an artificially large in-plane
Dzyaloshinskii-Moriya coupling. This explains why the ratio
appeared so large previously. In fact, the correct ratio is

Dy/D, =0.4 with D', =0.18 meV. We recall that Dy is a lin-
ear combination of two interactions (see below), and as such
may explain why it is larger than expected on the basis of the
small buckling of the crystal structure. We therefore con-
clude that from the splittings at q=(0,0) and q=(,0), we
constrain the couplings:

D' =0.18 meV, (25)

!

, J
D|,+ —D=0.07 meV. (26)
c2J

These values also explain the dispersion of the excitations, as
shown in Fig. 6, at least for the additional reciprocal points
available in the 32-site cluster (diamonds). Note that the
scales of experiment and numerical calculations are slightly
shifted. The shift could be eliminated by an optimized choice
of J'/J in the range 0.62-0.63, consistent with previous es-
timates.
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How could we, at least in principle, determine individu-
ally D, Dy and D|,? As we have shown, the effect of the
Dzyaloshinskii-Moriya interaction on the spectrum is large
only for the two effective components that could not be
eliminated by our transformations. To determine the other
components, the effect of an external magnetic field may
provide more constraints. However, staggered gyromagnetic
tensors come into play that are also unknown. Alternatively,
we can use neutron-scattering intensities. First, we calculate
the correction to the expressions of the intensities [Eq. (21)
or (23)] at q=(w,0), coming from the intradimer
Dzyaloshinskii-Moriya interaction D. Indeed, the spin opera-
tors Sq have a linear correction in D [see Eq. (5)] that we
have neglected so far. The intensity at q=(,0) (that was

zero before)o acquires a term proportional to (D/J)*:
SO((’IT,O))=%N(], where Nq=coszq‘5+ cos’>q-&. So, in
principle, it is possible to extract D from measuring the ratio

SO((7,0)) D2 ) @ . L
s o) = 82 AN g5 This ratio is
very small ~0.02(D/J)?, and it therefore seems difficult to
extract this coupling independently. Second, we consider the
effect on the intensities of the nonstaggered components
Dy ,,+J'D/2J that we had eliminated by the second rotation.
Since the rotation is performed using a constant angle when
going from dimer to dimer, the spin operators S;‘ contain
operators that are shifted in q space, S(‘;‘iko, where K is de-
termined by the coupling D””m,+J 'D/2J. A consequence is
that “ghosts” of the original magnon dispersion (as given in
Fig. 4) shifted by +k, must appear in the spectrum. Of
course, because the shift is small, of order A, and the disper-
sion is of the same order, the energies are changed by \?. The
effect will be difficult to detect by neutron scattering using
constant wave-vector scans, but could appear in constant en-
ergy scans. This is reminiscent of magnon dispersions in
well ordered systems, such as Ba,CuGe,O;, where the
Dzyaloshinskii-Moriya interaction and the helicoidal mag-
netic structure give rise to three branches in the excitation
spectrum.*

Singlet states. In Figs. 4 and 5, higher and lower singlet
states are also given. Since the rotational symmetry is bro-
ken, denoting a state as a “singlet” is to be understood as its
property for vanishing anisotropies. Singlets are not directly
visible by ESR because the external field is swept at constant
wavelengths and only field-dependent states are detected.
Nonetheless, the bending of the triplet energy levels tends to
signal a level anticrossing with a singlet: experimentally
such bendings were observed and thus singlet energies indi-
rectly measured.** The measured anticrossings are at
2.67 meV (compared to the lowest triplet state at 2.81 meV)
and 3.56 meV (compared to the higher triplet at
3.16 meV).** In Fig. 4, the lowest singlet has an energy
which is 95% of the triplet gap, in good agreement with the
experimental figure. However, the second singlet seems to be
higher in energy compared to that of Fig. 4. We know that
there are other singlet states at higher energies, and that ob-
served by ESR may be one of them.

Sign of the coupling. We remark that although the sign of
D' is of no consequence on the energy spectrum, it inter-
changes the “handedness” of the wave functions of the upper

of intensities at q=(r,0)
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and lower states. It therefore has measurable consequences
when polarized light interacts with the triplets.?® It is inter-
esting to note that the sign of D', extracted by analyzing®
far-infrared experiments®3° is opposite to that suggested to
explain avoided crossing at higher fields.'*!> The apparent
contradiction may be resolved because the avoided crossing
is not determined solely by D, as suggested earlier,'*~'¢ but
rather by a combination of Dy +J'D/2J, Dy, +J'D/2J, and
the staggered fields. Quantitative understanding of the
avoided crossing would need determination of each indi-
vidual coupling.

VII. CONCLUSIONS

We have considered a model for SrCu,(BO;), with all the
Dzyaloshinskii-Moriya interactions compatible with the
crystal structure, i.e., a model with all anisotropic couplings
linear in the spin-orbit coupling. We have constructed a sim-
pler anisotropic Hamiltonian (11) with a smaller number of
couplings, by appropriate mappings, which has nonetheless
exactly the same spectrum up to second-order interactions.
The transformation allowed us to separate what we term the
“reducible” components of Dzyaloshinskii-Moriya vectors
(the nonstaggered components D, and part of the in-
tradimer interaction D) from the “irreducible” (the staggered
D'/, Dy, with a contribution from the intradimer interaction
D). By definition, the latter have effects on the spin excita-
tion spectrum that are linear in the strength of the coupling,
whereas the former have second-order effects. The linear ef-
fect arises, precisely, because we cannot eliminate these
components. Had we been able to eliminate all of them, we
should have taken into account anisotropic symmetric
exchanges, on an equal footing.?! In that case, depending on
the underlying superexchange processes, one may recover a
fully rotationally invariant spectrum (if single-orbital pro-
cesses are dominant)?' or not (when multiorbital processes
exist).*! In any case, the effects would have been at most N2,
and very difficult to extract experimentally because this
would be of order of a few ueV. In contrast, SrCu,(BO3),
represents a real situation where the bond frustration leads to
an energy scale of order A—hundreds of wueV here—in the
spin excitation spectrum.

We have explained quantitatively the dispersion of the
lowest triplet states (Fig. 6), which is dominated by
Dzyaloshinskii-Moriya interactions (compare Figs. 1 and 4).
First-order perturbation theory was not sufficient to account
quantitatively for the dispersion shape (see Fig. 3) but allows
us to capture most of the symmetries except for the small
additional splittings due to the presence of two dimers per
unit cell. Measurements of the dispersion under high
pressure*? should, in fact, be carefully interpreted: the evo-
Iution of the bandwidth with pressure should primarily re-
flect the change in the Dzyaloshinskii-Moriya couplings and
not the change in the ratio J'/J that measures the proximity
to the critical point. The spin gap, where the effect of the
Dzyaloshinskii-Moriya interaction is secondary, may serve
as a more sensitive probe for the proximity to the critical
point.

Model (11), whose parameters have been quantitatively
determined, may serve as a good starting point to understand
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other properties of SrCu,(BO3), at zero field, such as higher-
energy bound states. These states, as observed in particular
by ESR,** Raman scattering,!? far-infrared spectroscopy,
and neutron scattering>** have been analyzed so far within
the framework of the Shastry-Sutherland model,¥~*" but
should be affected by Dzyaloshinskii-Moriya interactions.
This may explain the splittings observed** and resolve the
issue of “localization” versus “delocalization” of these exci-
tations. The large dispersion seen first in Ref. 5 and sup-
ported by theoretical calculations on the Shastry-Sutherland
model was revealed latter to be composed of several more
localized excitations.** This remains to be fully understood
and model (11) may help.

We have focused on zero-field results: finite field effects
are particularly interesting but involve other unknown cou-
plings. If the mappings of Sec. III B [transformations (5) and
(10)] are made with an external magnetic field, both an ef-
fective staggered field*® and rotating fields appear. As a real
staggered field is already present according to the local sym-
metry of the copper ions, the net effective fields cannot be
known precisely. The level anticrossing that was found when
the spin gap is about to close for a magnetic field along the ¢
direction, in particular, cannot be solely due to the intradimer

PHYSICAL REVIEW B 75, 144422 (2007)

interaction, as previously claimed.'* It has to be seen as a
consequence of all these effects: intra- and interdimer com-
ponents and staggered fields.

Interesting  developments for doped samples of
SrCu,(BO;), are under way.*®*° The doped compounds, by
breaking translation invariance, may also help disentangle
the different components of the Dzyaloshinskii-Moriya vec-
tors by studying the induced magnetization of the magnetic
ions in the vicinity of the dopant, by NMR, for instance.
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