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A visualization of stable invariants of integer
dynamics of three-colorings

Abstract

Winding loops in models with local constraints have a natural integer dynamics

consisting in the evolution of their integer winding numbers. The dynamics

in this case, known as Kempe moves, results in disconnected sectors. We

show that the stable invariant I2, introduced in [1], is visualized as right-

left configurations of winding loops on the immersed Konstantinov torus. A

possible connection of Kempe sectors with stable homotopy groups of spheres

is discussed.

1. Preliminaries

1.1 Integer dynamics on the L-periodic lattice

The model consists of coloring the edges of a regular hexagonal lattice
Λ of linear size L (and N = 3L2 edges) with three colors, e.g. A, B,
C, such that each vertex has three edges colored with three different
colors, see [1] for details. The factorization of the lattice Λ by the
two L-periods is the standard 2-torus, denoted by T 2. Because the
lattice Λ is hexagonal, we have additional symmetries. Take a point o,
a vertex of the lattice. The rotation S : Λ→ Λ through o with angle
2π
3 , which is an invariant transformation of Λ, is well-defined. As well as

take 3 lines lx, ly, lz on the lattice with centre o, S(lx) = ly, S(ly) = lz,
S(lz) = lx. Denote by Ri : Λ → Λ the reflection symmetry with
respect to the line li, i ∈ {x, y, z}. The corresponding orientation-
preserved diffeomorphism

S : T 2 → T 2 (1)

of order 3, and the orientation-reversed reflection

Ri : T 2 → T 2 (2)

of order 2 on the factor of the plane R2, Λ ⊂ R2, are well-defined.

1



The successive edges of two colors, say B and C (or A and B,
or A and C) form self-avoiding closed loops. A Kempe move is an
exchange of the two colors of one of these loops. It gives a new
valid 3-coloring (all edges colored with three different colors). An
equivalent relation called Kempe moves gives a partition of 3-colorings
in equivalent classes.

The A−B, B−C, C−A cycles are well-defined as oriented cycles.
This gives the elements a,b, c ∈ H1(T 2;Z) ≡ Z⊕Z, where we denote
Z⊕Z, a direct sum of the group of integers. Recall that, in this case,
we get an isomorphism between the fundamental group π1(T 2, pt) and
the homology group H1(T 2;Z) with integer coefficients. In particular,
the fundamental group does not depend on a marked point pt ∈ T 2

on the torus. Each element is an integer vector (a collection of two
integers (n,m)) on the lattice Z ⊕ Z ⊂ R ⊕ R. A triplet {a,b, c}
satisfies the equation

a + b + c = 0.

A Kempe move transforms a triplet {a,b, c} into {a1,b1, c1} as
follows. We can choose al = kâ, where â = a

gcd(ax,ay)
, a = (ax, ay)

with k a positive or negative integer:

{a1; b1; c1} = {a + 2kâ; b− kâ; c− kâ}.

This transformation keeps the direction of the vector a. The two
analogous transformations with invariant directions of the vectors b,
c are also possible:

{a1; b1; c1} = {a− kb̂; b + 2kb̂; c− kb̂),

{a1; b1; c1} = {a− kĉ; b− kĉ; c + 2kĉ).

The problem to to classify equivalent classes of triplets {a,b, c} up
to the transformations {a,b, c} 7→ {a1,b1, c1}. We are looking for
finite-type invariants of the transformation.

There are the following list of invariants:
1. χ({a,b, c}) = axby − byax (mod 2).
2. For χ({a,b, c}) = 1, define:

I2({a,b, c}) = 2axby + 2ayby + axby + aybx (mod 4), (3)

we get I2 = ±1 (mod 4) [1], the formula (39).
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3. For χ({a,b, c}) = +1 we define the invariant I+ as follows.
Denote −ax − ay by az, for bz, cz the formula are analogous. Denote

the 3-component extension of {a,b, c} by {ã, b̃, c̃}. We may assume
that the following equation (up to cyclic permutation of the vectors

ã, b̃, c̃) is satisfied:

{ã, b̃, c̃} (mod 2) = {(1, 0, 1), (0, 1, 1), (1, 1, 0)}. (4)

Define, in the case I2({ã, b̃, c̃}) = +1, [1] using the formula (57)

I+({ã, b̃, c̃}) =
1

2
(ãyb̃x − (ãy + b̃x + c̃z)) (mod 4). (5)

In the two other cyclic permutations, the invariant I+ is similarly
defined by the corresponding permutations of the vectors ã, b̃, c̃. If
{ã, b̃, c̃} (mod 2) are given by an odd permutation, we may use an
analogous formula with a different sign of the linear terms. In the case
I2({a,b, c}) = −1 the formula for I−({ã, b̃, c̃}) is a little different,
but analogous. The goal of the paper is the visualization of the formula
(3), by using immersions.

1.2 Immersions

Let us consider the Konstantinov immersion [2], p. 434-437, figs. 2-6,
which is denoted by ϕ′ : T 2 # R3. Let us describe the surface, using
the figures. We start with the orthogonal projection π ◦ϕ′ : T 2 → R2,
π : R3 → R2 on the hyperplane.

Let us consider two domains on fig. 2 and isometrically identify
corresponding segments [a, b] with [a′, b′], [c, d] with [c′, d′] and [e, f ]
with [e′, f ′]. We get a surface with a circle boundary. This surface
is homomorphic to a torus without a disk. Let us call this surface
the first sheet of the torus. The first sheet is an immersed domain
on the plane (the central hexagonal points are the double points of
the domain): this domain is on figs. 3 and 4. The boundary circle is
immersed on the plane as the central curve πΣ1 with 6 self-intersection
points. The second sheet of the torus is the cylinder, immersed on the
plane, the boundary of this cylinder contains 2 circles. The interior
circle coincides with πΣ1, the exterior circle is the standard embedded
circle πΣ2. On fig. 3, this cylinder is cut into 3 disjoint squares along
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the segments [KL], [MN ] and [OP ]. The third sheet is a disk with
boundary πΣ2. The constructed surface is the image of the fold map
π◦ϕ′ : T 2 7→ R2 with the fold (the outline of the projection) πΣ1∪πΣ2.
The image of the projection of the Konstantinov immersion on the
plane is non-chiral. Before to investigate the Konstantinov immersion
ϕ′, let us describe symmetries and cycles on this projection.

Cycles on the torus are realized as closed curves on the first sheet
of the surface. We may introduce coordinates x, y, z in H1(T 2;Z) and
cycles lx, ly, lz ∈ H1(T 2;Z) (our notations correspond to notations of
Subsection 1.1) as follows. Let us consider 3 cutting segments x =
[AB], y = [CD], z = [EF ], [2], fig. 2. The segments are oriented
in a common way, say, toward the centre of the hexagon abcdef .
The segments [AB], [CD], [EF ] are extended to the closed cycles on
T 2, these circles are not inside the first sheet. Cycles are pairwise
intersected in a central point of the disk, which is the third sheet of
the surface. Also one may consider an alternative extension of the
segments inside the first sheet. Say, the segment [AB] (on Fig. 3, this
segment is on the first sheet above a half of the segment [PO], which
is on the second sheet) is extended by the fold of the first sheet from
the right of the point O trough the middle point of the segment [KL]
and the point M . One may see that this closed curve on the plane has
a single self-intersection point and is on the first sheet. Cycles y and
z are defined analogously.

An arbitrary oriented cycle on the surface is decomposed into a
sum of x, y; y, z, or z, x–cycles. Say, let us consider a curve ly−z in
the homology class ly − lz. This is a horizontal curve of ∞-shape,
which intersects the segments [CD] (with positive sign) and [EF ]
(with negative sign). Half of the curve ly−z is embedded into the left
part of the first sheet (fig. 2), the last part is embedded in the right
sheet. On the plane, we get a self-intersection point of ly−z inside the
hexagon abcdef .

A collection of 3 mirror symmetries of the first sheet of the torus
along the cutting segments [AB], [CD], [EF ] is well-defined. These
symmetries correspond to the reflections Rx, Ry, Rz, see the formula
(2). The reflexion Rx keeps the x coordinate and permutes y and
z coordinates; analogously, for Ry, Rz. Because the segments are
extended to the closed circle lx, ly, lz on T 2, a reflection of the collection
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is extended to the reflection of the torus. The composition of the two
different symmetries is the rotation of angle 2π

3 around the central axis,
which is perpendicular to the plane of the projection. This rotation
corresponds to the transformation S by the formula (1). In particular,
we get: S(lx) = ly, S(ly) = S2(lx) = lz, S(lz) = S3(lx) = lx.
The factorization with respect to the symmetry S : T 2 → T 2 of
the Konstantinov torus determines a branching 3-sheeted covering
T 2 → S2 with 3 branching points of the order 3. This points
correspond to the intersections of the vertical axis of rotation S with
first sheet and with the third sheet (the disk) of the torus. The 3
intersection points of the axis with the second sheet (the cylinder) are
cyclically permuted by S.

Let us pass from the projection π ◦ ϕ′ to the immersion ϕ′. This
lift is not canonical and we do the deformation in two steps. The
first step is a vertical deformation of the first (and the third) sheet up
and the second sheet down with respect to the axis of the projection
π. The fold curve is not deformed. On the deformed surface, a self-
intersection curve appears, this curve is on fig. 5. The thick black
segments correspond to the self-intersection of the first deformed sheet;
the thin segments correspond to the self-intersection of the second
deformed sheet. The third deformed sheet is an embedded disk, this
disk has no intersections with the first and the second sheet. Let us
investigate the deformation of the first sheet. On the picture, the
thick black segment [b6b1] joins points a and b (but not b and c) from
fig. 2. This means that we deform the interior of the right hexagon
a′b′c′d′e′f ′ in the up direction, then the left hexagon abcdef . This
deformation is chiral. After a small generic deformation of step 2, we
get a generic immersion with generic self-intersection as in fig. 6. The
self-intersection curve is the black line: it has 3 components.

Let us briefly recall the standard approach for self-intersections
and define the self-intersection curve of the immersion ϕ′ formally.
Each self-intersection point (except triple points) contains exactly 2
different preimages on the torus T 2. The collection of self-intersection
points of ϕ′ in the target space R3 is the closed curve (with triple self-
intersections), this curve is denoted by ∆. Below we will not use the
projection π◦ϕ′ of the Konstantinov immersion, only the modification
ϕ of the immersion ϕ′, we avoid the collision of notations. The canon-
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ical 2-sheeted covering π : ∆̄ → ∆ is well-defined. Formally, using
two-point configuration space T 2 × T 2, we get: ∆̄ ⊂ T 2 × T 2 \ diag,
where diag = {(x, x)|x ∈ T 2}; ∆̄ = (x, y) ∈ T 2 × T 2|ϕ(x)=ϕ(y);
∆ = [x, y], (x, y) ∈ ∆̄. The canonical double covering ∆̄ consists of
ordered points with a common image by ϕ, the curve ∆ is the base of
the double covering π : ∆̄→ ∆, π(x, y) = [x, y].

By an argument concerning the orientations, we get that the
canonical covering ∆̄ is disconnected and equipped with canonical
orientation. Denote the branches of the canonical covering by ∆̄ =
∆̄a∪∆̄b. Take a point z ∈ ∆ with the preimages, a ∈ ∆̄a, b ∈ ∆̄b. Let
us consider the positive normal vectors ~na, ~nb to the immersed oriented
torus at points ϕ(a) and ϕ(b). To define the canonical orientation on
∆̄ in the point a ∈ ∆̄, take the collection of two vectors {~na, ~nb} and
define the orientation vector ~ea along the branch of ∆̄a at a, such that
the ordered triplet {~na, ~nb, ~ea} is the positive orientation of R3. The
orientation ~eb along the branch ∆̄b is analogous. The orientation of
branches of the covering ∆̄ are opposite to each other on ∆.

A modification of the Konstantinov immersion

The Konstantinov generic immersion on fig. 6 has a self-intersection
curve that is not connected. Let us describe a deformation of the
first sheet along the vertical axis of the projection, which keeps the
projection. As a result, we get the Konstantinov immersion

ϕ : T 2 # R3 (6)

with a connected self-intersection curve. By the description above,
the hexagon abcdef is below the hexagon a′b′c′d′e′f ′ with respect to
the projection, except three thin domains near the segments [a, b], [cd],
[ef ], where the corresponding branches of the self-intersection curve
∆ are found. Let us consider the triod τ0 (the graph with 3 boundary
vertexes and one triple central vertex and with 3 edges) on the plane of
projection with the central triple point at the center of hexagons and
the vertexes on the central points of the branches of ∆. The two triods
τ and τ ′ are on the first sheet of the torus on the hexagons abcdef
and a′b′c′d′e′f ′ correspondingly. The triod τ is below the triod τ ′

and between the two triods with respect to the vertical axis we have

6



no extra sheets of the surface. The vertical down deformation of a
thin neighbourhood of τ ′ to τ is well-defined. By this deformation,
the branches of the self-intersection curve ∆ are reconnected into a
single connected self-intersection curve. We will consider below only
the modified Konstantinov immersion and we keep the same notations
ϕ, ∆, etc. By Konstantinov immersion, we will mean the modified
Konstantinov immersion.

Lemma 1. The connected self-intersection curve ∆ of the Kon-
stantinov immersion (6) satisfies the following additional property:
the branches ∆̄a, ∆̄b of the canonical covering, equipped with the
canonical orientation, are trivial cycles [∆̄a], [∆̄b] ∈ H1(T 2;Z).

Proof of Lemma 1.

Let us consider the curve ∆ of the immersion ϕ′ before the modification
ϕ′ 7→ ϕ. The curve ∆ is decomposed into 3 components: ∆(ϕ′) =
∆1(ϕ′) ∪∆2(ϕ′) ∪∆3(ϕ′), see fig. 6. The branches ∆̄1,b(ϕ

′), ∆̄2,b(ϕ
′),

∆̄3,b(ϕ
′) of the canonical covering are inside the second and the third

sheets of the surface (the union of the two sheets of the surface along
the fold circle is the disk), therefore the oriented curve ∆̄a represents
the trivial cycle. The branches ∆̄1,a, ∆̄1,a, ∆̄1,a represent non trivial
cycles x − y, y − z = −x, z − x = y correspondingly. The sum
of these 3 cycles is the trivial cycle. The explicit calculation of the
homology class of ∆̄a can be omitted, because it is well-known that
the self-intersection curve represents the trivial oriented cycle for an
arbitrary immersed oriented surface. By the modification ϕ′ 7→ ϕ the
connected branches ∆̄a, ∆̄b represent the same cycles. This proves
that the cycles [∆̄a(ϕ)], [∆̄b(ϕ)] are trivial.

1.3 Linking numbers

Consider two closed oriented disjoint curves L1 = ϕ1 : S1 ⊂ R3,
L2 = ϕ2 : S1 ⊂ R3. The linking number k(L1, L2) ∈ Z is the integer
algebraic number of intersection points of L1 with an oriented Seifert
surface Σ2 for L2. The linking number is symmetric: k(L1, L2) =
k(L2, L1). We will need a standard generalization of linking numbers
for curves with intersections.
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Assume that the curves L1 ⊂ R3 and L2 ⊂ R3 have a single
intersection point x ∈ R3. Take the two generic alterations L−1 =
ϕ−1 : S1 ⊂ R3 and L+

1 = ϕ+
1 : S1 ⊂ R3 of the curve L1, which

resolve the singular point x in two different ways. The linking numbers
k(L−1 , L2), k(L+

1 , L2) are well-defined. Define k(L1, L2) ∈ Z[1
2],

Z[1
2] = {. . . ,−1,−1

2, 0,
1
2, . . . }, as a half-integer by the formula:

k(L1, L2) =
1

2
(k(L−1 , L2) + k(L+

1 , L2)). (7)

Assume that the curves L1 ⊂ R3, L2 ⊂ R3 have s common
intersection points {x1, . . . , xs} ∈ R3. Take the set ℵ of the 2s generic
alterations of the curve L1, which resolve the collection of singular
points {x1, . . . , xs} in all possible ways. The collection of 2s linking
numbers, which corresponds to the different resolutions Lα1 , α ∈ ℵ is
well-defined. Define k(L1, L2) by the formula:

k(L1, L2) =
∑
α∈ℵ

1

2s
k(Lα1 , L2). (8)

Assume we get two curves L1, L2 with s intersection points
{x1, . . . , xs}, and a projection of the curves onto a plane. Denote by
{y1, . . . , ys} the projections of the singular points, which are the pro-
jections of {x1, . . . , xs}, and by {z1, . . . , zt} the set of self-intersection
points of the projection (regular points of the projection), except points
in {y1, . . . , ys}. The two collections of algebraic numbers: o(yi) = ±1,
i = 1, . . . , s, o(zj) = ±1; 0, j = 1 . . . t, of singular points {y1, . . . , ys}
and regular points {z1, . . . , zt} are well-defined. A sign o(yi) of a
singular point yi corresponds to the orientation of the ordered 2-bases
by the tangent vectors to the projections of the curves L1, L2, the
first vector of the base is the tangent vector to the projection of L1.
A sign o(zj) of a regular point zj of the projection is equal to zero,
o(zj) = 0, when the branch L1 is above the branch L2 near the point
zj. When L2 is above, we have o(zj) = ±1. We get o(zj) = +1, if the
ordered base of the tangent vectors to the branches of the projections
is positive with respect to the orientation on the plane.

Proposition 2. The linking number k(L1, L2) ∈ Z[1
2] is a half-
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integer. The following formula is satisfied:

k(L1, L2) =
∑
i

o(yi)

2
+
∑
j

o(zj). (9)

Proof of Proposition 2.

The left-hand side of the formula (9) contains terms of two types,
which gives contribution to yi and zj. Assume for simplicity that all
algebraic signs o(yi) are positive. This assumption gives no restriction
of generality, because the terms corresponding to a pair of points with
different signs cancel. The sum of terms of the first type is given by
the formula:

1

2s
[1 · C1

s + 2C2
s + · · · + sCs

s ] =
s2s−1

2s
.

The sum of terms of the second type is given by the second term in
the right-hand side of the formula (9).

The formula (9) allows to define the linking number k(L1, L2) ∈
Z[1

2] for two generic curves L1, L2 # T 2 # R3 on immersed oriented
torus. We assume that the set of intersections of L1 with L2 on T 2

contains only finite number of isolated points {x1, . . . , xs}. Then
we may assume that all the points {x1, . . . , xs} are inside the disk
D2 ⊂ T 2. Take the projection of the immersed torus on the plane
and assume that the image of D2 is a regular disk on the plane (we
assume that the orientation of the projection of the disk on the plane
and the orientation of the disk on the torus coincide). We may apply
Proposition 2 to calculate k(L1, L2). The sign o(xi), i = 1, . . . , s of a
singular point equals to the algebraic sign of intersection of the curves
L1 and L2 on T 2.

This sign is changed, when the order of the curves L1, L2 is changed.
The linking number does not depend on the order. This is not
clear from (9), because the second terms in the right-hand side of
(9) is not symmetric, and is not skew-symmetric with respect to the
permutations of the order.

In the case we change the orientation on T 2, the orientation of the
projection of the disk is opposite to the orientation of the plane. In
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this case, contributions of intersection points in the formula (9) remain
unchanged, because the signs o(xi) is changed to the opposite twice:
the intersection index of the cycles L1 and L2 on T 2 at the point xi
is changed, and the contribution of the sign of the intersection of the
curves on the torus will be taken as opposite.

If we take a composition of the immersion ϕ : T 2 # R3 with the
reflection R3 → R3 with the axis parallel to the plane of the projection,
the linking number (9) is change to the opposite, because all the terms
in the right-hand side of the formula are changed.

2. Perfect immersions

Let us define a q-perfect q ∈ {0,+1, . . . } (generic) immersion
ϕ : T 2 # R3 of the torus in the Euclidean space. Take the self-
intersection curve ∆(ϕ) of the immersion ϕ. Decompose this curve
into connected components: ∆ = ∪si=1∆i. A component ∆i admits
the canonical covering πi : ∆̄i → ∆i. The collection of the curves
{∆̄1,a, ∆̄1,b, . . . ∆̄i,a, ∆̄i,b} determines the collection of integer homol-
ogy classes {[∆̄1,a], [∆̄1,b], . . . [∆̄s,a], [∆̄s,b] ∈ H1(T 2;Z)}. Each integer
class x ∈ H1(T 2;Z) is a pair of integers (nx,mx). Therefore, the col-
lection of 4s integers: {n1,a,m1,a, n1,b,m1,b, . . . , ns,a,ms,a, ns,b,ms,b}.

Definition 3. 1. We shall say that an immersion ϕ : T 2 #
R3 is q-perfect, if the greatest common divisor of the integers:
{n1,a,m1,a, n1,b,m1,b, . . . , ns,a,ms,a, ns,b,ms,b} is divisible by q. In
the case all the cycles [L̄a], [L̄b] are trivial, we say that the
immersion is also ∞-perfect.

2. We call two immersions ϕ1 : T 2 # R3, ϕ2 : T 2 # R3

are q-perfect regular homotopic, if there exists a regular homotopy
ϕt, t ∈ [0, 1], which coincides with the two given immersions
for t = 0, t = 1 with finite number reconnection points of self-
intersection curves, such that an arbitrary immersion ϕt of the
regular homotopy is q-perfect.

Example 4.
1. The Konstantinov immersion (6) is ∞-perfect. This is a

corollary of the Lemma 1.
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2. Take the standard embedded torus i : T 2 ⊂ R3 and the 4-
sheeted covering p : T 2 → T 2, which is double covering along
the parallel and the meridian. Let us consider the immersion
i ◦ p : T 2 → T 2 and deform it into a regular position. We get a
1-perfect immersion (i.e. an immersion with no additional prop-
erties concerning its self-intersection), which is regular homotopic
to the Konstantinov immersion.

Take a q-perfect immersion ϕ : T 2 # R3. Assume we have
cycles a,b ∈ H1(T 2;Z) and two closed curves la = fa : S1 # T 2,
lb = fb : S1 # T 2 in a general position. Take the corresponding
curves La = ϕ ◦ fa : S1 # R3, Lb = ϕ ◦ fb : S1 # R3 with a
finite number of intersection points {x1, . . . , xs}, which correspond to
intersection points of curves la, lb on T 2. A half-integer linking number
k(La, Lb) ∈ Z[1

2] is well-defined. This number depends on the curves
la, lb in the homology classes [la] ∈ H1(T 2;Z), [lb] ∈ H1(T 2;Z). Let
us define an integer ](la, lb) (mod q), such that the sum

LK(La, Lb;ϕ) = k(La, Lb) + ](la, lb) ∈ Zq[
1

2
] (10)

depends only on the homology classes [la], [lb] and of ϕ. Above by Zq[1
2]

the half-integers modulo q is defined. This formula is well-defined for
in the case, when La, Lb are non-connected, are represented by a finite
collection of oriented closed circles on the torus. In this case we may
apply the formula (10) to each pairs of connected components of the
curves La, Lb.

2.1. Definition of a disorder number ](la, lb) (mod q) of two generic
curves la, lb on an immersed q-perfect torus

The curves La, Lb in R3 could get an intersection point, when la,
lb deforms in its homotopy classes on T 2. This intersection point
corresponds to a common point on the self-intersection curve ∆(ϕ), one
of the curve, say la, is deformed along one of the two different branches
of ∆̄, say along the branch ∆a. Assume that the projection π(∆̄a) on
∆ of the intersection point la with ∆a coincides to the projection on ∆
of an intersection point of lb with ∆̄b. By this intersection the linking
number k(La, Lb) admits a jumps σ(z) = ±1. The sign depends
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only on the sign of the intersection point of la with ∆̄a, on the sign of
the intersection point of lb with ∆b and on the orientation of ∆̄a, or,
equivalently, on the orientation of ∆̄b near the intersection point. We
say that the intersection of La and Lb with the sign±1, is compensated
by the disorder number. Let us give a formal definition of a disorder
number ](la, lb).

Let us consider an arbitrary branch ∆i of the curve ∆. Let us
consider the canonical covering ∆̄i,a ∪ ∆̄i,b → ∆i. Let us denote
the set of intersection points of la with ∆i,a by {a1, . . . , as}, the set of
intersection points of lb with ∆̄b by {b1, . . . , bt}, the set of intersection
points of la with ∆̄b by {ā1, . . . , āp}, the set of intersection points of
lb with ∆̄a by {b̄1, . . . , b̄r}. Each considered point is equipped with a
sign ±1, because this is an intersection point of the two oriented curve
on T 2. The sum of the signs of points of the each set is divided by q,
because the cycles [∆̄a] [∆̄b] in H1(T 2;Zq) are trivial.

We may consider the collection {b̄1, . . . , b̄r} as the collection of
points on ∆̄b, because ∆̄a and ∆̄b are naturally identified as the
branches of the covering over the common base circle. The same way
we may consider the collection {ā1, . . . , āp} as the collection of points
on ∆̄b. Assume that, on the circle ∆̄a, the collections {a1, . . . , as},
{b̄1, . . . , b̄r} are inside two disjoint segments. Also assume that on
the circle ∆̄b, the collections {b1, . . . , bt}, {ā1, . . . , āp} are inside two
disjoint segments. We shall say that the intersection points are in
ordered position on ∆i. In this case, we shall tell that the contribution
to the disorder number ](la, lb) = 0 (mod q) from the component ∆i is
trivial. In the case of an arbitrary position of {a1, . . . , as}, {b̄1, . . . , b̄r}
on ∆̄a, of {b1, . . . , bt}, {ā1, . . . , āp} on ∆̄b, the algebraic numbers ]a,i,
]b,i of permutations of the collections of points to the ordered positions
along ∆i are well defined. The sign of a permutation is positive, if by
this permutation the linking number k(La, Lb) changes by −1, and
the sign of a permutation is negative in the opposite case.

Definition 5. Let us define ](la, lb) =
∑

i ]a,i + ]b,i.

The integer (10) is well defined modulo q, because the term ](la, lb)
in the left-hand side of the formula is well-defined modulo q. Moreover,
a q-perfect regular homotopy of ϕ preserves the integer (10).

The following is a corollary of our results on Kempe dynamic.
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Corollary 6.

The Konstantinov immersion (6) is not 2-perfect regular homo-
topic to a mirror image by a reflection with respect to a plane.
More detailed: ϕ : T 2 # R3, Σ ◦ ϕ : T 2 # R3, where Σ : R3 → R3

is the reflection with respect to the plane of the projection of the
Konstantinov immersed torus (this reflection keeps the projection
of the torus and inverse the orientation of the vertical axis), are
∞-perfect immersion, which are regular homotopic, but not 2-
perfect regular homotopic.

Corollary 7. The Konstantinov immersion is not 4-perfect
regular homotopic to a inside-out image. More detailed: ϕ : T 2 #
R3 and ϕ ◦ R : T 2 # R3, where R = Rz : T 2 → T 2 is the
diffeomorphism (2), which reverses the orientation on the torus,
are ∞-perfect immersions, which are regular homotopic, but not
4-perfect regular homotopic.

3. A visualization of stable invariants

The idea of the visualization of the stable invariant I2 is following. We
assume that the Λ-lattice is realized as a Λ-lattice on the immersed
Konstantinov torus ϕ : T 2 # R3. Then we express the invariants I2 =
±1 as twice the linking number, 2LK(La, Lb) (mod 4) of two flux
loops, representing cycles a and b of a Kempe sector with χ(a,b) = 1
(mod 2). In this construction, the following property is required: an
oriented loop on T 2, which represents an arbitrary basic cycles in
H1(T 2;Z) (by a basic cycle we means an arbitrary cycle, which is not
in the kernel of the modulo 2 reduction homomorphism H1(T 2;Z)→
H1(T 2;Z2)) is self-linked in R3 with an odd coefficient. Therefore,
because a disorder number of a curve with its parallel copy by a small
alteration is even, a pair of cycles in a common basic homology class
is linked with the odd coefficient. A reflection with respect to a plane
changes the double of the linking number 2LK(La, Lb) = +1 to the
antipodal number −1. This is not possible by a 2-perfect regular
homotopy, because such a homotopy keeps twice the linking number
modulo 4.
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3.1. A visualization of χ

Let us start with χ. We take oriented cycles a,b on T 2 in a general
position. The number of intersection points of the two cycles modulo
2 corresponds to χ(a,b, c). This is proved in [1], fig. 7. To investigate
I2(a,b, c), we have to assume that χ(a,b, c) = 1. This implies that
the assumption (4) is satisfied, up to the permutation of cycles a,b, c.

3.2. A visualization of I2

Let us introduce a reflection ρ : T 2 → T 2, ρ2 = Id : T 2 → T 2

which keeps the x-coordinate and reverses the y-coordinate: ρ(x) = x,
ρ(y) = −y. Note, the involution Rx, given by (2), satisfies the
condition ρ(x) = x, but not the condition ρ(y) = −y, because
Rx(y) = z. This symmetry ρ is not an isometric transformation of
the torus, this transformation preserves vertexes of the Λ-lattice on
T 2, but edges of the Λ-lattice are not ρ-invariant. One may assume
that transformation ρ is a free involution, the quotient T 2/ρ is a Klein
bottle.

Take the cycles a,b ∈ H1(T 2;Z), which are defined by the
corresponding oriented, probably, disconnected, curves la, lb. Consider
the mirror image ρ(lb) and assume that la and ρ(lb) are in a general
position. Consider the curves La = ϕ(la), Rz(Lb) = ϕ(ρ(lb)) # R3

as the images of cycles la, ρ(lb) by ϕ, these curves have generic
intersections, because la and ρ(lb) are generic curves on the torus.

The integer 2LK(La, ρ(Lb);ϕ) (mod 4) is well-defined by the
equation (10). Twice the disorder number 2](la, lb) gives only even
contributions.

Let us prove that the integer 2LK(La, ρ(Lb);ϕ) (mod 4) coincides
with the integer given by equation (3). Both integers are bilinear
with respect to cycles a, b. In the case [la] = [lb] = lx (mod 2), or
[la] = [lb] = ly (mod 2) the integer (3) equals to 2. The integer

2LK(La, ρ(Lb);ϕ) (mod 4) (11)

coincides to (3), because of the following property of the Konstantinov
immersion: an arbitrary generic cycle (a cycle is generic if it is not a
boundary modulo 2) is self-linked with odd coefficient.
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We may assume that the condition (4) is satisfied modulo 4, this
gives no restriction. Let us prove this. Both numbers, LK(La, ρ(Lb);ϕ)
(mod 4) and (3) are not changed by a permutation of cycles. For the
number LK(La, ρ(Lb);ϕ), this follows from the fact that, with the as-
sumption (4), we getLK(Lb, ρ(La);ϕ) (mod 4) = LK(−La, ρ(−Lb);ϕ)
(mod 4), where −L is L with the opposite orientation.

The number LK(La, ρ(Lb);ϕ) is preserved by a cyclic permutation
of a,b, c, because the linking number of two loops on the Konstantinov
torus is invariant with respect to the rotation S of the torus. The
number (3) is preserved by a cyclic permutation, because this number
is represented in a symmetric form (42) [1].

With the condition (4) modulo 4 the numbers 2LK(La, ρ(Lb);ϕ)
(mod 4) and (3) are odd. The first number is skew-invariant with
respect to a reflection in R3, the second is invariant. We may take one
of the two mirror copies of the Konstantinov immersion, for which the
two numbers coincide.

This gives a visualization of the invariant I2 by linking numbers of
the flux loops in R3.

3.3. A visualization of I+ in the sector I2 = +1

Take the cycles a,b, c ∈ H1(T 2;Z), which are defined by the cor-
responding curves la, lb, lc. We assume that we are in the sector
I2(a,b, c) = +1, and the notations correspond to the restriction (4).
First we rewrite this formula as follows:

I+({ã, b̃, c̃}) (mod 4) =
1

2
(ãyb̃x + 2b̃x− (la∩ lx + 3lb∩ ly + lc∩ lz)),

(12)
where la ∩ lx is an intersection number of the oriented cycles on the
oriented torus, equipped with a prescribed orientation O. In the
present form, the formula is satisfied without the condition (4), because
an odd permutation of the coordinates (x, y, z) changes the orientation
O and the signs of the product. The terms 1

2(ãyb̃x+2b̃x) is even and is
invariant to its antipodal. Consider the mirror image ρ(lb) and assume
that la with lb (and with ρ(lb)) is in a general position. Consider the
curves La, Lb, ρLb # R3 as the images of the cycles la, lb, ρ(lb)
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correspondingly.

I+({ã, b̃, c̃}) (mod 4) =
1
2(LK(La, Lb) + LK(La, ρLb)− (la ∩ lya + 3lb ∩ lx + lc ∩ lz)).

(13)
The formulas (12) and (13) are equivalent, but the second formula is
possible when the linking number LK of cycles is well-defined modulo
4.

Proof of Corollary 6.

Let us compare the invariant I2 for Kempe dynamic on the Konstanti-
nov torus and on its mirror image by Σ. The topological interpretation
of the invariant I2 proves that the invariants for corresponding sectors
have to be opposite (the linking number is skew-symmetric with
respect to the mirror image) and coincide simultaneously. This is not
possible, if we assume that the Konstantivov torus is 2-perfect regular
homotopic to its mirror copy.

Proof of Corollary 7.

Let us start by the following observation, which is interesting by itself
and will be used in the proof. The equation (12) is a way to determine
an orientation O on the torus. In the case the condition (4) is defined
up to a cyclic permutation of the coordinates x, y, z, (this cyclic
permutation corresponds to the orientation-preserved rotation (1)).
In the case the condition (4) is broken with an odd permutation (this
odd permutation corresponds to orientation-reversed rotations (2)), a
cyclic order of the coordinates x, y, z is changed to the antipodal and
the equation (12) is changed into the antipodal.

Let us compare the invariant I+ by the formula (13) for cycles a,b, c
on the Konstantinov ϕ torus and on its image ϕ◦Rx by the involution
Rx : T 2 → T 2. The first term LK(La, Lb)+LK(La, ρLb) is invariant
for the transformation x↔ y. The second term la ∩ lya + 3lb ∩ lx +
lc ∩ lz is skew-invariant for the transformation x ↔ y, because this
transformation corresponds to Rz and changes the orientation O on
the torus. This proves that (12) and (13) are changed by the regular
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homotopy from ϕ to ϕ◦Rz. This proves that such a regular homotopy
is not 4-perfect.

4. Stable homotopy groups of spheres and dynamics with
internal symmetries, ergodicity and unstable invariants of
dynamics: discussion

By the Pontryagin-Thom construction the Konstantinov immersion
represents the generator of the second stable homotopy group of
spheres, Π2. This allows for the visualization of I2. First, this is
the generator and all 3 basic cycles lx, ly, lz are self-linked with odd
coefficient, with this property, we can estimate (11). Second, the
Konstantinov immersion is∞-perfect, in particular, is 2-perfect. The
standard model of the generator of Π2 is given by the 4-sheeted cover-
ing over the standard torus in R3, it is not 2-perfect, see Example 4.
There are many other examples of G-immersed surfaces (up to regular
G-cobordism) with a discrete normal bundle G-structure, which are
motivated by homotopy theory. The example of the hyperquaternionic
Klein bottle [3] represents a generator of order 16, which describes the
stable homotopy group Π7(RP7). Another generator of order 2 of this
group is represented by a Boy immersion (with internal symmetry).

Ergodicity could help to classify the unstable invariants. We
reformulate the periodic problem from the plane to the Lobachevskii
plane. This gives more tools: the asymptotic properties of the flux
loops on the universal (ramified) hyperbolic plane over the Euclidean
plane could be investigated using the ergodic theorem. This gives some
information about the unstable invariants on the torus.
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