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Heterogeneous freezing in a geometrically frustrated spin model without disorder:
Spontaneous generation of two time scales

O. Cépas and B. Canals
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By considering the constrained motion of classical spins in a geometrically frustrated magnet, we find a
dynamical freezing temperature below which the system gets trapped in metastable states with a “frozen”
moment and dynamical heterogeneities. The residual collective degrees of freedom are strongly correlated, and by
spontaneously forming aggregates, they are unable to reorganize the system. The phase space is then fragmented
in a macroscopic number of disconnected sectors (broken ergodicity), resulting in self-induced disorder and
“thermodynamic” anomalies, measured by the loss of a finite configurational entropy. We discuss these
results in view of experimental results on the kagome compounds, SrCr9pGa12−9pO19, (H3O)Fe3(SO4)2(OH)6,
Cu3V2O7(OH)2 · 2H2O, and Cu3BaV2O8(OH)2.
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I. INTRODUCTION

Certain magnetic compounds lack conventional magnetic
long-range order but develop static order below a temperature
Tg , with locally “frozen” spins. Well-known examples are spin
glasses, but there are now examples of geometrically frustrated
compounds with somewhat different microscopic properties.
They are dense (one spin per site on a periodic lattice), but
have a rather small “frozen” moment.

The physical origin of such glassylike phases is an
interesting issue. It may be a spin-glass phase associated with
weak quenched disorder1–3 or it may be more intrinsic to the
pure compound and its geometrical frustration. For example,
structural glasses do lack quenched disorder but are out-of-
equilibrium with a relaxation time longer than the observation
time of the experiment. It is a general idea that the frustration,
by suppressing long-range order, may lead to glassylike
phases.4,5 In the present paper, we study the relaxation to
equilibrium of the dynamics of a simple spin model in the
presence of geometrical frustration. We find that the spin
relaxation is nonexponential and develops spontaneously two
time scales below a crossover temperature Td . The system
does not slow down uniformly in space; instead, it develops
some fast-moving and slow-moving regions characterized by
an emergent length scale (called “dynamical heterogeneities”
in the context of structural glasses).4 Below a second crossover
temperature Tg , the slow-moving spins may appear “frozen”
on the experimental time scale, i.e., the system has fallen
out-of-equilibrium. In this case, the system is found to be
trapped into one of an exponential number of metastable states,
and some local disorder is self-induced.

Competing local spin interactions resulting, e.g., from
the geometrical frustration of the lattice tend to suppress
the magnetic long-range order. At low temperatures, some
local correlations appear and the system is in a collective
paramagnetic regime. The spin dynamics is different from
that of a high-temperature paramagnet: the system still has
a macroscopic number of accessible states, but these states
are locally constrained. The spin dynamics is hindered by
these local constraints: single spin flips become suppressed if
they violate local arrangements and the degrees of freedom
acquire a more collective nature, which, in the present context,

are loops (or “strings”) of spins. The issue is whether these
cooperative excitations are efficient enough to reorganize the
system as in the liquid state (here the paramagnetic state) or if
the system is “jammed.” Such excitations are rather ubiquitous
and appear in different contexts, e.g., ice and ferroelectrics.6

Stringlike excitations have been also identified in molecular
dynamics simulations of structural glasses7 and were argued
to indeed play a role in the glass transition problem.8 Here
we study how these excitations self-organize in a simple
degenerate spin model on a lattice, and how they do or
do not permit, depending on temperature, the relaxation to
equilibrium. We find that, while the motion of long loops
is very efficient at high temperatures, it is too slow at low
temperatures, and the residual “rapid” degrees of freedom do
not lead to thermodynamic equilibrium.

The magnetic materials we have in mind are highly
frustrated systems with spins on the sites of the two-
dimensional kagome lattice, but some spin-ice systems on
the three-dimensional pyrochlore lattice have a rather similar
phenomenology9,10 and sustain similar loop excitations.11

The kagome systems have a spin freezing transition at Tg ,
but the “frozen” moment is rather small and the system
retains some dynamics below Tg . This is the case of the
rather dense kagome bilayer SrCr9pGa12−9pO19 (SCGO),12

which was argued originally to be an unconventional spin
glass because (i) the specific heat is in T 2,13,14 (ii) Tg

is weakly sensitive to the chemical content p,15,16 and
(iii) the “frozen” moment is small and most of the system
remains dynamical.17–21 In the kagome hydronium jarosite,22

(H3O)Fe3(SO4)2(OH)6, the Tg does not depend much on
the Fe coverage, and compounds with 100% of Fe (as the
chemical formula suggests) were synthesized.23 Chemical
disorder is certainly not absent, though, with possible proton
disorder.23 Nonetheless, temperature cycles below Tg were
qualitatively different from that of conventional spin glasses,
and may point to a different nature of the phase transition.24,25

More recently, two other kagome compounds were found: the
volborthite26 [Cu3V2O7(OH)2 · 2H2O] and the vesignieite27

[Cu3BaV2O8(OH)2]. Both have a spin freezing transition28–30

with small frozen moments.28,30,32 NMR revealed a hetero-
geneous state below Tg: the NMR relaxation time appears to
depend on the nucleus in volborthite, with “slow” and “fast”
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sites found in the line shape.28,31 In vesignieite, a partial
“loss” of some nuclei (partial “wipeout” of the intensity)
is also possibly indicative of sites with slower magnetic
environments.32 These experiments may suggest the presence
of dynamical heterogeneities.33 These are two-dimensional
systems, but a freezing transition also occurs in the hyper-
kagome gadolinium gallium garnet, Gd3Ga5O12, a three-
dimensional version of the kagome lattice.34 However, not
all kagome antiferromagnets have a spin freezing transition.
Some have antiferromagnetic long-range order, such as those
of the jarosite family22 (other than the hydronium jarosite)
or the oxalates.35 Others may be quantum spin liquids, such
as the herbertsmithite ZnCu3(OH)6Cl2, which has no phase
transition36 and a dynamics down to the lowest temperatures
with no clear energy scale in neutron inelastic scattering.37–39

Such a broad response has some similarities with that of
SCGO17–20 or the hydronium jarosite above the freezing
temperature.40 This points to competitions between different
states, and while it is possible to model some antiferromagnetic
phases by appropriate interactions, e.g., further-neighbor
interactions,41 or Dzyaloshinskii-Moriya interactions,42,43 the
issue of spin freezing is delicate.

Many theoretical studies of spin freezing phenomena in the
context of the kagome antiferromagnet have been undertaken,
mainly from classical or semiclassical approaches. The role of
the local collective degrees of freedom (also called “weather-
vane” modes) was put forward, leading to the conjecture of a
spin freezing for the Heisenberg kagome antiferromagnet.44,45

It was later argued that distortions may help in stabilizing
a “frozen” state, e.g., a trimerized kagome antiferromagnet
has slow dynamics on time scales of single spin flips46 (short
compared with the time scales probed in the present study, as
we shall see) or distorted kagome lattices.47 It is in discrete
spin models that a “jamming” transition was found, in the
presence of additional interactions that favor an ordered state:
the dynamics becomes very slow as a consequence of a
special coarsening of the domains of the ordered phase.48,49

Here we shall consider similar discrete spins, with a different
classical dynamics (not induced by additional interactions—
the equilibrium state remains paramagnetic), but resulting
from activated motion within discrete degenerate states.

The paper is organized as follows. In Sec. II, we introduce
a simple degenerate spin model and the associated dynamics
within the degenerate ground states. Section III gives a
heuristic motivation based on a microscopic model more
appropriate to real kagome compounds. In Sec. IV, we present
the results of Monte Carlo simulations of the dynamics of
the degenerate model. In Sec. V, we study how the phase
space gets fragmented in many metastable states, and we
compute the configurational entropy from finite-size scaling.
We compare with experiments on kagome compounds in
Sec. VI, and we conclude in Sec. VII.

II. MODEL

We consider a classical three-coloring model50 with spin
variables Si = A, B, and C (three possible colors, or spins
at 120◦) defined on a lattice. i are the bonds of the two-
dimensional hexagonal lattice, or the sites of the kagome
lattice (Fig. 1). There is a strict local constraint which forces
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FIG. 1. Simplest motion compatible with the constraint: color
exchange along a loop of length L (e.g., L = 6). Note that the flip of
the central loop (on the left, before the move) facilitates the motion
of neighboring sites by creating a new flippable loop (on the right,
after the move).

neighboring sites to be in different colors, and each state p

that satisfies the constraint has energy

Ep = 0 (1)

by definition. The number of degenerate states is macro-
scopic (extensive entropy) and was calculated exactly in the
thermodynamic limit.50 As a consequence of Eq. (1), the
temperature has no effect on the thermodynamics of the model:
at equilibrium, each state p has the same probability. Yet the
spin-spin correlations averaged over the uniform ensemble
are nontrivial because of the local constraint and decay
algebraically (“critical” state).51 However, the model has no
dynamics and one has to specify a particular model to study
dynamical properties.

Here we consider the simplest dynamics within the degen-
erate states, i.e., compatible with the constraint. While the
constraint forbids single color changes, the simplest motion
consists of exchanging two colors along a closed loop of L

sites (Fig. 1). We assume an activation process over a barrier
of energy κL (where κ depends on microscopic details), with
a time scale,

τL(T ) = τ0 exp (κL/T ) , (2)

where T is the temperature and τ0 is a microscopic time. The
exact form [Eq. (2)] is unessential, the important point being
that longer loops take longer time (local dynamics). Since
the system is known to have a power-law distribution of loop
lengths44,48,52 (reflecting the criticality of the thermodynamical
state), we have therefore a broad distribution of time scales in
the problem. However, the loops are strongly correlated and
the spin dynamics is nontrivial.

It has been argued that such constrained problems can be
described at large scales by effective gauge theories. Such
examples are spin-ice systems or hard-core dimers which
can be viewed as artificial Coulomb phases.11,53 The local
constraint is solved by an auxiliary (divergence-free) gauge
field and a long-wavelength free energy is postulated. It
describes, as in standard electrostatics, algebraic correlations
at long distance. The hydrodynamic parameters are then
extracted from the comparison with exact results (in the present
case,51 the Baxter solution)50 or numerics. Furthermore, it also
allows one to predict a relaxational dynamics (e.g., Langevin)
and the slowest spin-spin correlations are expected to decay as
a power law, as in dimer models.54

However, we also find a different “short-time” regime,
resulting from the microscopic model we are considering.
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Indeed, the motion of a loop reorganizes its immediate vicinity
and can facilitate the motion of a so far frozen neighbor (see
Fig. 1). In this sense, this resembles kinetically constrained
models where the motion of a local variable needs a specific
configuration of its neighbors,4,55,56 but the kinetic constraints
here result directly from the local correlations. Although the
system is fully packed with loops (each site belongs to two
loops), the issue is how the loops (and especially the small
loops) self-organize.

III. MICROSCOPIC ORIGIN OF THE MODEL

We give some heuristic justifications for the model of
Sec. II, based on microscopic considerations. The model can
indeed be viewed as an effective model within the ground state
manifold of some more general Hamiltonian, at T � JS2,
where J is defined below. We consider first a Heisenberg
model,

H = J
∑
〈i,j〉

Si · Sj , (3)

where Si is a quantum spin S operator on site i of the kagome
lattice, and J an antiferromagnetic coupling between nearest-
neighbor spins. We will discuss the semiclassical treatment for
which the classical states are the important starting point.

A. Degenerate three-color states

The minimization of the classical energy associated with
Eq. (3) leads to many degenerate states where spins point at
120◦ apart on each triangle. These states are not necessarily
coplanar; however, the coplanar states have the lowest free
energy at low T , a form of (partial) order-by-disorder to
a “nematic” state.57–59 Similarly, for quantum fluctuations
at order 1/S in spin-wave theory, the zero-point energy is
minimized by the coplanar states.41,44 However, all coplanar
states remain degenerate at the harmonic level. The spins
pointing at 120◦ in the common plane are represented by three
colors, A, B, and C, and the three-color states therefore form
the ground state manifold of the model [Eq. (3)].

It is a rather difficult issue to calculate the lifting of the
degeneracy due to anharmonic fluctuations. In this respect,
the long-range ordered Néel state with a

√
3 × √

3 unit cell
plays a special role. It was indeed argued that small-amplitude
fluctuations (albeit anharmonic, i.e., at the next order in spin-
wave theory) favor this state,60–62 This is similar to the result
of Schwinger-boson mean-field theory,63 although this is true
only at (small) finite T .64 From high-T series expansion, the
degeneracy is indeed lifted but is a small effect.41

By Eq. (1), we assume that the lifting of the degeneracy
is small compared with both the temperature and the energy
barriers.

B. Activation energy, quantum tunneling

The generation of an energy barrier by fluctuations is typical
of order-by-disorder.65,66 A canonical example is the J1-J2

model on the square lattice. While two sublattice Néel order
parameters can point in any direction at the classical level, the
fluctuations select the collinear arrangements.66 The rotation
of one sublattice order parameter with respect to the other costs

(fluctuation-induced) macroscopic energy. There remains only
two degenerate states separated by an energy barrier of O(N ),
the number of sites (broken symmetry). In systems with a
macroscopic number of degenerate states, the situation is
different because local modes connect different degenerate
states. The states are separated by barriers of O(1), and
the associated dynamics, which consists of large-amplitude
motion of collective spins [Eq. (2)], may be relevant.44,67,68

There are two different processes: the small fluctuations about
a given state of the manifold, and the large-amplitude motion
within the manifold. For continuous spins, the large-amplitude
motion consists of rotating collectively the spins of a loop,
out-of-plane, by an angle θ in a cone at 120◦, thus preserving
the constraint. The corresponding fluctuation-induced barriers
were calculated numerically and appear not to be a pure
function of the loop length as assumed in Eq. (2), but also
depend on the configuration.68 However, for small loops at the
lowest T (when the fluctuation energy is dominated by the
quantum zero-point motion), E � κL (κ = 0.14JS),68 and
Eq. (2) is justified.

At very low temperatures, quantum tunneling through the
barrier may take place67 and the time scales of Eq. (2)
saturate.69 The time scales then depend on the barrier shapes
and the model considered.68

In real systems, symmetry-breaking fields of spin-orbit
origin may be present and provide also some energy barriers.
Consider, for example,

H ′ = H + D
∑

i

(
Sz

i

)2 −
∑
i,k

Ek(d̂k · Si)
2, (4)

which is chosen to be compatible with the three-coloring states:
D > 0 is an easy-plane (xy) anisotropy and the three vectors
d̂k are directed at 120◦ in the kagome plane.70 In the limit
of strong D, H ′ is analogous to the six-state clock model,71

except for the degeneracy of the classical ground states. We
note that in the opposite limit of Ising-like XXZ anisotropy,
although the system orders ferromagnetically, there is a slow
persistent dynamics of creation of loops.72 We will restrict the
discussion to D > 0 and Ek = 0 in the following.

When the anisotropy is small (which is generally the case
of intermetallic magnetic ions), rotating the spins of a loop
continuously by θ defines a classical energy barrier, κL sin2 θ ,
with κ = 3DS2/2. When the anisotropy is strong (possibly
more appropriate to rare-earth compounds), it is too costly
to rotate all components out-of-plane. The lowest-energy
excitations consist of violating the constraint by nucleating
defects. The simplest effective process for the spins to move
in the constrained manifold is to create two defects along a
loop. This costs twice the exchange energy but the defects
are then free to move along the loop (deconfinement) and
leave behind them a string of exchanged colors.49 When the
defects annihilate, the loop has flipped. The time scale of
this process is given by Eq. (2), with κ ∼ JS2.49 This is
the important effective process in spin-ice systems in general,
and the nonequilibrium dynamics of defects has been directly
studied recently.73,74

Note that by using the discrete model, we intend to describe
only the slow collective degrees of freedom. The rapid motion
about the “equilibrium” state (spin waves) is present in the
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continuous spin model but is integrated out in the discrete
model (in the barrier) at the first order of spin-wave theory.68

IV. STOCHASTIC SPIN DYNAMICS

The system evolves in the classical degenerate manifold by
the motion of closed loops, described by a local stochastic
activated process given by Eq. (2). We have studied the
spin (color) dynamics by classical Monte Carlo simulations.
Such Monte Carlo simulations have been used to study the
equilibrium state of constrained or loop models,75–77 and
also in the present context.48,49,51 In these simulations, the
updates were accepted following the METROPOLIS algorithm,
and irrespective of the length of the loop. Here, the aim is not
to probe the equilibrium state (which is known) but to study
how the spin dynamics slows down when longer loops have to
pass higher energy barriers, which take more time. The issue
is rather to study the relaxation to equilibrium.

The algorithm is similar to that used earlier: (a) we choose
a single site at random, (b) we choose a neighbor of this
site at random (this defines two colors, hence one of the
three types of loop A-B, A-C, or B-C), and (c) we search
among its four neighbors the site with the same color as the
original site (but distinct from it) and we iterate until a closed
loop is formed (this is guaranteed by the periodic boundary
conditions). Contrary to previous studies, however, the colors
are exchanged along the two-color loop (the loop is “flipped”)
according to the probability to cross the barrier, 1/τL. This
amounts to choosing in the METROPOLIS acceptation rate a
microscopic rate which depends on the degree of freedom that
moves. The cluster sizes are N = 3L2, L is the linear size (up
to L = 144), and a Monte Carlo sweep (MCS) corresponds to
N attempted updates.

We have computed the autocorrelation function,

C(t) =
〈

1

N

N∑
i=1

Si(t).Si(0)

〉
, (5)

where 〈· · ·〉 is an average over initial states (103 in Fig. 2,
and up to 104 for better statistics) randomly chosen at t = 0.
Here, because we have a three-color model, Si(t) · Si(0) = 1
for parallel spins (same color) and −1/2 for spins at 120◦
(different colors). By definition, C(0) = 1 and if the state at
time t is decorrelated from that at t = 0, each spin is in one
of the three possible colors with probability 1/3 and C(t) = 0
[C(t) measures how long the system retains memory of its
initial state]. To accelerate the simulations, we rescale Eq. (2)
by τβ ≡ τ6(T ) so that the shortest loops (hexagons) flip at each
attempt. In the following, the MCS are in units of τβ and T in
units of κ . The Fourier transform of C(t), C(ω), is the local
spin susceptibility, as measured by experimental probes, for
instance neutron inelastic scattering (cross-section integrated
over all wave vectors), NMR, or μSR on different time scales.

A. Summary of the results

The autocorrelation is given in Fig. 2 for different temper-
atures. The relaxation of the system occurs on a time scale τα

and follows a power-law decay, t−2/3 (inset of Fig. 2), which is
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FIG. 2. (Color online) Spin autocorrelation as a function of time
(Monte Carlo sweeps) with decreasing T (from left to right), C(0) =
1 (L = 144). Inset: long-time tail (rescaled), 1/t2/3 (solid line), as
described by a height model.

well described by a long-wavelength field theory, as we shall
see.

Below a crossover temperature Td , the spin dynamics
develops two distinct time scales, τα and τβ (τα and τβ are
the notations in supercooled liquids for the long and short
relaxation times): the autocorrelation decreases first into a
plateau (quasistationary state) and then relaxes to equilibrium.
At short times ∼τβ , the relaxation is approximately a stretched
exponential C(t) ≈ exp(−tβ) (β ≈ 0.63). While the dynamics
is spatially homogeneous above Td , it becomes heterogeneous
below Td with slow and fast regions.

B. Long-time relaxation

We define the relaxation time of the system, τα , by e.g.,
C(τα) = 0.1 (the value chosen has no consequence as long
as it is small enough). In Fig. 3, we give τα/τβ as a function
of temperature. This ratio becomes much larger than 1 in the
limit of low T , τα/τβ ≈ 0.42 exp(4/T ), so that τα ∼ τ10(T )
is controlled by the second shortest loops (of length 10). For
comparison, the time that characterizes the initial decay of
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FIG. 3. (Color online) Two relaxation time scales.
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C(t), defined by C(τ ) = 0.6, is of order τβ ≡ τ6(T ) (Fig. 3),
i.e., controlled by the shortest loops. Such definitions and
spontaneous generations of two time scales appeared in a
different spin model where the frustration is played by long-
range interactions which fragment the system into domains.78

By rescaling all the curves by τα , we find that the decay at
long times is a power law,

C(t) ∼ 1/t1−α, (6)

with α ≈ 0.33 (see the inset of Fig. 2). Since α > 0, the
integrated relaxation time

∫ ∞
0 C(t)dt diverges, and, at small

frequencies, the Fourier transform diverges like ω−α (we do
not discuss here some natural cutoffs provided by, e.g., defects
at finite temperatures).

The long-time regime reflects the criticality of the equilib-
rium state and is well described by a free vector-field model.
The model is obtained by a mapping of the color variables
onto an auxiliary two-component height field ϕ defined at the
centers of the hexagons.51,79,80 The construction is as follows:
the height vector ϕ picks up an êi vector each time it crosses an
i = A, B, and C color with the condition êA + êB + êC = 0.
In such a way, the local constraint is automatically satisfied.
One assumes that the free energy (of purely entropic origin)
reads

F/T = 1

2
K

∫
d2x(∇ ϕ)2, (7)

where ϕ is the coarse-grained height field. The stiffness
K = 2π/3 is chosen so as to reproduce the exact criti-
cal exponent of the spin-spin algebraic correlations, η =
4/3.51,79,80 Equation (7) describes a classical81 interface in two
spatial dimensions. Similarly to dimer models,54 the classical
fluctuations of the interface can be described by Langevin
equations,

∂ ϕ
∂t

= D∇2 ϕ + η(x,t), (8)

where η(x,t) is a two-dimensional white noise, 〈η(x,t) ·
η(x′,t ′)〉 = T δ(x − x′)δ(t − t ′). Equation (8) describes a sim-
ple diffusion of the height of the interface. The mapping
to the slowest spin fluctuations, ms(x,t) = eiQ· ϕ(x,t), |Q| =
4π/

√
3,51,79,80 gives the spin correlations at long times and

long distance,

C(x,t) = 〈ms(x,t)ms(0,0)〉 ∼ 1

t1−α
f

( |x|
t1/z

)
, (9)

with 1 − α = η/z, z = 2 [from Eq. (8)], and f (0) = 1.
We therefore obtain α = 1/3, in good agreement with the
1/t1−α = 1/t2/3 found numerically (see the inset of Fig. 2).
The approach also explains that the exponent does not vary
with T because the underlying critical phase is independent of
T , by definition.

Equation (9) characterizes the spin fluctuations at long
times (by definition of the coarse-grained free energy). At
short times, however, corrections to Eq. (8) are important and
lead to a different dynamics, as we now show.

C. Short time and plateau below Td

Below a crossover temperature Td ≈ 1, a shoulder develops
in C(t) and the relaxation time τα starts to differ from τβ , which

characterizes the initial decay. C(t) develops a plateau which
becomes more and more stable when T is further lowered. The
limiting value of the plateau is (see Fig. 2)

q ≡ 1

N

N∑
i=1

〈Si〉2 ≈ 0.31. (10)

It gives the averaged frozen moment on time scales shorter
than τα , which we note 〈Si〉 ≈ 0.56. On these time scales,
only the hexagons have dynamics: all other loops are blocked
until τα ≈ τ10(T ), at which a loop of length 10 may flip, and
the system leaves the plateau and returns to equilibrium.

When the relaxation time of the system becomes longer
than the experimental time, τα ≈ τexp, the system is out-of-
equilibrium. This occurs at the glassylike crossover temper-
ature, Tg < Td (which depends on the typical time scale of
the experiment). From the estimation of τα , we have Tg =
10/ ln[τexp/(0.42τ0)] ≈ 0.3 for τexp = 103 s and τ0 ∼ 10−12 s.
For T < Tg , the system is trapped into the plateau. Once all
fast processes have occurred (i.e., after τβ), the system is in
a quasistationary state with frozen moment squared q (we
reserve the term “Edwards-Anderson order parameter” to refer
to a true equilibrium phase transition).

We can furthermore calculate q as a function of T . It is
related to the susceptibility by

χ ≡
〈
S2

i

〉 − 〈Si〉2

T
= 1 − q(T ,t)

T
. (11)

The frozen fraction depends logarithmically on time below Tg

(see Fig. 4), so that χ has a cusp at Tg between a high-T
paramagnetic susceptibility χ = 1/T and a low-T time-
dependent susceptibility.

The existence of a frozen moment on average is a conse-
quence of both frozen regions (which are purely static) and
dynamical regions with a finite moment on average (because
of a recurrent behavior). In Fig. 5, we show the autocorrelation
Ci(t) = Si(t) · Si(0) on each site at intermediate times in the
quasistationary state (−1/2 is white; 1 is black if it has
never moved between 0 and t or gray otherwise). While most
sites have dynamics (white and gray), there is a fraction of
frozen sites (in black). The averaged fraction of frozen sites
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FIG. 4. (Color online) Frozen moment squared as a function of
temperature and observation time, Eq. (10). L = 144.
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FIG. 5. Real-space picture of the autocorrelation, Ci(t) = Si(t) ·
Si(0), at time t = 103 and T = 0.1. Black, frozen sites; white, Ci(t) =
−1/2; gray, the sites which have moved between 0 and t but have
returned to their initial state [Ci(t) = 1].

is Nf = 0.121N , and the probability distribution function is
found to be Gaussian (as a consequence, Fig. 5 is typical
of what happens at low T ). The existence of 12.1% of
frozen sites explains only part of the averaged frozen moment,
q = 31%. In addition, other (dynamical) sites contribute. This
is because the frozen clusters provide boundary conditions for
the neighboring sites and the constraint propagates between
clusters. For instance, the spins on the outer side of the cluster
boundary can take only two of the three possible states, the
third possibility being frozen inside the cluster. They have
hence stronger probabilities to return to the original value. In
Fig. 5, we indeed see, extending between the frozen clusters,
large dynamical regions where the spins are in their original
state (gray). These constrained regions contribute to almost
two-thirds of the averaged frozen moment.

Furthermore, it is seen in Fig. 5 that frozen sites form
clusters randomly distributed over the system. The number
of spins in a cluster is distributed according to Fig. 6. The
average is 〈s〉 = 42 sites (and is size-independent for L � 72;
see the inset of Fig. 6), thus defining an emergent length
scale 〈s〉1/2 = 6.5 intersite spacings. The picture of the frozen
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FIG. 6. Distribution of the sizes of the frozen clusters. The
average is 〈s〉 = 42 sites (inset: finite-size effect) or the emergent
length scale is 〈s〉1/2. The dashed line is a guide to the eye
(exponential).
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FIG. 7. The radial distribution function of active degrees of
freedom: probability to have a flippable hexagon at distance r

from a given flippable hexagon at 0 (normalized by the number
of hexagonal sites) averaged over the uniform ensemble. While
the nearest-neighbor position is not compatible with the constraint,
the first peak corresponds to an attraction of next-nearest-neighbor
hexagons.

phase is that of “jammed” clusters of nanoscopic scale 〈s〉1/2

occupying 12.1% of the sites.
What is the origin of the jamming? First, “jammed”

clusters do not contain flippable hexagons (by definition)
but are, of course, crisscrossed by longer loops which are
blocked at the temperatures considered. This implies that a
typical three-coloring state must have a low-enough density
of flippable hexagons. On the kagome lattice, the density of
flippable hexagons (averaged over the uniform ensemble) is
0.22, so that forming a large cluster of 〈s〉 = 42 sites on
average is unlikely in the absence of correlations. In Fig. 7, we
give the correlations g(r) (radial distribution function) in the
positions of the flippable hexagons of the same type. We find
indeed a strong attraction: the neighboring hexagons cannot
be occupied by the same type of loop (it is incompatible
with the constraint) but the second neighbor positions are
highly favored (attraction). There is a high probability to have
a flippable hexagon if the (second) neighbor is a flippable
hexagon. This attraction creates aggregates and voids, opening
the way to regions free of flippable hexagons. The system
can therefore be viewed as a microscopic phase separation of
active and inactive regions, the active regions having flippable
hexagons, the inactive regions having longer loops. Recall that
the degenerate model can be seen as being at the boundary of
a phase transition in parameter space,50 in particular between
active and inactive phases, having, respectively, short and long
loops.82 This is a necessary but not sufficient condition for
the region to be “jammed” because the number of flippable
hexagons is not conserved by the dynamics and they “move”
on the lattice (see Fig. 1). The frozen clusters correspond to
special configurations and regions inaccessible to flippable
hexagons. For example, a frozen cluster of 12 sites is shown
in Fig. 8: each hexagon on the border has the three possible
colors, A, B, and C, thus making it impossible to create a
flippable configuration. One can have clusters of arbitrary size
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FIG. 8. “Jammed” cluster (the smallest one, in gray): no 6-loop
can unjam any of its 12 sites. The shortest “unjamming” loop (of
length 10) is shown (dashed line).

(see Fig. 5) or walls that prevent flippable hexagons from
diffusing in different regions of the sample.

However, a loop of length 10 (shown by a dashed line in
Fig. 8) will unjam the configuration, and the cluster shown
will be annihilated. The way the relaxation takes place at
longer times is via the dynamics of creation and annihilation of
“frozen” clusters on time scale τ10(T ). For T < Td , there is a
separation of time scales between the “rapid” hexagon motion
∼τ6(T ) and the longer creation/annihilation of frozen clusters
∼τ10(T ).

D. Dynamical heterogeneities T < Td

We now consider some dynamical local quantities. Follow-
ing studies of standard glasses,4 we define a local mobility
field Ki(0,t) which measures how many times the site i has
changed color during the time interval between 0 and t . It is
linear in t for large t so that one can define a local frequency
fi = Ki(0,t)/t . Frozen sites have fi = 0 while dynamical sites
have fi > 0.

The real-space picture of fi at a given time is given
in Fig. 9 from black (frozen sites) to white (fast sites):
we see the variations of the local dynamics across the
system and some clusters of slow frequencies, i.e., a form of
dynamical heterogeneity. We plot the corresponding histogram
of frequencies in Fig. 10 at various temperatures. At high
temperature, the distribution is homogeneous (Gaussian).
At lower temperatures, the dynamics slows down and the
distribution broadens and becomes asymmetric (nonzero third
moment or skewness). Eventually at T < Tg , a frozen fraction
appears and the distribution becomes continuous between two

FIG. 9. Dynamical heterogeneities in space. The gray scale is
proportional to the local frequency fi of the site from black (frozen)
to white (high frequency). t = 104 and L = 144.
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FIG. 10. (Color online) Nonuniform slowing down of the dynam-
ics by lowering the temperature. T > Td , a homogeneous (Gaussian)
distribution of local frequencies; T < Td , a heterogeneous (skewed)
distribution; and T < Tg , a frozen fraction appears. t = 104 and
L = 144.

typical peaks,

P (f ) = Nf

N
δ(f ) + A(f ), (12)

where A(f ) is a smooth broad function. One can describe
this evolution as a crossover between a homogeneous high-
temperature phase with a single type of dynamical site and
a low-temperature phase with many inequivalent dynamical
sites. It can be described in terms of large-deviation functions,
and a “free energy” can be defined.88

V. FRAGMENTATION OF THE PHASE SPACE

We show that the phase space is fragmented into an eNSc

number of sectors for T < Tg , separated by barriers of O(1).
For this, we directly enumerate all the states of small clusters
and analyze how the system evolves in the phase space as
a function of temperature. This allows us to describe the
landscape of energy barriers separating states and basins, i.e.,
a hierarchical organization of the states (nonfractal here).

Let Pp(t) be the probability of the system to be in a
configuration p = 1, . . . ,NC , where NC is the total number of
states which we have numerically enumerated on small clusters
with periodic boundary conditions (N = 27,36,81,108). We
have found NC = 6.4 × 1.122N (dashed line in Fig. 11),
slightly smaller than the exact result in the thermodynamic
limit 1.135N .50

The master equation governing the dynamical evolution of
P(t) = [P1(t), . . . ,PNC

(t)],

∂P
∂t

= w · P, (13)

involves a matrix w which contains the transition rates from a
configuration p to p′. The only allowed transitions are single
flips of loops of length L, wp→p′ = −1/τL(T ), where τL(T ) is
given by Eq. (2). Here from detailed balance, we have wp→p′ =
wp′→p (Ep = 0 for all states), and wp→p = ∑

p′ �=p wp→p′

ensures the conservation of the probability,
∑

p Pp(t) = 1. All
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FIG. 11. (Color online) Hierarchical structure of the phase space
and exponential number of disconnected sectors Nt at low temper-
atures (solid circles). Nt corresponds also to the number of zero
eigenvalues of the matrix w. The total number of states Nc is denoted
by squares; topological sectors Ntopo (diamond) result from the
complete enumeration of states on clusters of size N = 27,36,81,108.

states satisfying

w · P = 0 (14)

are stationary, such as, in particular, the equilibrium uniform
distribution Pp(t) = 1/NC . w may have more than one zero
eigenvalue, and the additional stationary states prevent the
system from exploring the phase space (broken ergodicity).
Examples are systems with a broken symmetry, the phase
space of which has a finite number of disconnected sectors in
the thermodynamic limit. In each sector, the Gibbs distribution
is stationary, assuring as many zero eigenvalues as the number
of sectors or broken symmetries. In contrast, in a glassylike
phase, the number of eigenvalues satisfying ε � 1/τexp (τexp is
the experimental observation time) scales like eNSc : there is a
finite configurational entropy Sc. In other words, a macroscopic
number of states, thus differing at the microscopic scale, never
relaxes on the observation time scale.

In the present model, w has a finite hierarchical structure.
Here it is a consequence of a microscopic model and is not
assumed from the beginning as in hierarchically constrained
models.55,83,84 Contrary to these examples (or spin glasses),85

however, we find only four levels of hierarchy: the phase space
is split into a few “Kempe” classes,68,86 which are split into
∼N topological sectors and then in eNSc trapping sectors (see
Fig. 11 for a graphical illustration of this hierarchy in the phase
space).

A. Infinite barriers

The dynamics of loops of all sizes is known to be nonergodic
on the kagome lattice.51,86 It means that moving all loops is
not sufficient to go from a given state to any other state in the
phase space. w splits in “Kempe” classes,68,86 the number of
which is generally unknown.86

Since it is therefore impossible to enumerate all states by
moving loops iteratively, we have allowed the introduction
of defects that violate the three-colored constraint. To control

the density of defects, we have introduced an energy penalty,
i.e., the antiferromagnetic three-state Potts model. By cooling
the system at low temperatures in a Monte Carlo simulation,
one generates three-coloring ground states that are in different
“Kempe” sectors (and the sectors themselves by switching on
the loop dynamics). For N = 108, we find four sectors, a large
one with 89% of all states and three smaller ones, all separated
by infinite barriers for the loop model.

Within each Kempe sector, the three-coloring states can
be characterized by topological numbers. They are defined by
counting the number of colors along nonlocal horizontal and
vertical cuts.87 There are six such numbers, w

x,y

i (i = 1,2,3),
which may take any integer value from 0 to L with the
constraint

∑3
i=1 w

x,y

i = L, so four of them are independent.
This gives at most N2 sectors, but since some combinations are
not allowed, the number is of order N (Fig. 11). The dynamics
of local loops conserves these numbers so that each Kempe
sector is divided into N topological sectors. Only winding
loops of length L or L2 (the longest loop takes all two-color
sites and has length 2N/3) may change them. In fact, the
averaged length of the winding loops scales like L3/2.48,52 The
topological sectors are therefore separated by barriers growing
with the system size like L3/2, defining infinite barriers in the
thermodynamic limit and broken ergodicity sectors. This is
analogous to the “jamming” transition induced by additional
forces: the favored ordered state needs rearrangements of
infinite loops in order to equilibrate.48,49 Here we recall that the
phase space is in general broken into ∼N sectors (which we
have explicitly constructed), labeled by quantities conserved
by the local dynamics.87

B. Fragmentation in eN Sc sectors

For T < Tg , the dynamical matrix w splits further into
new smaller sectors which we have constructed for different
system sizes. We find that the phase space is split into 1.085N

independent trapping sectors (Fig. 11). The spin dynamics has
a fast equilibration within a sector characterized by the motion
of 6-loops on a time scale τβ = τ6(T ), and the motion between
sectors occurs on a time scale τα ∼ τ10(T ), which is frozen
below Tg by definition. Above Tg , the system equilibrates
within a topological sector.

The number of sectors defines a finite averaged config-
urational entropy per site, Sc = ln 1.085 = 0.082, which is
approximately two-thirds of the full entropy Seq = ln 1.122 =
0.115. Upon reducing the temperature, the system goes from
an equilibrated state with the full entropy Seq (the number of
topological sectors is subextensive) to a metastable state below
Tg , where it loses the configurational entropy:

�S = Sc = 0.082 = 0.7Seq. (15)

The configurational entropy reflects in phase space the en-
tropy of the microscopic arrangements of the frozen clus-
ters (Sec. IV). A crude comparison consists of distributing
Nf /〈s〉 disks on the lattice (Nf /〈s〉 is the number of frozen
clusters of average size 〈s〉 = 42; we denote the density as
x), with entropy S/N ∼ [−x ln x − (1 − x) ln(1 − x)]/〈s〉 =
0.009 (x = 12%). This is too small, however, by an order of
magnitude compared with Sc.
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For Tg < T < Td , one can define coarse-grained states
by eliminating the fast dynamics into an entropy. While on
average each sector contains (1.122/1.085)N = 1.034N states
(thus defining the averaged entropy S2 = 0.034N ), we find a
broad distribution of sector sizes from s = 1 (a single state)
to a large sector s � NC . However, we believe that this is
a finite-size effect. Indeed, the probability of falling into a
sector of size s is found to be roughly constant at small s

and increases for larger sectors. In contrast, for a Monte Carlo
sampling of states as done in Sec. IV, the frozen fraction
distribution is homogeneous (Gaussian) for L � 18, while for
L � 18, a large portion of states has no frozen fraction at all.
As a consequence, the distribution of entropies is certainly
more homogeneous for large system size.

In summary, we find that the phase space has hierarchical
levels: it has sectors characterized by conserved quantities
and separated by infinite barriers (broken ergodicity) and
sectors or traps separated by finite barriers. The number of
topological sectors is of order N (nonextensive entropy),
and there is no essential difference between them at the
microscopic or mesoscopic scale: a local measurement cannot
distinguish between two different sectors. On the other hand,
the number of traps is of order eNSc (finite configurational
entropy). Therefore, the system loses a finite entropy at Tg

and a local disorder is self-induced: a local measurement
can distinguish between two metastable states (for instance,
if there is or is not a frozen cluster). In this sense, Tg can
be called a glassy crossover temperature. By opposition, the
jamming transition found in Refs. 48 and 49 corresponds to
broken ergodicity associated with a subextensive entropy (no
self-induced disorder).

VI. DISCUSSION OF EXPERIMENTS

We now discuss the kagome compounds that have a freezing
transition. We argue that the freezing temperature Tg is
governed by the energy scale of the barriers, and when possible
we identify the possible mechanisms we have discussed in
Sec. III: the barriers are either dynamically generated by
the rapid spin-wave motion or generated by anisotropies,
depending on specific materials. We also compare the strength
of the “frozen” moment to the experiments available and the
dynamics of the system. Note that the present dynamics of
loops is classical (if a quantum coherence is maintained, the
system was predicted to order).68 Some quantum fluctuations
are therefore neglected here, but may turn out to be important,
especially for the copper oxides discussed below (S = 1/2), if
the anisotropy is small enough.43

A. SrCr9 pGa12−9 pO19 (SCGO)

In SCGO, a phase transition occurs at Tg ∼ 3.5–7 K,
depending weakly on the Cr3+ (S = 3/2) coverage p.13–16 Tg

depends also on the experiment: Tg ∼ 3.5 K by susceptibility
measurement, 5.2 K by neutron scattering for the same
compound.20

What could be the appropriate microscopic model? The
Cr3+ ions have no orbital moment (L = 0) and the spin
anisotropy is expected to be small. From EPR indeed, DS2 ∼
0.2 K.89 In contrast, the measurements of the spin susceptibility

on single crystals showed a large anisotropy disappearing when
increasing the temperature.90 This was therefore attributed
to the spontaneous breaking of the rotation symmetry by
a nematic order (coplanarity), and not a real anisotropy of
the model.90 Similarly, the 8 K barrier obtained by μSR for
p → 0, which was originally interpreted as a large single-ion
anisotropy,91 is in fact absent if one uses a different fit of
the data.92 On the other hand, for p → 1, energy barriers
of ∼30 K were obtained.91,92 Since they are two orders of
magnitude larger than the spin anisotropy, they are more likely
to be induced by the fluctuations. With E = κL = 30 K and
L = 6, we have Tg = 0.3κ = 1.5 K. On the other hand, if
we use κ = 0.14JS (Sec. III) and J ∼ 50 K from the spin
susceptibility, we find Tg = 0.04JS ∼ 3 K. Both estimates
are in fair agreement with the experimental result. However,
the model does not predict a thermodynamic transition, while,
experimentally, this has been a disputed point, especially
regarding the sharpness of the nonlinear susceptibility χ3.13,93

We also note that not only are the “thermodynamic” anomalies
we have mentioned at Tg rounded, but also the entropy
change �S = 0.082N is small compared with the full entropy
N ln(2S + 1) of continuous spins. Yet this amounts to a definite
prediction for the entropy change.

Furthermore, the frozen moment measured in neutron
elastic scattering is small, 〈Si〉2 ∼ 0.12–0.24 of the maximum
moment (depending on the Cr coverage), and most of the
signal is in the inelastic channel.17,18,20 In the experimental
setup of Ref. 17, the inelastic channel starts above the neutron
energy resolution of 0.2 meV, giving in that case a lifetime
of the frozen moment longer than ∼20 ps. Neutron spin echo
showed that the moment is still frozen on the nanosecond time
scale at 1.5 K.21 However, no static moment was originally
observed in μSR,94 but a weak static component may not be
excluded.92 Similarly, in Ga NMR, the wipeout of the signal
shows a dynamics that has slowed down but is still persistent.95

However, in both cases the muon or the Ga nuclei probe many
sites and may see primarily the dynamical sites.

In the model developed above, the system remains dy-
namical below Tg . The system has flippable hexagons on
a time scale τ6(T ) but also spin waves on a more rapid
time scale, which we have not described. The latter should
contribute to the specific heat as in normal two-dimensional
antiferromagnets, and should give in particular a T 2 specific
heat as observed experimentally.13 This is a consequence of
the two Goldstone modes associated with the selection of a
common plane (nematic broken symmetry).44

We can make different assumptions regarding the time scale
of the activated dynamics with respect to the observation time
scale. If τ6(T ) � τneut, the system is trapped into a typical
3-coloring on the experimental time scale. Still the averaged
moment is different from S because of the rapid zero-point
fluctuations of the spin waves. One can estimate that the effect
of the two Goldstone modes is to reduce the moment to m =
S − 0.16.96 For Cr3+ (S = 3/2), the correction is small and
cannot explain the small moment measured.

Suppose now that the hexagons still have a dynamics,
as indeed predicted for T < Tg . We found in this case
that the frozen moment is 〈Si〉2 ≈ 0.31 (Fig. 2). Applying
the same zero-point motion reduction as above, we find
0.31(1 − 0.16/S)2 = 0.25, which is close to the experimental
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FIG. 12. (Color online) Spectral function at different T (dashed
lines are ω−α).

frozen moment. The model, therefore, gives a fair account
of the measured frozen moment. The small static moment is
not due to strong quantum fluctuations but rather to the loop
(hexagon) fluctuations.

To characterize the dynamics, we have computed the local
dynamical response at different T (Fig. 12). These are the
Fourier transforms of the autocorrelation functions given in
Fig. 2. At T > Tg , and low frequencies, we have C(ω) ∼ ω−1/3

as a consequence of the universality of the height model. How-
ever, this is valid over a limited range of frequencies: in Fig. 12,
the dashed lines give examples of power laws with exponents
0.33 and 0.7 for comparison (note that all the curves are shifted
horizontally by 1/τβ). It is also in fairly good agreement
with the observed power-law behavior in neutron inelastic
scattering on powders, ω−0.4 above the transition.17–19 When
T is lowered, the quasielastic peak corresponding to the frozen
moment develops. Note that the sum rule

∫
C(ω)dω = 1 en-

sures that the apparent loss of intensity at low temperatures in
Fig. 12 corresponds to a transfer into the elastic peak. Although
the approach is different, we note that the exponent is not far
from that obtained by dynamical mean-field theory, α � 0.5.97

In summary, the model describes a dynamical freezing
crossover into a partially frozen phase and a small frozen
moment, in overall agreement with the experiments. The broad
neutron response is interpreted as the motion of loops above Tg .
In the frozen phase, only the hexagons are predicted to move (in
addition to spin waves). They could possibly be characterized
by special magnetic form factors, as in ZnCr2O4.98

B. Volborthite Cu3V2O7(OH)2 · 2H2O

In volborthite,26 a freezing transition occurs at Tg ∼
1 K, with a finite static moment observed by NMR28,29 but
no long-range correlations in neutron scattering.99 Volborthite
is a slightly distorted kagome lattice and there is some
current debate as to whether the main magnetic couplings
are kagome-like or more one-dimensional.100 We will assume
below that it can be viewed as a kagome antiferromagnet and
that the distortion is a small effect.

Below the transition, NMR revealed that the phase is
heterogeneous with a time-dependent line shape, leading to

distinguish between “fast” and “slow” (static) sites, either at
small fields28 or in a distinct phase29 at larger fields.31 These
results resemble the dynamical heterogeneities found in the
model below Tg . We can make a more detailed comparison
by computing the distribution of fields. NMR was performed
on vanadium nuclei, which are located at the centers of the
hexagons.28,29 The nuclei see effective fields averaged over
the six sites iH of a hexagon H (assuming for simplicity the
same hyperfine coupling AiH ),

〈hH 〉 =
6∑

iH =1

AiH

1

t

∫ t

0
dt ′SiH (t ′), (16)

which depend on the hexagon (inhomogeneous broadening).
An average over the NMR time scale t is taken. In principle, t

is much larger, ≈10–100 μs, than the microscopic time scales
≈ps, and t can be taken to +∞. In systems with slow dynamics,
NMR probes local trajectories averaged over t . The line shape
depends on t , thus providing information on the presence of
dynamical heterogeneities. The line shape is related to the
distribution function of field strengths P (h ≡ |〈hH 〉|), which
we have calculated in the present case.

We expect different regimes, according to whether the NMR
time scale t is shorter or longer than the characteristic time
scales of the dynamics, τβ and τα . Note that since these describe
activated processes, they may become much longer than the
ps microscopic time at low temperatures.

(i) t � τα,τβ . The system equilibrates on NMR time scales,
e.g., at high T . Every site has dynamics, and summing random
vectors (at 120◦, though) gives a Gaussian distribution of fields
(dashed line in Fig. 13). For t → ∞, summing local fields
corresponds to a random walk and the typical strength h ∼
1/

√
t → 0 since we have no external field.

(ii) t � τα,τβ . The system is completely frozen in a typical
three-coloring state. Each nucleus sees a well defined static
field. For a three-coloring, there are only three possible field
strengths at the center of the hexagon, h = 0,

√
3,3 (see the

configurations shown in Fig. 13, top). Averaging over the
uniform ensemble, we find three peaks with weight 18%,
60%, and 22% (22% is the fraction of flippable hexagons).
For comparison, the Q = 0 antiferromagnetic state would
have a single peak at h = 0 with 100% of the hexagons and
the

√
3 × √

3 state a single peak at h = 3.
(iii) τβ � t � τα . The system is out-of-equilibrium below

Tg , by definition. The dynamical sites provide a time-
dependent averaged field (broad part of the line shape in
Fig. 13). The frozen sites inside the clusters provide a static
field: we find two peaks at h = 0 and

√
3 and no peak at

h = 3, which corresponds to the flippable hexagons. Although
the local field does not change when they flip, the probability
that they remain in a flippable configuration is small. Instead
they move on the lattice and there are very few isolated
flippable hexagons inside frozen clusters. We further note
that the static fields inside the frozen clusters show a ratio
P (0)/P (

√
3) ≈ 0.8 much larger than that of a typical state

≈0.3 (Fig. 13). This means that the frozen clusters resemble
locally the Q = 0 state, the state with long linear winding
loops, precisely those which do not flip.

Experimentally, in volborthite, the NMR line shape consists
of two dynamically heterogeneous contributions at T < Tg .31
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A slow “rectangular” shape was assigned to a static field
(the “rectangular” shape arising from the powder convolution)
and a fast Gaussian contribution to dynamical sites.31 Similar
results were obtained at low fields on lower-quality samples.28

The low-field results can be compared with Fig. 13 (up to a
powder convolution). For T < Tg , we find two contributions:
(i) a static contribution coming from the frozen clusters
and represented by two peaks at h = 0 and h = √

3, the
latter giving rise to a rectangular shape in a powder sample;
(ii) a dynamical part resulting from the dynamical regions and
giving rise to a broad response. Here we do not have a single
dynamical site, but this is not necessarily incompatible with
the experiments because of the difficulty of resolving different
sites. We also note that the respective contribution of both is
smaller than the 50%-50% observed experimentally,31 but this
depends on the time scale.

Assuming that the system had a
√

3 × √
3 character and

that the static field was therefore due to the h = 3 types of
hexagons, a small frozen moment of 0.41μB per site was
extracted.28 In the present model, a peak at h = 3 is not
compatible with the existence of dynamical sites. Instead
we assign the experimental peak to the h = √

3 frozen field.
In this case, instead of m = 0.41μB ,28 the static moment is
m = 0.41μB × √

3 = 0.71μB (as also proposed in Ref. 47 for
different reasons), which is more compatible with conventional
on-site zero-point fluctuations, (1 − 0.16/S)μB = 0.68μB .
Moreover, if we now calculate the total frozen moment
averaged over all sites as measured by neutrons (while NMR
sees the full local frozen moment), we would predict mav =
0.56 × 0.71μB = 0.40μB .

We conclude that the present study gives a model for
the phase transition and the heterogeneous state observed in
volborthite. Similarly to SCGO, it gives an interpretation for
the small moment observed for T < Tg: the fluctuations of
small loops reduce the averaged moment. The model suggests
a more precise picture of frozen clusters with an emergent
length scale, which can be further tested experimentally.

C. Vesignieite Cu3BaV2O8(OH)2

For vesignieite,27 Tg = 9 K, and the ground state is also
heterogeneous: approximately 50% of the sites (muon sites
and nucleus sites) experience a static field.30,32 The loss of
50% of the total intensity in NMR is due to the nuclei, which
have a time scale that cannot be detected, and therefore reflects
some dynamical heterogeneities in the local environment. It
would be inaccurate to consider that the observed 50% of
the intensity is due to the spins in the frozen clusters and the
missing 50% is due to the fast moving spins. It may well be that
some dynamical sites of Fig. 13 are detected (this is in fact what
we assumed for the volborthite, where 100% of the nuclei were
detected). The fact that the fraction does not match the number
of frozen sites of 12% is not, therefore, a serious drawback.
Alternatively, the fraction of frozen sites certainly depends
on the interactions. For Dzyaloshinskii-Moriya interactions,
which are present and may be rather strong,32 the frozen
fraction will certainly increase because it favors the Q = 0
state with long loops.

D. Hydronium jarosite, (H3O)Fe3(SO4)2(OH)6

A freezing transition occurs at Tg ∼ 15 K.22 By varying
sample preparations, Tg ∼ 12–18 K and it appears to be
weakly sensitive to the Fe coverage in the range 92%–100%.23

Neutron scattering has found short-range correlations of
the

√
3 × √

3 type, but no long-range order.40,101,102 The
Heisenberg coupling is JS2 = 244 K (S = 5/2),40 so that
Tg/JS2 = 0.05, which in terms of a classical Heisenberg
model means that the system should be in the collective
paramagnetic regime.57 One clearly needs some additional
ingredients to explain the freezing transition.

Spin anisotropy is known to be present in a similar jarosite
compound, KFe3(SO4)2(OH)6, both single-ion easy-plane
anisotropy DS2 ∼ 30 K and a Dzyaloshinskii-Moriya interac-
tion |D̃|S2 ∼ 20 K explaining the excitation spectrum.103,104

X-ray dichroism of the Fe3+ ion also found a single-ion
anisotropy in good agreement with the above figure.105 In
addition, in ordered jarosite compounds, a second transition
corresponding to the in-plane locking of the spins occurs at 45–
55 K.106 With these large values in mind, we assume that the
energy barriers of the model originate in the anisotropy. In this
case, we can predict Tg and compare with that obtained from
ac-susceptibility measurements.24 Since, in the model, we have
Tg ≈ 0.3κ = 0.225DS2 for τexp = 103 s (6 × 10−3 Hz) and
DS2 ∼ 30–55 K, we find Tg ≈ 7–12 K. Similarly, for τexp =
80 ms (80 Hz), we find Tg ≈ 9–15 K. These estimates are a
little smaller than the experimental figures and depend more
strongly on the measurement frequency (the same distinction
occurs in structural glasses between “fragile” and “strong”
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glasses).24 Moreover, by varying synthesis conditions, Tg

was found to be correlated with the distortion of the FeO6

octahedra: the stronger the distortion, the larger the Tg .107

Since the octahedron distortion implies a linear change in
the crystal field splitting, hence in the single-ion anisotropy
D, we expect indeed linear changes in Tg ≈ D, as observed
experimentally.107

For T < Tg , an estimate of the frozen moment has been
obtained by μSR and amounts to 3.4μB compared with 5.92μB

of the Fe3+ ion,108 so that 〈Si〉 = 0.57. It is not far from
the present estimate, 0.56(1 − 0.16/S) = 0.52. However, it
is surprising that similar values were obtained in ordered
jarosites.108

For T > Tg , neutron inelastic scattering has been performed
and revealed the local response, χ ′′(ω) ∼ ω−0.68.40 At very low
frequency, we have found ω−1/3, but at larger frequencies it
could be fitted by a larger exponent (the second dashed line
in Fig. 12 corresponds to ω−0.7). The agreement is therefore
qualitative with a broad increasing response by lowering
the frequency (to be contrasted with the flat response of a
conventional two-dimensional antiferromagnet), but a single
exponent is not found.

To conclude, the present study suggests that Tg in
(H3O)Fe3(SO4)2(OH)6 is related to a dynamical freezing into
a heterogeneous state. The relevant energy scale here, contrary
to SCGO, is the anisotropy, as experimentally claimed.107

Below Tg , we expect a small frozen moment on average and
a persistent dynamics of the hexagons, which distinguishes
the present transition from a complete dynamical arrest. More
studies of the low-temperature phase would be interesting.

E. Other kagome compounds, competitions

It is well known that not all kagome compounds have
a freezing transition, and we briefly discuss some other
compounds. Some have magnetic long-range order, which
is often accounted for by additional spin interactions. Oth-
ers, such as the herbertsmithite compounds ZnCu3(OH)6Cl2
(Ref. 109) and MgCu3(OH)6Cl2,110 have no freezing transition
(unless an external field is applied)111 and no long-range
order.112 The neutron inelastic response has no clear energy
scale in ZnCu3(OH)6Cl2 (Ref. 38) and is fitted by a broad
power law ω−0.67 at low enough energy,37,39 with some
similarity with that of SCGO and the hydronium jarosite
above Tg . In the present model, one would interpret this
result as being in the phase above Tg , and the neutron
inelastic response agrees qualitatively with Fig. 12. However,
the reason why Tg would be smaller than the lowest tem-
peratures reached experimentally, say 50 mK, is not clear.
We have argued that Tg is controlled by the anisotropy
(dynamically generated or not), and the anisotropy is present
in ZnCu3(OH)6Cl2.113,114 Two important effects are missing:
it is known that antisite disorder is present,115 and that S =
1/2 compounds have strong quantum effects with currently
debated quantum spin liquid phases if the anisotropy is
sufficiently weak (such a coupling may discriminate between
different phases in S = 1/2 compounds).43 It is therefore
clear that competitions are important to account for all these
phases.

VII. CONCLUSION

We have described a simple spin model which has a
dynamical glassylike freezing at a crossover temperature Tg , in
the absence of any quenched disorder. The system evolves from
a dynamically homogeneous phase with a single time scale
(T > Td ) to a dynamically heterogeneous phase with two time
scales (T < Td ). The first time scale τβ ∼ τ6(T ) corresponds
to the “rapid” degrees of freedom, the shortest loops. The
second time scale τα is associated with the rearrangement of
the “frozen” clusters. The frozen clusters have a microscopic
length scale (they typically contain a few tens of sites), but
their rearrangement time is not controlled by their size but by
the size of the second shortest loops, τα ∼ τ10(T ). When τα

becomes longer than the experimental time scale for T < Tg ,
the system is out-of-equilibrium and glassylike. The clusters
contain spins that are frozen on the experimental time scale
and realize a microscopic-scale disorder. In this case, the
system has a finite (small) averaged frozen moment but no true
long-range order. We have explained that the frozen moment
is due partly to the frozen clusters themselves and partly to
dynamical regions where the spins are strongly constrained by
the frozen regions.

The phase space of the system appears to be organized
in a partially hierarchical manner with conserved quantities
defining ∼N basins separated by infinite barriers (broken
ergodicity). Each basin was shown to further split into eNSc

sectors separated by finite barriers which trap the system in
a metastable state below Tg . This macroscopic fragmentation
of the phase space corresponds to the local disorder induced
by the “frozen” clusters. At Tg , the system has therefore
some “thermodynamic” anomalies characterized by the loss
of the configurational entropy, which we have calculated by
finite-size scaling, Sc = 0.082 per site.

The system undergoes a glassylike transition at Tg because
the residual “rapid” degrees of freedom (the shortest loops)
only partially reorganize the system. In a typical state, the
density of the shortest loops is not very small, but, by
effectively attracting each other, they form aggregates and
voids (micro phase separation), the latter regions being, hence,
frozen. Some details as to what their density is or how they
precisely interact certainly depend on the system and the
model, but the mechanism we have presented here is rather
clear: the strong local correlations generate slow extended
degrees of freedom, which, since they are correlated and attract
each other, “phase-separate” in dense active regions and void
inactive regions.

Several aspects of the degenerate model are simply as-
sumed. We have assumed the absence of long-range order
by considering degenerate states [Eq. (1)] and an activated
relaxation time [Eq. (2)]; hence, not surprisingly, the dynamics
is slow. We have discussed in Sec. III why both assumptions
may be approximately realized in microscopic models with
continuous degrees of freedom. We argued that the origin of the
energy barriers is the partial order-by-disorder, i.e., the barriers
are dynamically generated by the rapid spin waves, or by an
explicit anisotropy arising from the spin-orbit coupling. The
degeneracy [Eq. (1)] is in general not exact, and lifting it favors
a “crystal” state in the energy landscape without modifying—if
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it remains sufficiently small—the dynamical aspects we have
described.

We have compared the results with the experiments on the
kagome compounds. The present study gives a model for the
spin freezing observed at Tg and provides an interpretation for
the nature of the low-temperature phase. The picture of the
“frozen” phase that emerges is that of a heterogeneous state
with dynamical and frozen regions. The weak measured frozen
moment is interpreted as a consequence of the remaining
dynamics of the shortest loops, and its strength is close to what
is measured in the experiments. While in magnets in general
the on-site moment is reduced by the small oscillations around
the ordered state (spin waves), here the main effect is argued
to be the large-amplitude motion of the shortest loops. The
short loop fluctuations do not fully destroy the moment for
T < Tg , but their presence is in agreement with the persistent
fluctuations observed by different experimental techniques
(neutrons, μSR, NMR). In particular, the observation in NMR
of nuclei with different time scales is consistent with the
heterogeneous picture of the dynamics proposed here. In
conventional magnets, the thermal excitations of the spin
waves destroy the on-site magnetization. Here, one needs
longer loops that are thermally excited only for T > Tg . These
fluctuations give a spectral response that obeys a power law
ω−1/3 in the small energy limit, very different from that of
conventional magnets (flat response in two dimensions). A
broad power-law response is indeed observed experimentally
in neutron inelastic scattering. Although the exponent seems to
be underestimated, the experiments may not have had access
to the low-energy limit or the exponent may be inaccurately
predicted because of the interaction between the spin waves
and the discrete modes. In the paramagnetic phase, the model
has algebraic spatial correlations at equilibrium (T > Tg), a

feature that is not observed in neutron scattering. We believe
that this is not redhibitory, for the spin freezing we have
described is not related to the long-distance behavior. In two
spatial dimensions, the correlation length is always finite at
finite temperatures.116 Furthermore, the chemical disorder is
present to an amount which is difficult to quantify and which
has been completely neglected here.

The energy scale that governs the freezing temperature Tg

is argued to be J in the small anisotropy limit (dynamically
generated barriers), Tg = 0.04JS, and it crosses over to Tg =
0.225DS2 in the strong anisotropy limit, typically if D/J >

0.18/S. This led us to a tentative classification, where SCGO is
in the small anisotropy limit and (H3O)Fe3(SO4)2(OH)6 in the
strong anisotropy limit. This is clearly a different interpretation
from that of chemical disorder, where Tg is governed by the
amount of disorder.3

To disentangle intrinsic effects from the effects of chemical
disorder, one can test the present theory, in particular by
characterizing experimentally the active magnetic degrees of
freedom, for instance by neutron form factors98 or by inferring
the nanoscopic size of the frozen clusters.
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