RAPID COMMUNICATIONS

PHYSICAL REVIEW B 78, 140405(R) (2008)

Quantum phase transition induced by Dzyaloshinskii-Moriya interactions
in the kagome antiferromagnet
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We argue that the S=1/2 kagome antiferromagnet undergoes a quantum phase transition when the
Dzyaloshinskii-Moriya coupling is increased. For D <D, the system is in a moment-free phase, and for D
>D.. the system develops antiferromagnetic long-range order. The quantum critical point is found to be D,
=0.1J using exact diagonalizations and finite-size scaling. This suggests that the kagome compound
ZnCu3(OH)4Cl3 may be in a quantum critical region controlled by this fixed point.

DOI: 10.1103/PhysRevB.78.140405

In the search for materials realizing a spin-liquid ground
state, one has to face the presence of small anisotropic inter-
actions of spin-orbit origin. Such interactions that break the
full rotation symmetry of the Heisenberg model, reduce the
quantum fluctuations, and may tend to induce magnetic
phases at low temperatures. The recently discovered spin 1/2
copper oxide ZnCu;(OH)¢Cl; (Ref. 1) that has the geometry
of a kagome lattice may be a good candidate for a spin-
liquid.? Experimentally no apparent freezing of the magnetic
moments has been found down to very low temperatures’~>
despite strong Heisenberg interactions. Exact diagonaliza-
tions of the Heisenberg model predict indeed a nonmagnetic
state with no magnetic moment.®” However, smaller interac-
tions of spin-orbit origin are certainly present. In particular
those of Dzyaloshinskii-Moriya symmetry® are expected
when the magnetic bonds have no inversion center, which is
the case of ZnCu;y(OH)(Cl;.! An immediate question is to
what extent they affect the nonmagnetic phase.

Dzyaloshinskii-Moriya interactions have been invoked” in
the context of ZnCu;(OH)¢Cl; to explain the enhancement of
the spin susceptibility at low temperatures.”> NMR measure-
ments of the local susceptibility have provided a different
interpretation in terms of the presence of defects in the
structure,'® a result consistent with a direct fit of the sus-
ceptibility,!" and corroborated by theoretical calculations.'? A
more direct evidence of anisotropy has been obtained by
paramagnetic resonance.'> A Dzyaloshinskii-Moriya cou-
pling of order 0.08J was needed to explain the linewidth,'
which is typical of cuprates. It is therefore a relatively small
correction but may be of crucial importance in highly frus-
trated systems. In fact it is known that an infinitesimally
small Dzyaloshinskii-Moriya interaction in the classical
kagome favors long-range Néel order with a Q=0 propaga-
tion vector and 120° orientation of the spins.!* Spin-wave
corrections renormalize down the magnetic moment, but do
not suppress it for D=0.1J.'5 So it was unclear how this Néel
phase could be reconciled with experimental observations.

In this Rapid Communication, we show that the proper
inclusion of quantum fluctuations leads to a phase transition
from a Néel state to a moment-free phase at a quantum criti-
cal point that we estimate to be D,.=0.1J. This therefore
resolves the contradiction for ZnCus;(OH)4Cl; and, further-
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more, suggests that its magnetic properties may be strongly
influenced by the proximity of the quantum critical point. In
particular power-law scalings were observed in the dynami-
cal susceptibility’ and NMR relaxation times'®!'® and have
been interpreted so far in terms of critical spin-liquid states
for the kagome.'”!8 The present results indicate that the
power laws of ZnCu;(OH)Cl; may well originate in the
present fixed point. In order to identify the phases in an
unbiased way and locate D, we have performed exact diago-
nalizations of small clusters. At D=0.1J/, there is a clear
emerging low-energy fower of states that collapses onto the
ground state such as 1/N, thus signaling a broken-symmetry
phase. We have calculated the Néel order parameters as func-
tion of D/J and have found that they vanish for D=0.1J,
thus leading to a moment-free phase and D.=0.1J.

The model we are considering is based on the symmetries
of the two-dimensional kagome lattice (Fig. 1),'*
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(S; < S)]. (1)

where nn stands for nearest neighbors and S; is a S=1/2
quantum spin on site i. Thanks to the lack of inversion sym-
metry at the middle of each bond, interactions of
Dzyaloshinskii-Moriya symmetry are allowed between near-
est neighbors. According to Moriya’s rules,® there are com-
ponents of D;; perpendicular to the planes of strength D stag-

™
1/\
®

D’D /

v N
FIG. 1. (Color online) The kagome lattice with the allowed

Dzyaloshinskii-Moriya interactions. The orientations of the bonds
specify the order of the operators in S;X§;. m is a mirror plane.
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FIG. 2. (Color online) Low-energy levels of the Heisenberg
kagome lattice with Dzyaloshinskii-Moriya interactions for N=36.
The inset gives the slope of the lowest-energy states versus Sf,
denoted by 1/(21y), as a function of 1/N. (D=0.1J.)

gered from up triangles to down triangles and in-plane
components that point toward the center of each triangle of
strength D' (see Fig. 1).!* There is a priori no simple relation
between D and D'. It is true that if the Cu-(OH)-Cu plane
was a mirror plane of the crystal structure, then the D vector
would be perpendicular to it. In fact the proton of (OH)
breaks that symmetry,' and since the perturbation is expected
to be strong it is difficult to relate D and D’. For
ZnCu;3(OH)Cls, J has been estimated from the susceptibility
to be about 170-190 K.>!! Interplane couplings are thought
to be smaller because copper ions are far away in the ¢
direction and separated by sheets of zinc and will be ne-
glected in the following. According to electron-spin-
resonance measurements, D=15 K (D~0.08J) and D’
=2 K (D' ~0.01J).5

We now map the model Eq. (1) onto a simpler model that
restores a U(1) symmetry up to terms of order D'?/J. The
in-plane components vectors sum up to zero when going
around a triangle and are therefore reducible to D'?/J term
(for small D')!° by appropriate rotations of the spin
operators.”’ We shall neglect these second-order terms not
only because they are smaller but also because there are
other (symmetric) exchange anisotropies at the same order
that we have not included. Therefore in the rotated frame, the
model has only the original D component along z with the
same strength and has a U(1) rotation symmetry about this
axis: it is this symmetry that, as we shall show, is going to be
spontaneously broken. In the following we shall present the
results of the numerical diagonalization of Eq. (1) for sys-
tems of size N=21,24,27,30,36 (for the N=24-27, we
have considered two different cluster shapes). The dimension
of the largest Hilbert space is ~7 X 108. We have started with
a Dzyaloshinskii-Moriya coupling strength fixed to D=0.1J
(and J=1).

Symmetry breaking in the thermodynamic limit. We have
calculated several low-energy levels of Eq. (1) in each sector
of the total magnetization, denoted by S, for different cluster
sizes. For N=36, the energy levels are shown in Fig. 2. The
spectrum is qualitatively different from the exact spectra ob-
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tained at D=0 (see Ref. 7). Here we clearly see a band of
low-energy levels (red line in Fig. 2) well separated from
higher-energy states. It forms a so-called tower of states
which energy is very well described by a quadratic term
Sf/ 21y (Fig. 2). The slope 1/(21y) is fitted for all available N
and shown in the inset of Fig. 2. It clearly extrapolates to
zero in the thermodynamic limit such as 1/N. In this limit
one can then form a superposition of these eigenstates with
different S,, thus forming a macroscopic state with a pre-
ferred in-plane direction. This therefore shows that the sys-
tem breaks the rotation symmetry in the thermodynamic
limit. In this standpoint, the degeneracy of the tower of states
is then a natural consequence of the invariance of the Hamil-
tonian in rotations about the internal axis defined by D: a
given macroscopic state pointing in the u direction in the
transverse plane is degenerate with all its transforms in any
rotation about D. In addition, the wave vector of the lowest-
energy state in each S, sector is Q=0 for all clusters so that
we can safely conclude that the system will not break trans-
lation invariance in the thermodynamic limit. Furthermore,
because of the continuous broken symmetry, we expect a
long-wavelength Goldstone mode with energy varying such
as k«N~!2 in two dimensions. Unfortunately, the first al-
lowed k#0 wave vectors are not small enough on these
clusters to observe the individual long-wavelength states di-
rectly in the spectra. In fact, indirect confirmation of a Gold-
stone mode will be given below in the scalings of the energy
of the ground state and correlations. From the spectra, we
can now extract the uniform susceptibility at 7=0 by using
the expression of the energy, Sf/ 2Iy—HS,. The susceptibility
of the ground state Iy is proportional to N (as shown in Fig.
2) and the susceptibility per site y=1Iy/N is found to be y
=0.144%=0.002 for D/J=0.1 in the thermodynamic limit.

Néel order parameters. To test for the possibility to have
a sublattice magnetization (or Néel order) in the thermody-
namic limit, we have calculated the spin-spin correlations in
the (finite size) ground state. We distinguish between corre-
lations in a plane perpendicular to D, (0[S;,S},+S7,57,|0)
(where i is the unit cell and « the sublattice index), and the
correlations along D, <0|SfaS;”-b 0). As expected from the easy-
plane character of the Dzyaloshinskii-Moriya interaction, the
latter remains much smaller and especially at large separa-
tion. To study the in-plane ordering, we define the Fourier
transform of the spin-spin correlations,

24 .
Su(Q) = 152 ¢ RRNO]S],S3,/0). @

)

This is a 3 X3 matrix that turns out to be peaked at Q=0.
The largest eigenvalue at Q=0 corresponds simply to the
120° in-plane orientation of the magnetic moments within
the unit cell. The prefactor 24 is chosen so that the largest
eigenvalue is 1 in the perfect Néel state. For a quantum mag-
net with a finite Néel order parameter, the eigenvalue should
extrapolate to a finite value smaller than 1 (because of quan-
tum fluctuations), with a well-defined finite-size scaling. The
latter can be predicted from the existence of a low-energy
spin wave with wave vector varying such as N-? in two
dimensions and is of the form N~"2 for the correlations and
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FIG. 3. (Color online) Finite-size extrapolation of the largest
eigenvalue of S,,(Q=0) showing (i) a scaling in N~"2; (ii) the
decrease in the sublattice moment from m%;=0.326 (D=1, J=0) to
zero (D=0.1J) and negative values (D=0.06,0.08J). Inset: finite-
size scaling of the ground-state energy in N~ for D=0.1J.

N73'2 for the energy per site.”! Figure 3 shows the largest
eigenvalue versus N~/ for different D/J. First we see that
the scaling is obeyed both for the correlations (Fig. 3) and
for the ground-state energy per site (inset of Fig. 3). Second,
the intercept for infinite system-size gives the order param-
eter, noted as m%p. Starting from large D/J (squares) and
reducing D/J we see that the order parameter decreases from
map~0.326 to zero at D,=0.1J (circles). For D<D,, it is
no longer possible to find a finite order parameter: the nega-
tive extrapolated values reflect the breakdown of the scaling
at some length-scale and short-range correlations develop in-
stead. In Fig. 4, we summarize the behavior of the Néel
order-parameter mp as a function of D/J. The order param-
eter decreases continuously to zero so that the transition is
compatible with a second-order phase transition. It seems
difficult though to extract an accurate value for the critical
exponent given the error bars resulting from finite-size scal-
ing. The present data are compatible with the mean-field be-
havior, miFoc (D-D,), but the exponent could also be

0.1

0.075 —

0.05—

mAF

Moment-free phase Neel phase

0.025—

|
0.15 0.2

0 ‘
0 0.05 0.1
D/J

FIG. 4. The Néel order parameter as a function of D/J obtained
from extrapolations to infinite size. The system has no magnetic

moment for D<D_.=0.1J and has Néel order for D>D,.
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smaller. In any case, D.=0.1J clearly appears as the critical
point separating the Néel phase (Q=0, 120° in-plane orien-
tation of the spins)?*> from a phase with no static moment. It
is a more accurate estimate than that of spin waves (that is
three times smaller)'® because here all quantum fluctuations
have been taken into account.

In order to have a simple understanding for the occur-
rence of a Néel phase in the phase diagram, we discuss the
limit of large D/J, for which simple physical arguments can
be used. For this we start with a trimerized version of the
kagome lattice.”® On a triangle, three Heisenberg quantum
spins 1/2 form a quartet and two degenerate low-energy dou-
blets. The Dzyaloshinskii-Moriya interaction lifts the degen-
eracy and selects the doublet with the (vector)-chirality op-
posite to D. We now assume that D is large and ignore the
higher doublet (and quartet). We define a pseudospin o;
=1/2 for the lowest doublet on each triangle. The intertri-
angle Dzyaloshinskii-Moriya interaction (that is now sup-
posed to be large) gives an effective interaction for the pseu-
dospins that we can write as

2
H' =—§|D|E \E(Ofo}"("'o”}'o?)*‘éij'(gi Xop), ()
)

where i,j are now sites on a triangular lattice. €;; is a unit
vector along +z when turning anticlockwise around an up
triangle of the triangular lattice. Equation (3) is essentially a

ferromagnetic in-plane interaction with a sizable effective

Dzyaloshinskii-Moriya interaction. The latter gives magnetic
frustration and the problem of solving Eq. (3) is in principle
as complicated as the original problem. For three triangles,
the ground state of Eq. (3) is the Q=0 doublet state (of
pseudospins) made of (|11 1)+|[1LT)+|LT7)/V3 and its
time reversal counterpart. Similarly, the classical ground
state of Eq. (3) is the Q=0 in-plane ferromagnetic state with,
e.g., (07)=1/2 on all triangles. In terms of the original spins,
this corresponds to long-range Néel order in (S;,) of the Q
=0 and 120° form. The reduction in the in-plane moment can
also be estimated. For the three-triangle ferromagnetic dou-
blet given above, one can form a superposition of the two
states that gives a moment along x for instance. The moment
is then found to be a fraction map=4/9~0.44 of the full
moment. This gives a simple explanation for the Q=0 Néel
phase found by exact diagonalization in the limit of large
D/J. Since we know from previous works that the D=0
phase is nonmagnetic,>’ we naturally expect at least one
quantum critical point between the two phases.

We conclude that the S=1/2 kagome antiferromagnet has
a quantum critical point at D.=0.1J separating a moment-
free phase (D<D,) from a Néel phase with a sublattice mo-
ment (D >D,) (or a weak net moment if D’ # 0, see Ref. 22).
This is clearly compatible with the absence of a static mo-
ment in ZnCu;(OH)4Cl; (Refs. 3-5) because the coupling
extracted from ESR, D=0.08/,'3 is smaller than the critical
coupling.?* Furthermore this estimation places this com-
pound very close to the quantum critical point. This raises
the issue of the origin of the power-law behaviors observed
experimentally when the temperature is decreased.>!%-10
They have been interpreted so far in terms of critical spin
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liquids!”'® or free S=1/2 impurities.”> Here we suggest a
different intrinsic interpretation in terms of the proximity
with the present critical point. The prediction of the critical
behavior and low-temperature scalings is not an easy task,
however. In view of the present uncertainties about the D
=0 phase and the other possibilities of valence bond crystal
states®® or intermediate phases such as a spin nematic state,
for instance, it is indeed difficult to ascertain what the effec-
tive low-energy quantum field theory is. It is interesting to
note though that the same ordered phase was found as an
instability of the field theory describing the algebraic spin
liquid,?” but here we have given a finite critical value for D..
At finite temperatures such a critical point will open a quan-
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tum critical region that may have consequences on the mag-
netic properties of ZnCu;(OH)4Cl;. It is also of course of
particular interest if the compound could be driven across the
transition by applying an external pressure or magnetic field,
for instance.
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