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Colorings of odd or even chirality on hexagonal lattices

O. Cépas
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We define two classes of colorings that have odd or even chirality on hexagonal lattices. This parity is an
invariant in the dynamics of all loops, and explains why standard Monte Carlo algorithms are nonergodic. We
argue that adding the motion of “stranded” loops allows for parity changes. By implementing this algorithm, we
show that the even and odd classes have the same entropy. In general, they do not have the same number of states,
except for the special geometry of long strips, where a Z2 symmetry between even and odd states occurs in the
thermodynamic limit.
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I. INTRODUCTION

Constructing classical states that satisfy some local con-
straints everywhere on a lattice may be a difficult problem. The
simplest physical examples of such problems include dimer
coverings of lattices, perfect tilings of a surface with tiles
of special geometry, coloring sites with distinct colors, and
folding paper (origami). They have in common that they can
be formulated with ice-type or vertex models. The calculation
of the number of states and the thermodynamics is difficult,
but has been solved exactly in some cases. There are also
interesting issues regarding conservation laws in the dynamics
and hidden higher symmetries.

A way to construct numerically such constrained states is to
iterate a dynamical process, starting from a simple state. In par-
ticular, classical Monte Carlo algorithms sample the ensemble
of states by flipping variables collectively in order to preserve
the constraints [1], either along loops [2] or in clusters of sites
[3]. There are now examples of models where such algorithms
are nonergodic, and conservation laws may trap the system
in classes of states. This is the case of some dimer models
on lattices in three spatial dimensions, which are nonergodic
when the dynamics includes only the smallest loops [4,5]. This
is also generically the case when periodic boundary conditions
create sectors characterized by winding numbers: here again
the ergodicity is simply restored by including in the dynamics
the loops that wind across the boundaries.

A different example is given by the three-color Baxter
model [6] that we will consider here. In this model, the
constraint consists of coloring the edges of a regular hexagonal
lattice with three colors such that no two neighbors have
the same color. Baxter calculated exactly the entropy of the
three-colorings for a hexagonal lattice with open boundary
conditions. In order to compute some observables, loop Monte
Carlo algorithms have been set up but it has been recognized
that they are nonergodic for lattices with periodic boundary
conditions [7,8], possibly leading to systematic errors. In
particular, some states that are not connected by the dynamics
have been constructed on finite-size systems, leading to the
conclusion that there is more than one class of states [8].
Since this property is intimately related to the topology of the
two-dimensional lattice, an alternative Monte Carlo approach
[9] is to use other geometries for the boundaries, such as
a plane with open boundary conditions (but it suffers from

more finite-size effects) or a “projective plane,” although the
hexagonal lattice has some noncubic vertices in this case.

Restricting to standard periodic boundary conditions and
studying why this dynamics in particular is nonergodic is
nevertheless interesting, as a point of principle. This dynamics
is not only used in Monte Carlo algorithms but also in
quantum models constructed from these constrained states
(see Refs. [10,11] in the coloring context). Nonergodicity
is generally related to some conservation laws (or broken
symmetries) which may have some consequences in various
problems. It is also used in applications, e.g., as bits, and
some proposals emphasized the advantage of the topological
nature of the ergodicity breaking in dimer models [12] and
color codes [13]. Even though imposing periodic boundary
conditions seems to be an “academic” problem—they are not
those of crystals—it is, in principle, possible to (i) design
artificial superconducting or magnetic devices with special
geometry of the boundaries [14], and (ii) consider molecular
nanomagnets that realize special topologies, e.g., a sphere or a
ring in the “keplerate” family [15]. Another close model is the
three-coloring model with an additional achiral constraint on
the states which generates an infinite number of sectors, even
when winding loops are allowed to flip [16,17].

In the absence of ergodic algorithms to construct all states,
simple properties such as the number of missed states are not
known. Is this number extensive with the system size or not?
If it is, what is the entropy of the new class? Given a state,
how do we know whether it is connected to a simple reference
state of a given class; i.e., what is the reason of the obstruction
to ergodicity? Can we construct an ergodic algorithm that will
visit all states? We answer these questions in the present paper.

The paper is organized as follows. We define the model
in Sec. II, and we construct all three-coloring states on small
clusters in Sec. III A, from dimer coverings. We check the
numbers of three-colorings by using the method of the transfer
matrix in Sec. III B. In Sec. IV, we study the dynamics of loops.
In addition to the invariant classes labeled with the standard
winding numbers (which we recall in Sec. IV A), we find
some larger classes that are invariant under the dynamics of
all loops (Sec. IV B). We identify a conserved quantity which
is the parity of the total chirality (Sec. IV B 1) and briefly
discuss some other sectors (Secs. IV B 2 and IV B 3). We
then enumerate separately odd and even states by appropriate
transfer matrices, which allow us to extract entropies of
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FIG. 1. Hexagonal lattice with rhombus shape (R) and periodic
boundary conditions of the torus geometry. A dimer and color
configurations are shown. Here L = M = 4 and N = 3 × L × M =
48 edges. The honeycomb lattice is bipartite and is divided into
L × M black and L × M white sites. The solid and dashed lines
show two distinct nonlocal cuts that define topological conserved
numbers.

infinitely long strips (Sec. V). We introduce a Monte Carlo
dynamics that does not conserve the parity in Sec. VI A,
and compute the fraction of odd states extrapolated to the
thermodynamic limit and the order parameter in Sec. VI B. In
Appendix A, in order to check the construction of Sec. III A, we
recall the method of Pfaffians to enumerate dimer coverings,
and give the actual numbers of configurations. This also
allows us to discuss a general invariant of dimer coverings
(Appendix B), which in turn is useful to define another
formulation of the parity (Appendix C). Appendix D treats
the same problem where the toroidal boundary condition
is replaced by a Klein bottle geometry, leading to similar
conclusions.

II. MODEL

We consider the model of color variables σi = A,B,C

defined on the edges i = 1, . . . ,N of a regular honeycomb
lattice (sites of the kagome lattice) with periodic boundary
conditions. The three edges meeting at each vertex must be
in different colors: this local constraint defines the 3-color
Baxter model [6]. Each state is referred as a “3-coloring”
of the lattice. The number of valid configurations, i.e.,
respecting the constraints everywhere, scales as exp(Ns∞) in
the thermodynamic limit (s∞ = 0.126375 . . . ) [6].

In the following, the model is defined on finite-size clusters
with two different shapes, the rhombus (R) and hexagonal (H)
shapes shown in Figs. 1 and 2. We also consider two different
boundary conditions, realizing the topology of the “torus” (see
the arrows in Fig. 1) or of the “Klein bottle” (Appendix D).
Both surfaces have a zero Euler characteristic and regular
hexagonal lattices fit without introducing noncubic vertices.

III. EXACT CONSTRUCTION AND ENUMERATION OF
3-COLORINGS ON SMALL LATTICES

A. Exhaustive construction

The exhaustive construction of states satisfying the con-
straints everywhere is possible numerically only on very small
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FIG. 2. Hexagonal lattice with hexagonal shape (H), here L = 2
and N = 9L2 = 36 edges (Nv = 6L2). A special dimer configuration
is shown, sometimes called the “empty room” state in the context
of tiling a hexagon with lozenges: the gray colors of the lozenges
correspond to the dimer orientations and can be seen as the three
walls of an L3 “empty room.” The dashed line shows one nonlocal
cut across the boundaries.

clusters, since the number of states increases exponentially
with the system size. For this, we first construct the dimer
coverings of the lattice by filling an empty lattice with dimers,
and checking the constraints at each step [18]. Once a dimer
covering is obtained, each vertex has one edge (out of three)
occupied by a dimer; this edge is called color A. The other
two edges form a closed loop of even length (on the clusters
with periodic boundary conditions we have considered), which
is filled with B and C (or C and B) alternatively (see
Fig. 1 for an example). The dimer configuration has nD such
nonintersecting closed loops, which define 2nD colorings. Note
that we obtain all 3-colorings in this way since any of them
can explicitly be decomposed in a dimer configuration (the
A colors) plus a loop configuration. It is numerically more
efficient than enforcing the color constraint on every vertex.
By constructing all dimer coverings, we compute the partition
function,

Z =
∑
D

1, (1)

and the number of three-colorings,

Z3 =
∑
D

2nD , (2)

where nD is the number of loops of the dimer configuration D.
In this form, Z3 is also the partition function of the O(2) fully
packed loop model on the honeycomb lattice. Table I gives the
numbers Z and Z3 for the torus boundary conditions, obtained
by the explicit construction of individual states as explained
above. Z3 is a multiple of six, since the six color permutations
of the first edge are equivalent, while Z is a multiple of
three only for the torus, where the three edge directions are
equivalent. As a first check, the entropy per site for N = 192,
1
N

ln Z3 = 0.1326, differs from Baxter’s thermodynamic limit,
0.126375 [6], by a typical 1/N correction, as expected. In order
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TABLE I. Number of dimer coverings, Z, and 3-colorings, Z3, for
system size N (linear size L = M) and periodic boundary conditions
of the “torus” geometry. R/H stands for rhombus/hexagonal shapes
shown in Figs. 1 and 2. Z is also calculated from Pfaffians in
Appendices A 2 and A 3, Z3 from the transfer matrix in Table II
for the rhombus geometry.

N L T Z Z3

9 1 H 6 12
36 2 H 120 504
81 3 H 15162 135552

144 4 H 13219200 358453104

12 2 R 9 24
27 3 R 42 120
48 4 R 417 2160
75 5 R 7623 49416

108 6 R 263640 3226032
147 7 R 17886144 475299936
192 8 R 2249215617 113902581984

to check these numbers more carefully, we have calculated Z

exactly on finite-size systems by using the method of Pfaffians
(details are given in Appendix A). While no closed form is
known for Z3 on finite-size systems and the method of Pfaffians
is not applicable, we have used a numerical transfer matrix
method that we explain now.

B. Enumeration of Z3 by transfer matrix

We have used the transfer matrix method to compute
the number of 3-colorings on finite-size systems and check
the numbers given above. For this, we define the state of
a horizontal row of L vertical edges (see Fig. 1) by σ =
(σ1, . . . ,σL), where σi = A,B,C. We consider two successive
rows in the y direction, which we denote by σ and σ ′, and
define a 3L × 3L transfer matrix T by

Tσσ ′ =
∑
α|σσ ′

1, (3)

where the sum is over all possible configurations α of the
intermediate set of zigzag edges compatible with the lower
and upper rows σ and σ ′.

The partition function reads

Z3 =
∑
σ1

· · ·
∑
σM

Tσ1σ2Tσ2σ3 · · · TσMσ1 = Tr[T M ], (4)

where M is the vertical linear size (N = 3 × L × M), and
periodic boundary conditions of the torus geometry have
been used. Numerically, to obtain the exact integer number
of configurations without rounding errors, we perform the
M multiplications of matrices and compute the trace [19].
Alternatively, we also diagonalize the transfer matrix and we
have

Z3 = Tr[T M ] =
3L∑
i=1

�M
i , (5)

where �i=1,...,3L are the (complex) eigenvalues of the transfer
matrix. The diagonalization method is faster but we have

to round Z3 to the nearest integer, which works up to 1016

configurations, i.e., one over the machine precision. This is
less than working with integers but we may compute real
quantities for much larger system sizes in the second case.

The total number of edges Nx
i of color i = A,B,C in the

row σ is the same in the row σ ′; this gives two independent
charges Nx

A and Nx
B (see also Sec. IV) [6]. The transfer matrix

then factorizes in smaller sectors with dimensions C
Nx

A

L C
Nx

B

L−Nx
A
.

For the largest sector with Nx
i = (L

3 ,L
3 ,L

3 ) (L a multiple of
three), the dimension typically scales as L!/(L

3 !)3 ∼ 3L/L.
For L = 12, the largest dimension is C4

12C
4
8 = 34 650, so that

we can compute all eigenvalues. We also use permutation
symmetries to avoid computing symmetry-related sectors by
restricting to Nx

A � Nx
B � Nx

C and applying a multiplicity
factor.

The numbers of three-colorings Z3 are given for different
L,M in Table II and match those obtained by the exhaustive
construction, given in Table I.

IV. DYNAMICS AND CONSERVATION LAWS

The simplest collective dynamics consists of exchanging
colors along loops of sites of two colors (they are closed loops
when periodic boundary conditions are employed). It is the
simplest way to preserve the constraints (note that a single
spin flip would not). This collective dynamics is also that
defined in Monte Carlo algorithms [7,9,20–23] and quantum
three-coloring models [10,11]. It is known to be nonergodic
even when all loops are flipped [7–9]. A different point is that
it is also strongly nonergodic (with an exponential number of
sectors) when only the small loops are flipped [24].

Since we have constructed all possible states, we now study
why the dynamics of all loops is nonergodic. We probe whether
two states are connected by the loop dynamics or not. For this,
we start from a single state in the ensemble constructed in
Sec. III A and flip all of its nl loops (winding and nonwinding),
giving nl possible new states. We iterate this procedure until
no new state is created (see [25] for technical details). If some
states in the ensemble have not been reached, we then take a
new state and reiterate the same process. When no new state is
available in the ensemble, we are sure that we have constructed
all classes of states, closed under this dynamics.

A. Winding-number sectors

The dynamics of nonwinding loops conserves some topo-
logical numbers. In the present model, they are obtained by
defining three cuts oriented at 120 degrees, that cut the edges at
90 degrees and go through the centers of the hexagons (see the
first two x and y cuts in Fig. 1). Counting the number of colors
along those cuts is a conserved quantity since any nonwinding
loop intersects twice the cuts in locations where the colors are
different [10]. Flipping a loop exchanges the two colors: this
gives nine conserved numbers Nα

i = 0, . . . ,nα; i = A,B,C;
α = x,y,z with some constraints. We have indeed

Nα
A + Nα

B + Nα
C = nα, (6)

where nα is the number of sites along the cut α. For
example, when L = M , we have nα = L for the rhombus
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TABLE II. Number of 3-colorings, Z3, computed by numerical
transfer matrix, for rhombi of size N = 3 × L × M and periodic
boundary conditions (Fig. 1). Z−

3 is the number of odd colorings,
from Sec. V.

L M Z3 Z−
3

2 2 24 0
3 2 48 0
3 3 120 60
4 2 96 0
4 3 408 0
4 4 2160 1920
5 2 192 0
5 3 1284 294
5 4 8208 960
5 5 49416 14076
6 2 384 0
6 3 4752 0
6 4 36096 17280
6 5 317352 78120
6 6 3226032 346176
7 2 768 0
7 3 17412 1158
7 4 185184 143808
7 5 1946964 583014
7 6 30749232 4890312
7 7 475299936 424616016
8 2 1536 0
8 3 68088 0
8 4 916032 139776
8 5 12153168 5007360
8 6 317511600 45634752
8 7 6258486288 1333287648
8 8 113902581984 54363353088
9 2 3072 0
9 3 266232 4596
9 4 4285632 3082752
9 5 80964996 31696566
9 6 3384078480 176330736
9 7 87113393160 33997363116
9 8 2513986458816 719824701888
9 9 84049269591720 5365286483676
10 2 6144 0
10 3 1058808 0
10 4 20484096 10229760
10 5 529208112 198732000
10 6 35145601224 2194614720
10 7 1338325873128 1081718221080
10 8 50904839729376 14465622318720
10 9 2411622439855752 463649604519600
10 10 111152775037945584 95192069243340960

shape (Fig. 1), and nα = 3L for the hexagonal shape with
torus geometry (Fig. 2). So that for each α, only two out of
three are independent. The second constraint comes from the
conservation of these numbers from row to row. Consider the
square form L = M for instance. We have

L
(
Nx

i + N
y

i + Nz
i

) = N

3
, (7)

because the sum over x,y,z can be seen as a sum over the
three sublattices and N/3 is the total number of sites with
color i. This leads to

∑
α Nα

i = L or 3L, depending on the
shape. This constraints the third direction to be determined
from the first two. Therefore, only four of the nine Nα

i are
independent. But to emphasize the symmetries it is convenient
to write a general configuration of a topological sector
by Nα

i = (ax,bx,cx,ay,by,cy,az,bz,cz). Since the number of
colors is always positive, we also have inequalities such as
Nα

A + Nα
B � n (for L = M) which further reduces the number

of possibilities to (
∑n+1

k=1 k)2 = [(n + 1)(n + 2)/2]2. Some of
them are not allowed, however, so the number of sectors is
strictly less that that.

B. Kempe sectors and odd/even classes

When winding loops are added in the dynamics, the winding
numbers are no longer conserved and topological sectors are a
priori connected. In fact, we find some disconnected classes,
sometimes called “Kempe” classes in the literature [8,26]. The
number of classes we find is given by nK in Table III, up to
some degeneracies that we indicate and discuss in Sec. IV B 2.
nK depends on the geometry and it increases with the system
size. Given the limitation in sizes, it is an open question as to
whether it is infinite in the thermodynamic limit.

Each Kempe sector contains several winding sectors con-
nected by the motion of the winding loops. In the torus
geometry, distinct Kempe sectors (we call “distinct” two
sectors that are related neither by the loop motion nor by a
lattice symmetry) contain distinct winding sectors, but this is
not true in the Klein bottle geometry [27].

The number of states in each sector is given by Zi with
i = 1, . . . ,nK and varies from Zi � Z3 down to Zi = 6 states.
This reflects the topological sectors themselves, which are
expected to have Gaussian distribution [21].

We now show that we can distinguish some of these sectors
by the parity of the chirality and some lattice symmetries.

1. Conservation law: Odd/even chirality

We define the total chirality of a state by

m =
∑

v

χv, (8)

where χv = ±1/2 for an ABC (or ACB) orientation of the
edges by turning clockwise around any vertex v (Fig. 3). The
sum is over all (black and white) 2N/3 vertices of the bipartite

FIG. 3. Definition of the chirality at a given (white) vertex (the
definition is the same for black vertices). The sum of the chirality
of all vertices (black and white) can be even or odd and its parity is
conserved.
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TABLE III. Number of invariant classes nK and number of states in each class Zi=1,...,nK
(
∑nK

i=1 niZi = Z3, where ni is the sector multiplicity,
given in parentheses). The even/odd chirality of each class is given by ±.

N nK Zi=1,··· ,nK
(±)

9 2 6(+), 6(−)
36 2 360(+), 144(−)
81 3 111840(+), 60(−), 23652(−)
144 5 315051888(+), 42953088(−), 44928(×6)(−), 155520(−), 23040(−)

12 1 24(+)
27 2 60(+), 60(−)
48 2 240(+), 1920(−)
75 3 35340(+), 276(−), 13800(−)
108 3 2879856(+), 307296(−), 19440(×2)(−)
147 4 50683920(+), 1140(−), 424598328(−), 6(×2758)(−),
192 4 59539228896(+), 54178583040(−), 14555136(−), 28369152(×6)(−),

honeycomb lattice. Since the total number of vertices is even,
m is an integer that can be even or odd.

First, the system always has the chiral symmetry between
m and −m, obtained by exchanging all A and B, which can
be done by moving all A-B loops. Second, nonwinding loops
have zero chirality so that m is conserved under the dynamics
of nonwinding loops. Third, there may be a finite chirality
along a winding loop, ml where l is the length of the loop,
which is always even. Flipping this loop reverses the chirality
of all its vertices, so ml → −ml . Since l is even, ml is an
integer, and the total chirality changes by 2ml which is an
even integer, so that the parity of m,

I3 = (−1)m, (9)

is conserved in the dynamics of all loops. This defines two
odd/even classes and we have labeled the Kempe sectors by
this parity in Table III. Note that the odd class is further split
into sectors, some of which we will discuss below. Note also
that on clusters with open boundary conditions (cylinder or
plane), there are open loops at the boundaries that change the
chirality of an odd number of vertices, and thus do not conserve
the parity.

We give two concrete examples of states with odd or even
chirality. We consider first a periodic state with a tripled unit
cell (called

√
3 × √

3), obtained by stacking A-B-C along any
of the three lattice directions. While it is always compatible
with the hexagonal shape, L and M have to be multiples of
three on the rhombus shape and it does not fit in the Klein bottle
geometry. For this state, the total chirality is zero, always even.
For the “Q = 0” state, all (black and white) vertices have the
same configuration, say ABC, so that m = N/3. For the square
shape with L = M , m has the parity of L. Therefore for L odd
and multiple of three (so as to fit the

√
3 × √

3) we have at least
two independent sectors. The conclusion nK > 1 was already
reached in Ref. [8] and extended for even L.

We describe in Appendix C some other formulations of the
same invariant.

2. Lattice symmetries

We find some degenerate sectors with an identical number
of states (Table III). This degeneracy can be explained by
lattice symmetries.

Permutation of colors can be implemented by a loop
motion, so that two topological sectors related by per-
mutation symmetry, e.g., (ax,bx,cx,ay,by,cy,az,bz,cz) and
(bx,ax,cx,by,ay,cy,bz,az,cz), belong to the same Kempe sec-
tor. Permutations generate at most six sectors.

Applying lattice symmetries is a different operation that
generates other sectors that may not be connected by the
dynamics. For instance, applying an x − y mirror plane gives
(ay,by,cy,ax,bx,cx,az,bz,cz). Successive applications of the
three mirror planes generates at most six sectors if all the
charges are different.

For instance, for N = 108, there are two Kempe sectors
with 19 440 states. They are related by a mirror symmetry.
Indeed the winding sectors in one of these two Kempe
classes have the special form (a,b,c,b,c,a,c,a,b) (up to color
permutations), and (b,c,a,a,b,c,c,a,b) in the other. Mirror
symmetries up to permutations generate only two sectors in
this case. However, for N = 144 or N = 192, there is a sixfold
degeneracy that is obtained by using the three mirror planes.

These degeneracies are robust in that any local perturbation
that breaks the mirror symmetry has the same average in both
sectors, as expected for topological sectors [12].

3. Special sectors

Some sectors have no weight in the thermodynamic limit. A
first example is the sector of the “Q = 0” state, when L is odd.
This state belongs to the smallest nondegenerate sector (see
Table III). It has maximal chirality with all vertices in the ±
state, m = ±N/3. Since m is a multiple of L, and all winding
loop lengths are multiples of 2L, the chirality changes by 2L

and remains therefore a multiple of L. The new winding loops
have lengths that remain multiples of 2L so that the Kempe
sector has m = ±(1 + 2n)L which is not only odd but is also a
multiple of L, a property that remains stable in the dynamics.

A second example is found for N = 147. We find 2758
degenerate sectors containing only 6 states. Some of these
sectors are related by translation symmetry but are special in
that they minimize the number of loops, i.e., three. Each loop,
say the A-B one, takes all the N/3 A edges and the N/3 B
edges. This loop connects all sites of the honeycomb lattice and
is a Hamiltonian cycle. Flipping an A-B loop exchanges the
A-C and B-C loops and therefore keeps the lengths identical.
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Such a structure is therefore stable and has only six states
obtained by the only six possible permutations. We have not
found this structure on the other clusters available, but it
may exist for larger sizes. Note that while there is always
a Hamiltonian path on a regular honeycomb lattice, this is not
always true for three such intertwined Hamiltonian paths.

V. ENUMERATION OF ODD/EVEN STATES
BY TRANSFER MATRIX

We compute the number of odd/even states by introducing
a modified partition function P (z) with a fugacity z,

P (z) =
∑
C

zmC , (10)

where the sum is over all 3-color configurations and mC is the
total chirality of the configuration C, defined by Eq. (8). The
total number of colorings is

Z3 = P (1). (11)

However, z in Eq. (10) can be any number. Given that, by
symmetry, there is the same number of states with m and
−m, we have P (1/z) = P (z). In particular, we consider P (z)
with z = −1, which contains terms of the form (−1)m = ±1.
These terms differ by their signs in the two parity sectors
(Sec. IV B 1); therefore all even colorings are counted with a
+ sign while odd colorings are counted with a −, sign. We
obtain the number of odd colorings from

Z−
3 = 1

2 [P (1) − P (−1)] (12)

and the number of even colorings from Z3 = Z+
3 + Z−

3 . To
compute this number, we construct a transfer matrix with
elements

Tσσ
′ (z) =

∑
α|σσ

′
zmα , (13)

where the sum is over the configurations α of the intermediate
zigzag row compatible with the pair of rows σ and σ ′, and
mα is the partial chirality of that row. We restrict the fugacity
to z = −1, so that the transfer matrix has integer entries. The
number of configurations Z−

3 is then computed as an integer
by matrix multiplications, from

P (±1) = Tr[T (±1)M ] (14)

and Eq. (12). The results are given in Table II and they match
the numbers found by the dynamical process (Table III).

A. Rotation symmetry

We note that the transfer matrix T (−1) has an exact SU(3)
symmetry even on finite-size systems, since we have explicitly
checked that [

T (−1),
L∑

i=1

λc(i)

]
= 0 (15)

for all the c = 1, . . . ,8 generators of SU(3), λc(i) on edge
i. A consequence is that the eigenvalues of T (−1) have
degeneracies that are those of the multiplets of SU(3). In
this language, the conserved isospin and hypercharge are

FIG. 4. Eigenvalues of the transfer matrix T (−1) (given here in
the complex plane for L = 5) are degenerate and form the multiplets
of SU(3), [3],[6],[1̄5],[21],[24]. The colors indicate different charge
sectors (the degeneracy due to permutation-related sectors is not
shown).

obtained from the number of colors, by T3 = 1
2 (Nx

A − Nx
B)

and Y = 1
3 (Nx

A + Nx
B − 2Nx

C).
Figure 4 gives an example of the eigenvalues of T (−1) for

L = 5, in the complex plane. We find that they form multiplets
belonging to the following irreducible representations of
SU(3), 5 × [3] + 6 × [6] + 5 × [1̄5] + [21] + 4 × [24] ≡ 35,
where the number in brackets gives the dimension of the repre-
sentation, the bar specifies the right of the left representation,
and the number in front the number of such multiplets. Some
additional degeneracies are found, such as [24] and [1̄5], or
[21] and [1̄5], which seem to be accidental but may indicate a
higher symmetry than SU(3).

This symmetry enhancement at a critical point (z = −1)
is very similar to a spin-ice model where an exact SU(2)
symmetry was found in finite-size systems [28]. It was also
conjectured that the SU(3) symmetry holds for z = 1 but only
in the thermodynamic limit [29,30].

B. Fraction of odd states

We compute the exact fraction of odd states for finite-size
L, as a real number, from the complete diagonalization of the
transfer matrices,

Z−
3

Z3
= 1

2

[
1 − P (−1)

P (1)

]
. (16)

The result is given in Fig. 5 as a function of M , for different L

up to L = 12.
We can study the limit of large transverse size M → +∞,

i.e., a thermodynamic limit with zero aspect ratio r = L/M →
0. In this case, we are interested in the largest eigenvalues, and
we have to distinguish two cases, depending on whether L is
a multiple of three or not.
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FIG. 5. Fraction of odd states as a function of M for a strip of
size N = 3 × L × M with rhombus shape and periodic boundary
conditions, from transfer matrix. When M → ∞, the fraction goes to
0 for L = 3n and 1/2 for L = 3n ± 1, thus exhibiting a Z2 symmetry
between even and odd states.

1. L = 3n (L a multiple of three)

In this case, we find that the largest eigenvalue of T (1),
�1, equals that of T (−1), �−

1 , for the sizes considered (L =
3,6,9,12; see Fig. 6). The eigenvalue is real and belongs to the
largest nondegenerate sector with conserved charges (L

3 ,L
3 ,L

3 ),
and the eigenvector of T (−1) is a singlet of SU(3). We have

P (±1) = �M
1 + · · · , (17)

so that the contribution in Z−
3 [Eq. (12)] from the first

eigenvalues exactly cancels and we are left with

Z3 ∼ �M
1 , Z−

3 ∼ 3�M
2 , (18)

where �2 < �1 is the second largest eigenvalue of T (1) which
belongs to a sector that is six times degenerate (hence the
factor 3 in front), given in Fig. 6. In this case, the fraction
Z−

3 /Z3 ∼ (�2/�1)M goes exponentially to zero, as found in
Fig. 5.

FIG. 6. First eigenvalues of T (1) and T (−1) and the angle κ

defined by �−
1 = |�−

1 |e±ıκ . The lines are finite-size corrections
to Baxter’s thermodynamic limit, s∞ = 0.126375, predicted from
conformal invariance.

The total entropy per site and the entropy of the odd states
read

S ≡ 1

N
ln Z3 = 1

N
ln

∣∣�M
1

∣∣, (19)

S− ≡ 1

N
ln Z−

3 = 1

N
ln

∣∣�M
2

∣∣, (20)

when L is a multiple of three, so that S− < S. From conformal
invariance that is expected from the height mapping [7,30], one
expects finite-size corrections,

S = s∞ + πc

6ζL2
+ o(L−2), (21)

with conformal charge c = 2, geometrical factor ζ = 2
√

3,
and s∞ = 0.126375 is Baxter’s exact result. Since the system
is critical, the gap between the first and the second eigenvalue
is expected to close with a universal correction,

S− − S = − π

ζL2
η + o(L−2), (22)

where η = 4/3 is the scaling dimension of the spin-spin
correlation function, which is known [7,21,30] to decay
algebraically as r−η = r−4/3 (see also Fig. 11). These curves
are shown in Fig. 6 and fit well the data for L a multiple of
three, with η = 4/3. Since the second eigenvalue gives the
entropy of the odd states, we thus expect that the two classes
have the same entropy in the thermodynamic limit. This will
be confirmed independently in Sec. VI A. It is only at zero
aspect ratio and L a finite multiple of three that odd states
have a smaller entropy than even states, given by the squares
in Fig. 6 and well approximated by Eq. (22).

2. L = 3n ± 1 (L not a multiple of three)

The first eigenvalue �1 belongs to a triplet sector with
conserved charges (L

3 ,L
3 ,L

3 ) ± ( 2
3 , − 1

3 , − 1
3 ), so that �1 is

three times degenerate. �−
1 belongs to the [3] or [3̄] triplet

representation of SU(3) (except for L = 5). It is found to be
different from �1 with |�−

1 | < �1 (compare the stars with
open circles in Fig. 6), so that at first order

Z3 ∼ 3�M
1 , Z−

3 ∼ 3

2
�M

1 , (23)

and Z−
3 /Z3 goes to 1/2 when M → +∞ for infinitely long

strips (as shown in Fig. 5). In this case not only the entropies
are identical but also there is the same number of even and odd
states: a Z2 symmetry occurs.

Whereas �1 must remain real [since P (1) is a positive
integer], �−

1 = |�−
1 |eıκ is complex in general (except for L =

5). In this case, the complex-conjugate eigenvalue also occurs
because P (−1) is an integer (positive or negative). Thus the
leading correction to the fraction of odd states reads

Z−
3

Z3
∼ 1

2
− α

( |�−
1 |

�1

)M

cos(κM) + · · · , (24)

where α is the ratio of degeneracies and |�−
1 | < �1. The

convergence has oscillations in addition to the exponential
decrease (see Fig. 5). It is peculiar that there are special
aspect ratios where Z−

3 /Z3 is very close to 1/2 even for
small M . This is the case of L = 4 for r = 4/14(0.4999824),
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4/18(0.49999948), 4/22(0.499999984), etc. (the larger the de-
nominator, the closer to 1/2) and L = 10 with 10/25(0.49938),
10/35(0.499969), 10/45(0.4999984), etc. These aspect ratios
are of the form 2/p where p is an odd integer. They correspond
in fact to a cancellation of the oscillating part of Eq. (24),
κM = π/2 mod π . The convergence is then controlled by the
next ratio of eigenvalues and is much faster.

It is a question as to whether in the thermodynamic limit
aspect ratios other than zero may have a perfect Z2 symmetry.
Partly to address this question, we need to have access to
larger system sizes and we will use a Monte Carlo method
with a modified algorithm.

VI. ERGODIC MONTE CARLO ALGORITHM

We introduce a Monte Carlo algorithm that does not
conserve the parity of the chirality, by including the flip of
“stranded” loops (examples are given in Fig. 7). We explicitly
check that this algorithm can reach all states on the clusters
considered.

FIG. 7. Triple-stranded loops make the algorithm ergodic by
allowing parity changes. Black lozenges are the unit cell; the loops
are repeated outside the unit cell for clarity (top, N = 108; bottom,
N = 81).

A. Algorithm

In dimer models, loop Monte Carlo algorithms that include
all winding and nonwinding loops are ergodic. Indeed, given
two dimer coverings, we can construct the “transition graph,”
which consists of superimposing the two dimer coverings.
The transition graph gives an ensemble of closed loops and
individual dimers for edges both occupied by a dimer. Flipping
all of its loops takes one state to the other, so that the states are
connected by the motion of the loops.

In the three-color model, the “transition graph” argument
does not work. While it is possible to do the same operation
for edges in the, say, A state, this leaves the right loop
configuration for the B-C sites (as explained in Sec. III A),
with some sites already occupied and some empty, those that
were previously A. The problem is that the empty sites cannot
always be assigned a B or a C, since they are sometimes
surrounded by exactly one B and one C: any assignment
would violate the constraint. A way to solve the problem is to
reorganize segments of the B-C loops; this is possible but it
does not correspond to a loop motion.

In order to give a more clear picture of this, we have looked
at the maximal overlap of two states belonging to two different
sectors (this would give a single loop in the dimer problem).
Two representative examples are given in Fig. 7: there we show
only the edges that differ in color between the two states. In
both cases, the loop is “stranded”: it forks at a given vertex into
two segments that recombine at another vertex, either forming
a short closed loop (an hexagon in the top figure) or a winding
loop (bottom figure). An algorithm that would include these
special moves will thus be able to bring the system from one
sector to another.

A way to implement numerically these collective flips is
through the introduction and annihilation of defects, i.e., local
violations of the constraint. Recall first that flipping a two-color
loop is equivalent to introducing two defects and annihilate
them. First exchange the colors A-B of two neighboring edges.
This creates a pair of defects with two neighbors in the same
color, say A-A and B-B. Propagating them away from each
other on the A-B loop by successively swapping A-B pairs,
and recombining them at the end, exchanges the two colors
of the whole loop. There are six such defects [9] qi and q̄i ,
i = A,B,C: they are vertices with, among the three edges,
one edge in color i and two in the same color, thus violating
the local constraint. Since two colors are available, they are
denoted by q or q̄. With this notation, an A-B swap creates
a pair of conjugate defects, which can propagate on the A-B
loop and recombine,

∅ → qC + q̄C, (25)

qC + q̄C → ∅. (26)

This process is the standard flip of an entire A-B loop.
The other process that we exploit here is to create a

triplet of defects qA, qB , and qC (or q̄A, q̄B , and q̄C) by
exchanging the three colors at a given vertex, by a clockwise
or anticlockwise rotation [Fig. 8(a)]. We propagate them away
from the vertex on their respective two-color loops until two
of them meet [Fig. 8(b)]. When they meet, they transform
onto the conjugate defect of the third defect [Fig. 8(c)]. It
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FIG. 8. A way to implement numerically the flip of triple-
stranded loops, by using defects (a) from a perfect three-coloring
(∅); the three colors of the vertex i marked by a point are exchanged,
here clockwise +. (b) This generates three defects qA (BBR), qB

(GGB), qC (RRG). qB propagates on a G-R loop, qC on an R-B
loop [double arrows in (b)] until they annihilate qB + qC → q̄A (c).
The last two defects propagate on a G-B loop and recombine in a
perfect three-coloring qA + q̄A → ∅, resulting in the overall flip of a
triple-stranded loop (d).

is then sufficient to further propagate the third defect until
it annihilates with its conjugate [Fig. 8(d)]. Once the first
vertex and the orientation of the color exchange are chosen,
the entire process is completely determined. The process I+

i ,
where i refers to a chosen vertex and + to the orientation, is
summarized as follows,

∅ → qA + qB + qC, (27)

qB + qC → q̄A, (28)

qA + q̄A → ∅, (29)

and the conjugate process, I−
i , consists of exchanging the

three colors by the opposite rotation, ∅ → q̄A + q̄B + q̄C . Note
that the process (28) may occur with any pair. The “time-
reversal” process is not identical in general; in particular I−

i

is not the reverse process: I−
i I+

i 	= Id. This is because in the
last step [Eq. (29)], the propagation of the qA defect may
cross the first two segments. In this case, this leads to a local
reorganization of these segments. The process I−

i starts from
the same vertex but does not find the same segments, since
they have been reorganized. A new state different from the
original state is generated. Such absence of microreversibility
breaks the detailed balance and the Monte Carlo algorithm
would fail. We have therefore restricted explicitly the motion
to those flips which satisfy I+

i I−
i = Id (typically 40%–50%

depending on the size considered).
The Monte Carlo algorithm works as follows: At each step

we choose randomly whether to flip a loop or a “stranded”
loop. If it is a “stranded” loop, we choose randomly a vertex
and an orientation and create the triplet of defects that we
propagate until they annihilate according to the description
given above. We accept only the moves that are reversible.

FIG. 9. Fraction of odd states as a function of 1/L at fixed
aspect ratio r = 1, depending on mod(L,3), obtained by Monte Carlo
algorithm (Sec. VI A), exact enumeration up to L = 8 (Sec. III A),
and transfer matrix up to L = 12 (Sec. V).

We have checked on small lattices that we can now reach
all states by successive application of these moves: for this we
let the Monte Carlo algorithm run until all distinct states are
generated, the number of which we know from Sec. III A. We
note that restricting it to short processes given in Fig. 7 (top),
i.e., with two strands making a small hexagon, does change the
parity but does not generate all states, so we have to include
both. We therefore expect the present algorithm to be ergodic.

B. Results

We have prepared samples of states by using the algorithm
described above. In this dynamics, the parity is no longer con-
served and the parity-parity autocorrelation function decays in
less than a Monte Carlo sweep (N Monte Carlo attempts).

The first measurement is the fraction of odd states Z−
3 /Z3

in the sample of states. The result for L = M is given in
Fig. 9. For small clusters, we recover the exact results obtained
by enumeration (Table III) and transfer matrix calculation
(Table II). In the thermodynamic limit, we clearly see that the
results extrapolate to a finite density, thus confirming that even
and odd classes have the same entropy. For L a multiple of three
and for the rhombus shape or for all clusters with the hexagonal
shape, the fraction is small, 0.046 in the thermodynamic limit
(bottom points in Fig. 9). Both are special in that they can
accommodate the

√
3 × √

3 state without domain walls. When
L = 3n ± 1 is not a multiple of three, there are two distinct
results (upper points in Fig. 9), which both converge linearly
to a large fraction of odd states, 0.7615. A majority of states
is, therefore, missed by standard loop Monte Carlo algorithms
in this case.

We have done the same calculation for different aspect
ratios r = L/M and the results of similar extrapolations are
summarized in Fig. 10. When L and M are multiples of three,
the fraction remains small and smoothly interpolates between
0.046 for r = 1 and 0 for r = 0 (triangles in Fig. 10). When L

or M is not a multiple of three, the fraction varies rapidly
as a function of the aspect ratio (squares in Fig. 10). For
comparison, we also give the result of the transfer matrix at
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FIG. 10. Fraction of odd states extrapolated in the thermody-
namic limit (squares and triangles), as a function of the aspect ratio
r = L/M , from Monte Carlo. It depends on whether L or M is a
multiple of three. The results from the transfer matrix at fixed L = 10
(circles) are shown for comparison.

finite L = 10, where we have a fast-oscillating part. There may
be, therefore, finite aspect ratios where the Z2 symmetry found
at r = 0 holds as well. For instance, for r = 2/5 or 2/7, we
cannot numerically distinguish the result from Z−

3 /Z3 = 1/2.
The second measurement is the order parameter of the√

3 × √
3 state, which was defined in Sec. IV B 1. L has to be

a multiple of three in this case and we know that the fraction of
odd states is small, so we expect that the nonergodic algorithm
has a small error. Nevertheless, the issue may be relevant since
it was predicted that the Heisenberg model can be mapped onto
the three-coloring problem with a finite interaction strength of
a few percent, favoring long-range order of the

√
3 × √

3 state
[23]. The order parameter we find from the ergodic algorithm
follows the same power law with 〈m2〉 ∼ L−η (η = 4/3) as
before, but with a shift in the logarithmic correction (Fig. 11).

FIG. 11. Order-parameter scaling of the
√

3 × √
3 order, for

both the standard loop Monte Carlo algorithm (squares) and the
present ergodic algorithm (circles) with periodic boundary conditions
and L = M = 3n. The systematic error when using the standard
algorithm is 4.4%, which reflects the fraction of odd states given in
Fig. 9.

The result is in fact smaller by 4.4% (independently of L

at the numerical precision), reflecting that the small class
of odd states has a much lower order parameter. Moreover,
since the estimate is lower, one needs a larger interaction to
fit the Monte Carlo data of the Heisenberg model [23], which
therefore strengthens the order predicted there.

VII. CONCLUSION

We have shown that the total chirality of a three-coloring
can be an odd or an even number and defines two classes.
This parity is conserved by the loop dynamics because
the lengths of the loops are even, when periodic boundary
conditions are enforced. Previously used loop Monte Carlo
algorithms are trapped in one sector and this explains the
nonergodicity previously noted. This is true for the torus and
Klein bottle, but not for the cylinder or plane where the loops
can be of odd lengths.

The odd and even classes generically have the same entropy
in the thermodynamic limit. An exception is the infinitely long
strip of hexagonal lattice with finite circumference L where the
entropy per site of the odd states is smaller than that of the even
states by a universal correction, 8π/(

√
3L2), when L is large

and a multiple of three [Eq. (22)]. When L is not a multiple
of three, however, not only the entropies are identical, but also
the number of odd and even states in the thermodynamic limit,
so that the system has an infinite-temperature Z2 symmetry.
For general aspect ratio other than zero, this Z2 symmetry is
absent, but we assume it may exist at special points.

We have argued that “stranded” loops make the Monte Carlo
algorithm ergodic and allow one to compute the fraction of
odd states and order parameters. By contrast, the standard
loop algorithms that conserve parity lead to a systematic error,
which can be large when L is not a multiple of three. When L is
a multiple of three, however, the error on the order parameter is
of a few percent, because, in this case, the odd class (although
still extensive) is small.
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APPENDIX A: ENUMERATION OF DIMER COVERINGS
ON HEXAGONAL LATTICES

The method of enumeration of dimer coverings is known
[31,32], but the actual numbers for finite-size hexagonal
lattices are known only in a few cases [33,34]. We recall the
method for completeness and for the discussion of Appendices
B and C.

1. Hexagonal shape with open boundary conditions

We consider the dimer problem on the hexagonal lattice
shown in Fig. 2 with open boundary conditions. In this case,
we recall that [31,32]

Z =
∑
D

1 = |PfK|, (A1)
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where Pf is the Pfaffian of the Kasteleyn matrix K , defined
by Kij = ±1 if i and j are neighbors with the sign definition
given in Fig. 2, Kji = −Kij . By definition, the Pfaffian of an
antisymmetric matrix K of even size N is

PfK =
∑
P

σ (P )Ki1i2Ki3i4 · · · KiN−1,iN (A2)

with the restriction that i1 < i2, i3 < i4, etc., and i1 <

i3 < i5 . . . . The sites i1,i2, . . . are obtained by a permu-
tation P of 1,2, . . . ,N and σ (P ) is its signature [σ (P ) =
(−1)number of transpositions = (−1)ne where ne is the number of
even cycles]. By an appropriate choice of signs of the matrix
elements Kij one can compensate the negative sign of the
permutation and obtain a sum over all configurations with
weight 1, i.e., enumerate all states [31,32]. There are N/2
terms in the product of matrix elements. Kasteleyn showed
that for the honeycomb lattice one has to choose a “−” sign
for the product of all signed edges around each hexagon, which
is obtained by the choice given in Fig. 2. For a bipartite lattice,
the matrix K has the form

K =
(

0 D

−DT 0

)
(A3)

and PfK = ±detD. It is therefore sufficient to compute a
single determinant of a matrix of size N/2 × N/2. One can
see it directly from the definition of the determinant, detD =∑

P σ (P )D1i1D2i2 · · ·DN/2,iN/2 . The first indices 1, . . . ,N/2
denote the “black” sites and the second indices any permu-
tation P of the “white” sites. In this way every “black” site
is paired to a “white” site, but we do not want long-distance
pairing so the matrix elements have to be zero except for the
nearest neighbors. In this case, every site that is paired appears
only once, and so every term in the sum corresponds to a
dimer configuration. It is then important to fix the sign of the
summand, so that each configuration is counted with the plus
sign. Let us start with the reference configuration shown in
Fig. 2, sometimes called the “empty room” by analogy with
the problem of plane partitions [33]. In this configuration,
the dimers are alternating in onion rings around the center.
In terms of permutation, it is the identity, which consists of
pairing a black site i with the white site i. The product of
Dii is positive, so that the reference configuration is counted
with a plus sign (an alternative sign configuration is to take
all arrows from black to white sites, in this case Ki,j = +1).
Any cyclic motion around a hexagon corresponds to a cycle
of odd length (half the length of the loop) that has a positive
signature (−1)l/2−1 = +1, and a positive product of edges.
Since any state can be reached through a sequence of cyclic
motion, every dimer state is counted with a positive sign, and
therefore

Z = detD. (A4)

The determinant of the N/2 × N/2 matrix D is computed
numerically and the results are given in Table I. In fact,
these numbers are known: the problem is exactly that of
plane partitions [33] and the numbers of them for a a × b × c

hexagonal shape are the MacMahon numbers:

Z =
a∏

i=1

b∏
j=1

c∏
k=1

i + j + k − 1

i + j + k − 2
(A5)

TABLE IV. Numbers of dimer coverings with open boundary
conditions, computed from the determinant or from the MacMahon
formula [Eq. (A5)] with a = b = c = L.

L Z

1 2
2 20
3 980
4 232848
5 267227532
6 1478619421136
7 39405996318420160
8 5055160684040254910720
9 3120344782196754906063540800
10 9265037718181937012241727284450000
11 132307448895406086706107959899799334375000

matching those in Table IV with a = b = c = L.

2. Hexagonal shape with toroidal periodic boundary conditions

It is not possible to write the partition function as a single
Pfaffian with periodic boundary conditions (the graph is not
planar) since not all states can be reached with cyclic motion of
hexagons. We need a linear combination of four Pfaffians [31].
The reference dimer state (Fig. 2) corresponds to the identity
in terms of permutations and has a signature +1 and a positive
product of oriented edges, for all weights (u1,u2,u3) on the
boundaries (for x,y,z orientations). It has L dimers along a
line that cuts 3L edges (one is shown by a dashed line in
Fig. 2) and there are three such lines along the three principal
directions. Depending on the parity of L, the reference state
has, therefore, either an (odd, odd, odd) or (even, even, even)
number of dimers along the three directions: for odd L, all
the states in the (odd, odd, odd) sector are counted with a
plus sign. Now there are states that differ by a loop winding
across the boundaries; such a loop can change the parity of
two sectors (so that the sum remains of the same parity as that
of L), say 1 and 2, so the state is in an (odd, odd, even) sector
for a reference state in an (even, even, even) sector. Since the
winding loop also corresponds to an odd cycle, the signature
of the new state does not change.

For this reason, the number of dimer coverings is

Z = 1

2
[detD(1,1,1) − detD(1, − 1, − 1)

−(−1)LdetD(−1, − 1,1) − (−1)LdetD(−1,1, − 1)], (A6)

where D(u1,u2,u3) is a Kasteleyn matrix with signs (u1 =
±1,u2 = ±1,u3 = ±1, and the constraint u1u2u3 = 1) on the
periodic boundaries, according to the three edge directions.
The determinant of each N/2 × N/2 matrix D is computed
numerically and the results are given in Table V. These
numbers match those obtained by construction, in Table I.

3. Rhombus shape with toroidal periodic boundary conditions

Here the shape of the cluster is that of a rhombus (Fig. 1).
Without periodic boundary conditions, there is a single
configuration, consisting of putting all dimers in the same
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TABLE V. Numbers of dimer coverings Z for the hexagonal
shape with periodic boundary conditions, computed with four
determinants (as in Table I for L � 4). Some of these numbers were
known [34].

L Z

1 6
2 120
3 15162
4 13219200
5 80478777786
6 3417194853335640
7 1010200119482131248768
8 2077088937091136948273774592
9 29688796156479320775456569461994826
10 2949240953029338499089605475162868134375000

direction, compatible with the boundaries (this is the identity
in terms of permutation 1-1, 2-2, etc.). With periodic boundary
conditions again the graph is nonplanar (with the exception of
the L = 2 cluster) and four Pfaffians are needed. The result is

Z = 1

2
|(−1)L+1detD(1,1) + detD(−1,1)

+ detD(1, − 1) + (−1)LdetD(−1, − 1)|, (A7)

where D(u1,u2) is a Kasteleyn matrix with additional signs
(u1 = ±1,u2 = ±1) across the two (x,y) boundaries. The
number of dimer configurations is given in Table VI, in
agreement with Table I.

APPENDIX B: A GENERAL INVARIANT IN THE
DYNAMICS OF DIMER COVERINGS?

Each dimer covering has a possible invariant under dimer
exchange along the loops,

Id = det[nijDij (u1,u2)], (B1)

TABLE VI. Numbers of dimer coverings Z for the rhombus shape
with periodic boundary conditions (as in Table I for L � 8).

L Z

2 9
3 42
4 417
5 7623
6 263640
7 17886144
8 2249215617
9 547003370634
10 255635055079809
11 223497249280847919
12 379028233842678000000
13 1225114320423161720823183
14 7452791939816339215874217984
15 87934912263192096558472630935552
16 1969541555284024563005131046158940673

where nij = 1 if there is a dimer on bond ij and 0 otherwise,
and Dij is the Kasteleyn matrix with u1 and u2 weights on
the boundaries (on nonbipartite lattices, one has to replace the
determinant by a Pfaffian; see Appendix A). We first discuss
the case u1 = u2 = 1. On a planar graph, Id = 1 for all dimer
coverings [31]. On a nonplanar graph, Id = ±1 is in general
not an invariant but it may remain invariant in a class of states.
For instance in the problem of Appendix A 3, Id = 1 for all
states in the (even, even) class. This is ensured by the π

flux condition on each plaquette: a dimer permutation of a
hexagon is a cycle of odd length so it has σ (P ) = 1 and a
product of Dij > 0. Since all closed loops have length 4n + 2
on the honeycomb lattice, all cycles are odd and the invariant
is therefore conserved. This is no longer true on a general
lattice, as shown on the cubic lattice, where the flip of a square
plaquette conserves Id [square cycles (12) → (21) have an
odd signature, and the product of signed edges is odd, so that
Id = 1] [5]. But there are longer closed loops that correspond
to odd cycles and odd number of negative edges, so that in
this case the invariant is restricted to moving the smallest
loops [5].

On the honeycomb lattice with periodic boundary condi-
tions of the torus geometry, this remains true for all closed
loops and Id differs only in different winding sectors. For
instance, in the rhombus case, Id = −1 whenever the state
belongs to a sector with Nx or Ny odd, or both odd. For a
general u1,u2, the considerations explained in Appendix A
lead to

Id (u1,u2) = (−1)N
x+Ny+NxNy

uNx

1 uNy

2 . (B2)

APPENDIX C: ALTERNATIVE DESCRIPTIONS OF
THE PARITY INVARIANT

1. Product of signatures of permutations

We have seen that a three-coloring of the edges can be
seen as three nonoverlapping dimer coverings. Each dimer
covering can be written as a permutation of the lattice sites,
characterized by an invariant Id = ±1 (see Appendix B). We
may thus define the quantity

I3 ≡ Id (A)Id (B)Id (C) = ±1, (C1)

where Id (i) corresponds to the invariant Id of each of the
three dimer coverings of color i. We show that I3 is actually
conserved by the motion of winding loops: when we flip an
A-B winding loop, it corresponds to a cycle C in the
permutation of dimers A and the cycle C−1 in the permutation
of dimers B. The product of these two cycles corresponds to
exchanging Id (A) and Id (B), so that I3 is constant. It turns out
that I3 equals −1 in the odd sector and +1 in the even sector
(hence the same notation). Specifying to the rhombus shape
with torus geometry, we have [see Eq. (B2)]

Id (i) = (−1)N
x
i +N

y

i +Nx
i N

y

i u
Nx

i

1 u
N

y

i

2 . (C2)

Noticing that
∑3

i=1 Nα
i = n is a constant that depends only on

L, which we discard, we obtain

I3 = (−1)
∑3

i=1 Nx
i N

y

i . (C3)

Note that what is true for a pair x,y of lattice directions is also
true for the other pairs by symmetry. So, I3 can be symmetrized
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and simplified,

I3 = (−1)
∑3

i=1 Nx
i N

y

i +N
y

i Nz
i +Nz

i Nx
i = (−1)

1
2

∑
iα (Nα

i )2
. (C4)

The argument 1
2

∑
iα(Nα

i )2 is an even or odd integer. In this
form, it is transparent that I3 is invariant by all nonwinding
loops, but is it remarkable that it remains invariant under
winding loops as well.

2. Other related colorings

Fisk has studied a series of colorings and invariants [35]. He
showed that a 4-coloring of the sites of the triangular lattice
induces a 3-coloring of the edges, which in turn induces a
“Heawood” coloring of the sites and a local coloring. On a
regular triangular lattice with open boundary conditions, we
have the result that if Z is the number of 3-colorings, 4Z is
the number of 4-colorings [6]. This is no longer true on a
triangular lattice with periodic boundary conditions: starting
from a valid 4-coloring of the sites, it is always possible to
find an edge coloring [35]. For completeness, we recall that
the mapping associates with two neighbors of the triangular
lattice a color of that bond; according to (12) or (34) it gives
color 1 for the edge, to (13) or (24) it gives 2, and to (14) or
(23) it gives 3. But the converse is not true: there are more
three-colorings of the edges than 4-colorings (divided by four)
of the sites. Fisk also defines a “Heawood coloring” which is
what is called the chirality here, and a “local” coloring which
is an anti-domain-wall separating sites of identical chirality.
The number of such “singular edges” can be odd or even and is
actually directly related to the number of vertices with positive
chiralities [35]. So, the odd/even invariant is also that of the
number of anti-domain-walls. No other simple invariants are
known [35].

3. Odd/even invariant of graphs

The parity of m turns out to be also related to the odd-even
invariant recently introduced for colorings and graphs [36].
Let us make the connection explicit: given an orientation of
the lattice, Eager and Lawrence count the number of oriented
bonds i → j (where i and j are edges in our case) with σj >

σi . The parity of this number is the “odd-even invariant” [36].
To make the connection with the parity of m explicit, take each
vertex, call the edges 1-2-3 clockwise, and orient the bonds
from edge 1 to edge 2, from edge 2 to edge 3, and from edge
1 to edge 3. All configurations with + (resp. −), chirality
have one or three edges satisfying the rule above, i.e., an odd
number p of edges (resp. zero or two, i.e., an even number
n of edges). The total number of bonds satisfying the rule is
ne = pN+ + nN− where N± are the numbers of vertices with
±1/2 chirality (note that there are three bonds for each vertex).
When N+ is even, N− is even (because N+ + N− = 2N/3 is
even) so ne is even. When N+ is odd, pN+ is odd and nN−
is even, so ne is odd. Therefore a state with I3 = ±1 invariant
is an even/odd state in the language of Ref. [36].

APPENDIX D: DIMER AND THREE-COLORINGS
ON THE KLEIN BOTTLE

We consider the dimer and three-coloring problems on
a hexagonal lattice with a “Klein bottle” geometry of the

FIG. 12. Hexagonal lattice with periodic boundary conditions of
Klein bottle geometry; see the arrows on the sides. A dimer and color
configurations are shown. Here a rhombus (R) shape is chosen with
L = 4 and N = 3L2 = 48 edges. The solid and dashed lines show
two distinct nonlocal cuts that define topological conserved numbers.

boundaries. The model is defined on finite-size clusters of
size L,M and rhombus shape; see Fig. 12 for an example.
While the right boundary is identical to that of the torus, the
upper boundary is flipped as in a Möbius strip, as shown by
the arrows.

1. Exhaustive construction

We have constructed explicitly all the dimer coverings and
three-colorings on the clusters with L = M up to L = 8. The
numbers are given in Table VII. On the Klein bottle, the
three directions are nonequivalent and the number of dimer
configurations is therefore no longer a multiple of three in
general (but the number of three-colorings remains a multiple
of six). The numbers are different from those obtained on the
torus but remain of the same order of magnitude.

2. Enumeration of dimers by Pfaffian

The number of dimer coverings on the Klein bottle has been
studied in Refs. [37]. It is given by

Z = |Re[detD((−1)L+1,ı)]| + |Im[detD((−1)L,ı)]|, (D1)

where the matrix D(u1,u2) is the Kasteleyn matrix deduced
from Fig. 12 and ı2 = −1 ensures the correct sign of the

TABLE VII. Numbers of dimer coverings ZK and three-colorings
ZK

3 on the “Klein bottle” (rhombus shape; see Fig. 12). ZK is also
calculated from Pfaffians and ZK

3 from transfer matrix below.

N L T ZK ZK
3

12 2 R 9 24
27 3 R 44 144
48 4 R 425 1824
75 5 R 7751 50496
108 6 R 269200 3250560
147 7 R 18031040 453925632
192 8 R 2283471985 124786807296
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TABLE VIII. Numbers of dimer coverings ZK on the Klein bottle
(rhombus shape), as in Table VII for L � 8.

L ZK

2 9
3 44
4 425
5 7751
6 269200
7 18031040
8 2283471985
9 554296573020
10 257422540282721
11 226671176777404967
12 382906922419021541632
13 1233881647743136383304247
14 7553274215848727289369432064
15 88700806949845037589354602938368
16 1984263088240036324309600061358282721

(even, even) sector. The determinant is computed numerically
in Table VIII, and the numbers match those of Table VII.

3. Enumeration of three-colorings by transfer matrix

The enumeration of three-colorings by transfer matrix
needs a simple modification with respect to the torus case.
For the Klein bottle geometry, the first and the last row have
to be images in a x → −x mirror symmetry, so we define an
operator P by P |σ1 . . . σL〉 = |σL . . . σ1〉 (with P 2 = 1). We
then have

ZK
3 =

∑
σ1

· · ·
∑
σM

Tσ1σ2Tσ2σ3 · · · TσMσ̄1 = Tr[T MP ]. (D2)

Because of the mirror symmetry, [T ,P ] = 0, it is possible to
simultaneously diagonalize T and P , so that

ZK
3 = Tr[T MP ] =

3L∑
i=1

�M
i πi, (D3)

where πi = ±1 is the parity of eigenvector i under the mirror
symmetry. We note that because of the Perron-Frobenius
theorem for matrices with positive entries, the components
of the largest eigenvector can be chosen to be positive. The
eigenvector must be even, so that the sum ZK

3 is positive,
as it should be. Note that we cannot deduce that ZK

3 < Z3

since the �i are complex. The result of the computation of the
number of three-colorings on finite-size systems is given in
Table IX. A consequence of Eq. (D3) is that ZK

3 ∼ �M
1 ∼ Z3

in the thermodynamic limit M → +∞, so that the entropies
of three-colorings on the Klein bottle or on the torus are the
same.

4. Dynamics

We have studied the existence of sectors in the dynamics.
For this, we have iterated the loop dynamics on finite-size
clusters (up to L = 7), starting from a single state and
generating classes of states. Similarly to the torus case, there
are winding-number sectors and Kempe sectors.

TABLE IX. Numbers of 3-colorings on the “Klein bottle,” ZK
3 ,

computed by numerical transfer matrix, for system size N = 3 × L ×
M (Fig. 12). ZK−

3 is the number of odd colorings.

L M ZK
3 ZK−

3

2 2 24 0
3 2 48 12
3 3 144 144
4 2 120 24
4 3 480 144
4 4 1824 768
5 2 288 132
5 3 1536 1248
5 4 8256 5712
5 5 50496 36096
6 2 744 240
6 3 5184 1296
6 4 39648 12576
6 5 350592 80640
6 6 3250560 650112
7 2 1872 1020
7 3 17952 13488
7 4 194304 116976
7 5 2471424 1523904
7 6 32740992 18050880
7 7 453925632 249212928
8 2 4824 1800
8 3 62688 15120
8 4 956832 310080
8 5 17236608 5086080
8 6 323501184 104595840
8 7 6307763712 2120299776
8 8 124786807296 44607627264
9 2 12288 7092
9 3 219168 164016
9 4 4704192 3012240
9 5 121491456 86064576
9 6 3291241344 2339395392
9 7 93849672192 71017214208
9 8 2743266960384 2153241150720
9 9 82222744421376 67451020701696
10 2 31560 12384
10 3 767136 189072
10 4 23256672 8270688
10 5 860378112 291036480
10 6 33588864384 13048871040
10 7 1385171841024 552878592000
10 8 58393359785472 24928794444288
10 9 2514348535314432 1105303915459584
10 10 109522261290792960 49879717261246464

On the Klein bottle, there are also nontrivial cycles that
define the winding sectors, but contrary to the torus, they are
inequivalent. The cycle in the x direction is identical to that
of the torus, so that Nx

A + Nx
B + Nx

C = L but the cycles in
the y or z directions are twice longer and change direction at
the boundary (see the dashed line in Fig. 12), N

y,z

A + N
y,z

B +
N

y,z

C = 2M .
We find one or two Kempe classes depending on L in

this case, up to lattice symmetries (Table X). We emphasize
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TABLE X. Number of invariant classes nK for clusters of size
N on the Klein bottle, and number of states in each class ZK

i=1,...,nK

(
∑nK

i=1 niZ
K
i = ZK

3 is given in Table VII).

N nK ZK
i=1,...,nK

(±)

12 1 24(+)
27 2 132( − ), 6(×2)( − ),
48 2 1056(+), 768( − ),
75 2 36096( − ), 7200(×2)(+)
108 2 2600448(+), 650112( − ),
147 2 249212928( − ), 204712704(+)

therefore that the number of Kempe classes depends explicitly
on the geometry of the boundaries, since clusters with exactly
the same number of sites do not have the same number of
Kempe classes (compare Tables X and III).

Although the surface is nonorientable, we can define the
chirality for vertices up to the upper cut. The parity of m is
again conserved and is given in Table X. The loop Monte Carlo
is therefore similarly nonergodic on the Klein bottle, and we
use the “stranded” version to determine the fraction of odd
states.

5. Fraction of odd states from Monte Carlo

We have computed the fraction of odd states by adding the
“stranded” loops to the Monte Carlo algorithm. We find that
the result extrapolated to the thermodynamic limit is finite,
confirming that odd and even classes also have the same
entropy on the Klein bottle. The fraction now depends on

FIG. 13. Fraction of odd states for finite-size clusters of size L =
M , with the “Klein bottle” geometry. There is a mod(L,6) effect,
partially resolved in the thermodynamic limit.

mod(L,6), but is partially resolved in the thermodynamic limit
(Fig. 13), with pairs 6n ± 1, 6n ± 2 converging to the same
value at the numerical precision, 0.55 and 0.445, respectively.
If we write p(L) = Z−

3 /Z3, we note (without providing an
explanation) that p(2L) + p(L) ≈ 1, which is specific to the
Klein bottle.

In conclusion, the Klein bottle shares some aspects of
the torus with the same parity invariant. For a Monte Carlo
algorithm to be ergodic, one has to similarly enrich the allowed
motions with “stranded” loops. The odd and even classes have
also the same entropy, as is obvious from Fig. 13.
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