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Abstract

We classify the sectors of configurations that result from the dynamics of 2d crossing
flux lines, which are the simplest degrees of freedom of the 3-coloring lattice model. We
show that the dynamical obstruction is the consequence of two effects: (i) conservation
laws described by a set of invariants that are polynomials of the winding numbers of the
loop configuration, (ii) steric obstruction that prevents paths between configurations,
for lack of free space. We argue that the invariants fully classify the configurations in
five, chiral and achiral, sectors and no further obstruction in the limit of low-winding
numbers.
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1 Introduction

Quantities conserved by the dynamics, or more generally, invariants of transformations, are es-
sential to classify configurations and states of matter. They provide us with shortcuts to identify
configurations up to “unessential” deformations, by giving them a common label. Examples of
invariants range from basic symmetry operations (e.g. vector lengths for rotations), to complex
problems (knots, homotopy groups...), or appear unexpectedly in some popular games (14-15
puzzle, Rubik’s cube, Solitaire...) [1]. In the physical context, we generally label the physical
states according to the irreducible representations of a symmetry group. However, the internal
symmetries may be unknown or unexpected (e.g. SO(4) for the hydrogen atom). The particle
labels of a field theory at a given scale may thus be the result of non-obvious invariants of the
dynamics of more “elementary” degrees of freedom at a lower scale. Finding invariants in the
dynamics of simple degrees of freedom is therefore of particular interest, as it reveals some
form of internal symmetry.

Here we study the dynamics of a locally-constrained classical model, and provide the in-
variants that classify its sectors. Locally-constrained models (also called “vertex” or “ice”-type)
can be viewed as the strong-coupling limit of physical models, in that the strong local interac-
tions are replaced by hard on-site constraints. Among them, there are examples where natural
dynamical transformations lack ergodicity [2–9]. This is the case of the 3-coloring model,
which we consider here. In this model, a hard local constraint prevents neighboring edges to
have the same color among three, on a regular hexagonal lattice (see Fig. 1 for an example). It
was originally introduced as an exactly-solvable model of ice-type where the entropy could be
explicitly calculated [10]. The model was argued later to describe some magnetic materials,
having the geometry of the kagome lattice1, where the three colors are three spin directions
that are forced to be different by a strong local antiferromagnetic interaction [2,11,12]. As a
simple model, it may have various other physical applications, from a minimal description of
glasses [13–15], to superconducting arrays [14]. The degrees of freedom that are compatible
with the constraints are loops of alternating colors (see Fig. 2), similar to the moves Kempe
introduced to swap colors in planar maps. When periodic boundary conditions are used, this
dynamics is known to be nonergodic, for reasons not fully understood [2–5,9]. The color con-
figurations can be put in equivalence classes, called Kempe sectors, if they are connected by

1The sites of the kagome lattice are the centers of the edges of the hexagonal lattice.
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the dynamics, the number of which, nK > 1 [4,5], has been enumerated numerically on small
random cubic graphs [16], or regular hexagonal clusters [4,17]. An invariant has been found,
allowing to distinguish odd from even colorings [4,5,17]. It does not exhaust the number of
sectors [17], so that the classification of Kempe sectors is so far incomplete.

With periodic boundary conditions, closed loops are characterized by winding numbers
which count the number of times the loops wind around the boundaries2. The dynamics is
twofold. First, small local loops locally deform the winding loops, but preserve their topo-
logical winding numbers and thus define homotopy classes (flux conservation). Second, the
dynamics of the winding loops do not conserve the topological numbers (flux insertion). Since
they are integer numbers, this results in a dynamics described by transformations from integers
to integers. The question arises as to whether this integer dynamics can reach any configura-
tion of winding numbers. In fact, it cannot and there are invariants, stable with system size,
that classify the Kempe sectors in terms of polynomials of the winding numbers (which are
not individually conserved). While many sectors remain undistinguished by these invariants,
we will further argue that there is no other invariant, i.e. this set is complete. In fact, paths
between these additional sectors involve intermediate configurations that exist at larger sizes:
these sectors at a given size are isolated because of steric obstruction.

In addition to the stable classification of the configurations, these results show the ex-
istence of many disconnected sectors of flux lines at fixed size. In the context of the “slow”
dynamics of glasses, nonergodicity plays a central role. It serves as a basic property to generate
new timescales, since the reconnection of these sectors may be assured by slower dynamical
processes. This is what happens here as a consequence of the steric obstruction. On the tech-
nical side, these questions are relevant for Monte Carlo simulations where nonlocal moves
are used to sample the space of configurations [18]. Invariants introduce a bias that has to be
overcome, either by giving up the periodic boundary conditions [3], or by enriching the moves
with that of “stranded” loops [17].

The paper is organized as follows. In section 2, we recall the direct numerical construction
of Kempe sectors on small clusters by constructing the 3-colorings and the dynamics between
them exhaustively. In section 3, we define the winding loop configurations and the effective
dynamics that transform the winding numbers. By iterating this dynamics, we construct the
Kempe sectors of winding numbers for much larger systems. We then construct three invariants
of the dynamics in section 4, stable at all system sizes. We argue in section 5 that this set of
invariants is complete: the remaining sectors result from steric constraints and are absent
when such constraints are relaxed (section 5).

2 Kempe sectors by direct construction

The model consists of coloring the edges of a regular hexagonal lattice of linear size L (and
N = 3L2 edges) with three colors, e.g. A, B, C, such that each vertex has three edges colored
with three different colors, see Fig. 1. The number of such 3-colorings has been calculated
exactly by Baxter [10] and scales as∼ 1.1347N in the thermodynamic limit. Periodic boundary
conditions are used, so the graph has the geometry of a torus and homotopy classes exist.

The successive edges of two colors, say B and C (or A and B, or A and C) form self-avoiding
closed loops. All loops are fully-packed. In Fig. 2, all B-C loops are shown and edges colored
A have been withdrawn. Exchanging the two colors of one of these loops gives a new valid
3-coloring (all edges colored with three different colors). It is an example of Kempe move.
There are different types of loops, a-type (B-C), b-type (A-C) and c-type (A-B). When a loop
of one type flips, it reorganizes the other types of loops. The loops are also characterized by the

2Winding numbers label the homotopy classes of the torus. They measure the 2d flux through its two cycles.
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Figure 1: Example of a 3-coloring of the N = 3L2 edges of a hexagonal lattice of
linear size L = 7. Periodic boundary conditions are used to form a torus and define
homotopy classes.
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Figure 2: Same configuration as in Fig. 1 with red edges not shown, emphasizing
closed self-avoiding B-C (blue-green) loops, which can be seen as flux lines through
the x and y lines. Orientation of the loops is defined in Fig. 3. There are three types
of flux lines (not shown) which cross.
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A

B

C

Figure 3: Definition of the orientation of the loops for a black vertex (the definition
is opposite on white vertices).

number of times they wind across the two boundaries, the winding numbers (p, q) (homotopy
classes), the precise definition of which will be given in 3.1.

For completeness, we recall the construction of Ref. [17]. We first construct numerically
all 3-colorings of a cluster of size L. This procedure is obviously limited by the exponentially-
growing number of states to small L ® 8. By iteration of the Kempe moves, considering the
motion of all loops (a, b, c type, winding and nonwinding), we find that not all states can
be connected but fall into closed disconnected sectors, called Kempe sectors. The number of
Kempe sectors, nK , depends on L and is given in table 1. It is increasing with system size, but it
is difficult to know whether it is infinite in the thermodynamic limit. We also give the number
of 3-colorings in each Kempe sector Zi=1,...,nK

, their multiplicity, and the labels obtained in
section 4.

Table 1: Number of Kempe sectors nK and number of 3-colorings in each sector
Zi=1,...,nK

(sector multiplicity is indicated). The labels given in brackets are the pur-
pose of the paper (defined in section 4). For L = 7 and L = 8, they do not exhaust
the number of sectors, see section 5.

L nK Zi=1,··· ,nK
, I

2 1 24 (0)
3 2 60 (0), 60 (1,-1,1)
4 2 240 (0), 1920 (1,-1,-1)
5 3 35340 (0), 276 (1,-1,-1), 13800 (1,-1,1)
6 4 2879856 (0), 307296 (1,-1,1), 19440(×2) (1,1,±1)
7 2761 50683920 (0), 1140 (1,-1,1), 424598328 (1,-1,-1), 6

(×2758) (1,1,±1)
8 9 59539228896 (0), 54178583040 (1,-1,1), 14555136

(1,-1,-1), 28369152(×6) (1,1,±1)

The dynamics of nonlocal winding loops do not conserve the winding numbers, so that
homotopy classes are not preserved. Nevertheless, they appear to be sets of winding num-
bers that remain disconnected from other sets of winding numbers. Importantly, disconnected
Kempe sectors having the same winding numbers do not occur, in general. There is one ex-
ception in the range of sizes available. For L = 7, a large number of Kempe sectors is found
(table 1), all having the minimum number of 6 states. These are special 3-colorings, charac-
terized by a single loop of each type, of maximal size, 2N/3 [17]. A translation of these loops
does not change the winding numbers but cannot be connected, thus generating many special
sectors. Except for this size, an homotopy class is found to be connected.

We study the main obstruction, stable with system size, the one related to the winding
numbers (keeping in mind that there may be finer obstructions for special L), by setting up a
dynamics for the winding numbers themselves.
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3 Integer dynamics of winding numbers

The aim of this section is to set up the dynamics of the winding numbers, when nonlocal moves
are allowed, i.e. the set of transformations from integers to integers. We next study its ergodic
properties, and what classes form.

3.1 Definition of winding numbers

The total winding numbers of a configuration are defined by a triplet of vectors (a, b, c),

a =
∑

l

(ax
l , a y

l ), (1)

b =
∑

l

(bx
l , b y

l ), (2)

c =
∑

l

(c x
l , c y

l ), (3)

where a, b, c are two-component vectors (we will define a third component below) corre-
sponding to the three types of loops, a ≡ B-C, b ≡ C-A and c ≡ A-B loops. The sum is over
all loops l. For instance, aαl is the winding number of the l loop across a cycle α = x or y
of the torus (Fig. 2). They count the number of geometrical (signed) crossings. To compute
them, we first orient the loops. The hexagonal lattice is bipartite and we can define two sets
of vertices, black and white, connected by the edges. We then orient the loops from B to A, A
to C and C to B on black vertices (the opposite for white vertices), as shown in Fig. 3. With
this convention of orientation, every B-colored edge that cuts the y-axis (and is part of a B-C
loop), contributes to the winding number by +1 and every edge colored C contributes by −1.
In the example of Fig. 2, a y

l = 1− 1 = 0 for the loop l that crosses the y-axis in two places
and a y

l = 0 for the other loops which do not cross the y-axis, so that ay = 0 (there is no flux
through the y-axis). Therefore, if we denote by N y

B and N y
C the number of edges along the y

line that are colored B and C, we get ay = N y
B −N y

C . Similarly, we define a set of numbers Nαi ,
i = A, B, C and α= x , y , so that

ax = N x
B − N x

C , (4)

ay = N y
B − N y

C , (5)

bx = N x
C − N x

A , (6)

by = N y
C − N y

A , (7)

cx = N x
A − N x

B , (8)

cy = N y
A − N y

B . (9)

Since we have the constraints on the number of colors, 0 ≤ Nαi ≤ L, we get some constraints
for the winding numbers,

|aα| ≤ L, |bα| ≤ L, |cα| ≤ L, (10)

where α= x , y . It is also apparent that,

a+ b+ c = 0. (11)

A consequence is that it is not possible to have a single winding loop. Indeed, in this case, we
would have (without loss of generality) a = (p, q) 6= 0 and b = c = 0 and the sum would not
be zero. Note that a permutation of all colors B and C is an exchange of the winding numbers
b and c with a global sign change, a→−a and b→−c, c→−b.
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Since all of the L edges cutting the lines α= x , y have some color, we have,
∑

i

Nαi = L, (12)

for all α. It is convenient to define another set of numbers N z
i , i = A, B, C , along a third

line in the z direction (the y, z axis are at ±120o with the x axis). Indeed, the sum of the
three numbers of a given color times L is the total number of this color on the graph, e.g.
L(N x

A + N y
A + N z

A) = N/3= L2, and similarly for B and C:
∑

α

Nαi = L, (13)

for all i = A, B, C (N z
A is not an independent number). Since N z

A must be positive and smaller
than L it gives three additional constraints: N x

i + N y
i ≤ L.

Given the two equations (12) and (13), we can invert Eqs. (4)-(9). It is convenient to
define a third component az such that ax + ay + az = 0 (and similar definitions for b and c).
We can write the relations between (NA, NB, NC) and (a, b, c) in the form,

NA =
L
3

1+
1
3
(c − b), (14)

NB =
L
3

1+
1
3
(a− c), (15)

NC =
L
3

1+
1
3
(b− a), (16)

where 1= (1,1, 1) and all vectors have now three (non-independent) components. There is a
central sector, called the “0-sector” characterized by the absence of winding loops, (a, b, c) = 0,
which exists when L is a multiple of three. A finite (a, b, c) can be seen as a deviation from
this sector, but the integers must be chosen such that the Nα themselves are integers, i.e. b−c,
c − a, and a− b ≡ L(mod 3). To have the same set of integers (a, b, c) at L and L1, we must
have L1 ≡ L(mod 3). In particular, changing the sign of (a, b, c)→−(a, b, c) is possible only
when L is a multiple of three, since b− c or c − b are both multiple of three, in this case.

We can define a norm for the winding numbers,

n2 =
1
6
(|a|2 + |b|2 + |c|2), (17)

where |a|2 = a2
x + a2

y + a2
z . It has a minimum at n = 0 in the “0-sector” and a maximum

at n = L. The conditions |a| � L, |b| � L, and |c| � L (or n � L) define the limit of low
winding numbers. It can be seen as a dilute limit, since low-winding number loops may occupy
a number of sites of order L, i.e. a vanishing fraction of the lattice sites. On the contrary, when
some winding numbers are a fraction of L, the loops occupy a finite fraction of the lattice sites
(finite-density configurations).

A color configuration is thus reduced to a set of nine winding numbers (a, b, c) or, equiva-
lently, (NA, NB, NC). Only four of them are independent (given Eq. (11) and the definition of
the z-components). A color configuration should satisfy the “box” constraints,

0≤ Nαi ≤ L, (18)

where i = A, B, C and α = x , y, z. Given these constraints, the actual number of winding
number configurations is a fraction of L4, and, of course, much smaller than the number of
color configurations.
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3.2 Setting up the transformations of winding numbers

The dynamics we consider consists of exchanging the two colors A-B, B-C or C-A along any
closed loop l. This is the simplest dynamics that preserves the constraints.

We now construct a “coarse-grained” dynamics in the much smaller space of winding num-
ber configurations. A nonwinding loop modifies locally the shapes of the winding loops but
does not change the set of numbers (a, b, c).

Let us consider a winding loop of type a (B-C) with al = (1, 0). The loop winds around the
x-axis in the y direction. It intersects the x-axis in a site with color B, given the convention of
orientation. The flip of this loop changes the color on the x-axis from B to C. ax = N x

B − N x
C

becomes ax − 2. Simultaneously, bx = N x
C − N x

A = bx + 1 and cx = N x
A − N x

B = cx + 1. More
generally, if the winding number is ax = w> 0, there are w sites along the x-axis which are in
color B and which change to C after the flip, so that ax = N x

B −N x
C → ax +2w= ax +2ax

l , and
bx or cx change according to bx = N x

C − N x
A = bx − w = bx − ax

l . The same reasoning applies
for the y component, so that for a general flip of a loop with winding numbers al →−al , we
have the transformation law,

a′ = a− 2al , (19)

b′ = b+ al , (20)

c′ = c + al . (21)

al is parallel to a, because all winding loops of a given type are self-avoiding (if al were not
parallel to a, we would have a×al 6= 0 and they would cross). Let us define a primitive integer
vector â = (âx , ây) parallel to a but with the smallest integer coefficients,

â =
a

gcd(ax , ay)
, (22)

where gcd(x , y) > 0 is the greatest common factor of x and y . The primitive vector â char-
acterizes the elementary winding loops, and gcd(ax , ay) is the number of such loops. We can
choose al = kâ with k a positive or negative integer:

(a′, b′, c′) = (a+ 2kâ, b− kâ, c − kâ). (23)

In terms of the number of colors, we have (N ′A, N ′B, N ′C) = (NA, NB + kâ, NC − kâ), which
makes explicit that a flip of a a-type loop exchanges the B and C colors along the different
cycles. There are two other similar transformations on A-B or A-C loops.

In summary, the dynamics consists of three transformations applied on the set of winding
numbers,

Ta(k) : (a′, b′, c′) = (a+ 2kâ, b− kâ, c − kâ), (24)

Tb(k) : (a′, b′, c′) = (a− kb̂, b+ 2kb̂, c − kb̂), (25)

Tc(k) : (a′, b′, c′) = (a− kĉ, b− kĉ, c + 2kĉ), (26)

where k is an arbitrary positive or negative integer. The transformations are such that
a′ + b′ + c′ = 0. Since, among the nine integers (a, b, c), only four are independent, the
transformations are maps from Z4 onto Z4.

3.2.1 First example: permutation of colors

Consider a transformation Ta(ka) with ka = −gcd(ax , ay), i.e. ka â = −a:

Ta(ka) : (a′, b′, c′) = (−a,−c,−b), (27)

8
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HiL HiiL

Figure 4: Creation of two opposite winding loops after the flip of the dashed loop (i)
and insertion of flux after the flip of the winding loop (ii).

since a+ b+ c = 0. From Eqs. (14)-(16), we see that (N ′A, N ′B, N ′C) = (NA, NC , NB), which is a
permutation of B and C. We have six such permutations, generated by Pi ≡ Ti(ki), i = a, b, c,

(a, b, c),−(a, c, b),−(c, b, a),−(b, a, c), (b, c, a), (c, a, b).

Note that the triplet (a, b, c) acquires a sign according to whether the permutation is even or
odd (it transforms like the signature representation).

3.2.2 Second example: insertion of flux

Suppose that gcd(ax , ay) = 1 and consider,

Ta(1) : (a′, b′, c′) = (3a, b− a, c − a), (28)

which describes a new configuration with three parallel winding loops of type a, since
gcd(a′x , a′y) = 3. It becomes in terms of number of colors,

(N ′A, N ′B, N ′C) = (NA, 2NB − NC , 2NC − NB) .

Physically, it corresponds to the insertion of flux after creation of two opposite winding loops
(Fig. 4). They must be parallel to the existing ones (i.e. noncrossing), which is taken care
of, since the increase is along the direction of a. There must be room for them. The second
condition leads to some constraints (see below).

3.2.3 Composition of transformations

The transformations do not commute in general. We have some useful relations,

Ti(−1).Ti(1) = Id, (29)

Ti(1).Ti(1) = Ti(2), (30)

Ti(1).Ti(−1) = Ti(−2), (31)

where Id is the identity and i = a, b, c. This allows to restrict to k = ±1 and iterate.

3.2.4 Constraints

The transformations Eqs. (24)-(26) are not always possible because they may violate the space
constraints:

0≤ (Nαi )
′ ≤ L, (32)

where the prime denotes the numbers after the transformation. If one of these conditions is
violated, the transformation is forbidden.

The transformations Eqs. (24)-(26) together with the constraints Eq. (32) constitute the
“laws of dynamics” for the winding numbers. We have “coarse-grained” the dynamics by elim-
inating the effects of the dynamics of the local loops.
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3.3 Numerical construction of Kempe sectors of winding numbers

We start by constructing all initial sets of integers (a, b, c) for a given L satisfying the basic
constraints [Eqs. (14)-(16),(18)]. There are less than L4 configurations, but more that the
number of allowed winding-number classes in the coloring problem, so some of them are
unphysical. While in the continuum limit we would expect all possible winding numbers,
here the discreteness of the lattice gives additional constraints. Similarly, all winding numbers
should be realized on the lattice but in the dilute limit3. Away from this limit, the set of
configurations is enlarged, but we can still get some qualitative insights.

1 10 100
L

1

10

100

1000

10000

1e+05

1e+06

1e+07

n
K

exact
winding

0.004L
4

Figure 5: Number of Kempe sectors as a function of linear system size for the coloring
problem (squares) and derived by assuming all configurations of winding numbers
(circles). They form a finite fraction of the total number of configurations.

We have numerically iterated the dynamical transformations, Eqs. (24)-(26), from the
initial configurations until the sectors close. In Fig. 5, we show the number of Kempe sectors
of winding numbers as a function of system size L. At small L, we can compare with that of
table 1:

L 2 3 4 5 6 7 8
nK (exact) 1 2 2 3 4 2761 9

nK (winding) 2 4 4 13 13 29 29 .

The differences between the two lines have two origins. First, some of the sets of integers
(a, b, c) that do not exist in the coloring problem form additional Kempe sectors by themselves.
Second, for special L (L = 7), a few (a, b, c) classes are themselves split into subsectors (as
discussed in section 2), giving additional Kempe sectors.

We now have access to much larger system sizes and we can study the number of sectors
of the winding number configurations. At large L, nK converges to 0.004L4 (solid line), which
is a finite fraction of all configurations. We emphasize that it is not the number of Kempe
sectors of the original problem and we do not know how many configurations among them
are unphysical. A first point, however, is that the winding number configurations themselves
form a large number of disconnected sectors.

3This is indeed verified for the sizes available, L = 1, . . . , 8. All winding numbers with n2 ≤ 5 are realized for
L = 7,8 (but not for L < 7).

10

https://scipost.org
https://scipost.org/SciPostPhys.7.3.032


SciPost Phys. 7, 032 (2019)

1 10 100 1000 10000 1e+05 1e+06 1e+07 1e+08
sector size s

0,1

1

10

100

1000

10000

1e+05

1e+06

1e+07

N
u

m
b

e
r 

o
f 

se
c
to

rs
 w

it
h

 s
iz

e
 s L=80

L=100
L=150

(1,1,±1)

(1,-1,1) (1,-1,-1)

(0)

(1,±1,±1)

Figure 6: Distribution of sizes of Kempe sectors (log-log scale). It has a large num-
ber of small sectors (smaller than ∼ L) and five sectors around macroscopic values
(the dashed line indicates two sectors). The five larger sectors are labeled by the in-
variants found in section 4 (shown for L = 150, the two with (1,−1,±1) are almost
degenerate).

In Fig. 6, we show the distribution of the number s of configurations within the Kempe
sectors. It has three peaks: one peak around zero with a small number of states in each sector,
and two peaks with a macroscopic number of states (a fraction of L4) split into five sectors
(among them two have exactly the same number of states, and two others differ by a few
percents). The distribution around zero is close to a power law (shown with lines in Fig. 6),
∼ s−2.5. Given the divergence of its integral at zero, the total number of sectors nK in Fig. 5,
is dominated by the smallest sectors, those with only six states.

In summary, we observe two types of Kempe sectors, those with s � L4 and five large
sectors. We will now explain that the sectors can be labeled by three invariants that are poly-
nomials of the winding numbers (section 4), and that the small sectors result from the steric
constraints imposed by Eqs. (18) (section 5).

4 Stable invariants

In this section, we show some conservation laws, i.e. explicit functions of (a, b, c) that are
conserved by the integer dynamics and take different values in the different sectors. They are
stable invariants, valid for all system sizes.

4.1 Conservation of the parity of the number of line crossings

We define
a× b = ax by − ay bx , (33)

which is a one-component integer (the other components, such as
az bx − ax bz = −(ax + ay)bx + ax(bx + by) = ax by − ay bx , are equal to it). It counts the
number of geometrical (signed) crossings of a-type loops with b-type loops.
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Its symmetric version is

χ =
1
3
(a× b+ b× c + c × a), (34)

since, a × b = b × c = c × a results from a + b + c = 0. So, for instance, if there are no A-B
winding loops, c = 0 and χ = 0: B-C and A-C winding loops (if they exist) are parallel in the
geometrical sense.

In the transformation Eq. (24),

a′ × b′ = a× b+ 2kâ× b (35)

has its parity conserved. The same argument applies for the two other transformations Eq. (25)
and (26). Therefore, the quantity

Ia
2 = χ mod 2 (36)

is conserved by the dynamics. Ia
2 defines two sectors, characterized by an even or odd number

of geometrical crossings of the winding loops. The sector of even parity is connected and the
proof (given in Appendix A) consists of showing that all configurations are connected to a
target configuration. The sector of odd parity is not connected and we provide below further
invariants in the odd sector.

4.1.1 Relationship with odd/even chirality invariant

We now explain why it is the same invariant as the parity of the chirality, previously defined
[17]. We define the chirality at a vertex by choosing an orientation and count +1/2 for an
ABC ordering and −1/2 for ACB (see Fig. 7, the same definition applies for black and white
vertices). The chirality of a color configuration is the sum over the 2L2 vertices and is an odd
or even integer number between −L2 and +L2. Its parity is conserved by the dynamics [17].

+1�2

A C

B

-1�2

A B

C

Figure 7: Definition of the chirality of a vertex.

On the other hand, consider the winding loops of B-C type (called a-type, and represented
by black lines in Fig. 8) and winding loops of C-A type (called b-type, and represented by
dashed lines). If they cross, they cross in edges colored C. There are three situations, shown in
Fig. 8: when the chirality of the two vertices adds up to zero (left figure), there is no crossing
at all. When the chirality is +1 (middle figure), the loops cross and the crossing has the + sign.
When the chirality is −1 (right figure), the sign is −1. Now if we consider all loops (winding
and nonwinding) they cross (or anti-cross) in one third of all edges. A third of edges connects
two vertices only once, so that summing over the C edges is equivalent to summing over all
vertices. The total chirality is, therefore, equal to the number of signed crossings. Winding
and nonwinding loops, on one hand, nonwinding and nonwinding loops, on the other hand,
have zero signed crossings; so that the total chirality is the number of signed crossings of the
winding loops. The parity of the chirality and the parity of the number of crossings are the
same invariant.

12

https://scipost.org
https://scipost.org/SciPostPhys.7.3.032


SciPost Phys. 7, 032 (2019)

A B
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A B
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- B A
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+ A B
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B A
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-

b

a

+ -

Figure 8: Correspondence between chirality and signed crossing of loops: a (black)
and b (dashed) type loops cross at a C site. Left: They anti-cross when the chirality
of the black and white vertex sums to zero. Middle and right: They cross with a ±
sign when the chirality is ±1.

4.2 Conservation of the norm modulo 4 for odd number of crossings

Since the even sector is connected, we now restrict the configurations to those which have an
odd number of crossings and define

a · b = ax bx + ay by + az bz (37)

= ax bx + ay by + (ax + ay)(bx + by) (38)

= 2ax bx + 2ay by + ax by + ay bx . (39)

a·b is necessarily an odd integer, because in Eq. (39), ax by and ay bx cannot be simultaneously
odd or simultaneously even when the number of crossings, ax by − bx ay is odd: one is odd,
one is even. With a · b odd, a · b ≡ 1(mod 4) or a · b ≡ 3(mod 4), which, following a standard
convention, we note −1≡ 3(mod 4). So that a · b ≡ ±1(mod 4). Now, if we consider a · c, we
have

a · c = −a · b− 2(a2
x + a2

y + ax ay). (40)

But a2
x + a2

y + ax ay is odd, because ax , or ay , or both are odd. Because a · b is odd, we get a
sign change and a · c ≡ a · b (mod 4). Similarly, a · b ≡ b · c (mod 4). Hence we can define a
symmetric version,

I2 =
1
3
(a · b+ b · c + c · a) mod 4, (41)

where the three terms are, in fact, equal, giving I2 = ±1 (recall −1 ≡ 3 (mod 4)). It can also
be written by simple rearrangements,

I2 = −
1
6
(|a|2 + |b|2 + |c|2) mod 4= −n2 mod 4. (42)

In this form, we see that I2 is nothing but the norm squared of the total windings, modulo 4.
After a transformation along a, with a factor k [Eq. 24], we get,

I ′2 =
1
3
(a′ · b′ + b′ · c′ + c′ · a′) mod 4 (43)

= I2 − k(k+ gcd(ax , ay))â
2 mod 4. (44)
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We now show that the variation vanishes for all k. First, since both components ax , ay cannot
be simultaneously even in the odd sector, gcd(ax , ay) is odd; and k(k + gcd(ax , ay)) is even.
â2 results from the definition of the scalar product, Eq. (37): â2 = 2(a2

x + a2
y + ax ay) is even.

Therefore, k(k+ gcd(ax , ay))â2 is a multiple of 4 and I ′2 = I2. The same argument applies for
the other two transformations by symmetry. I2 is therefore a conserved quantity and, since it
takes two values, I2 = ±1, it defines two sectors, within the odd sector.

4.3 Conservation of the sign for odd number of crossings

The third invariant is associated to the observation that the dynamics cannot reverse the sign:
a given configuration (a, b, c) and its antipodal configuration (−a,−b,−c), when it exists,
belong to two different sectors. They cannot be distinguished by Ia

2 or I2 which are both
of even degree and have the same value for both configurations, so it must be proven by a
different invariant. We define two quantities,

I± =
1
2
[I6 + I±5 ] mod 4, (45)

where the sign ± refers to I2 = ±1, and

I6 = ax ay az bx by bz + bx by bzcx cy cz + cx cy czax ay az , (46)

I±5 = (ax ± ay)(ay ± az)(az ± ax)χ

+ (bx ± by)(by ± bz)(bz ± bx)χ

+ (cx ± cy)(cy ± cz)(cz ± cx)χ, (47)

where χ = 1
3(a×b+b×c+c×a) [Eq. (34)] is odd. We will show that I± are indeed conserved

by the dynamics in their respective sectors I2 = ±1 and allow to distinguish a configuration
from its antipodal configuration.

In the odd sector, one and only one component in each vector a, b and c is even (see
Eq. (49) below). I6, which contains the product of two such components, is therefore a mul-
tiple of 4, i.e. 1

2 I6 ≡ 0,2 (mod 4). Similarly, I±5 is an odd sum of products of four terms. In
each product, one term and only one is even, so that 1

2 I±5 is odd, hence 1
2 I±5 = ±1(mod 4), and

therefore I± = ±1. It takes opposite signs for (a, b, c) and (−a,−b,−c). Indeed, the first term
1
2 I6 is unchanged, but the second term, which carries the sign, is reversed, so that I±→−I±.
We have shown numerically that I± are conserved. They thus label the two “antipodal” sec-
tors. Here we give the explicit proof that I+ is an invariant. We first show that it is invariant
in permutations, e.g.

(a, b, c)→ (−b,−a,−c). (48)

I6 is symmetric in the permutation of a, b, c and has even degree so the change of sign has
no effect. The term (ax ± ay)(ay ± az)(az ± ax) becomes −(bx ± by)(by ± bz)(bz ± bx), but
χ = a× b→ (−b)× (−a) = −χ so the product is unchanged.

We now consider the transformations Ti(k) (i = a, b, c), with k = ±1, without loss of
generality. Since we have the invariance in permutations, we will always permute the config-
urations to an equivalent configuration identified by a value of (a, b, c)mod 2. We choose, for
instance,

(a, b, c) mod 2= (1,0, 1,0, 1,1, 1,1, 0), (49)

which is one of the six possible configurations for odd a× b, the other ones being obtained by
permutations of the three vectors (1, 0,1), (0,1, 1), (1,1, 0). It has three even components ay ,
bx and cz , so that ax by is odd, ay bx even, and the difference a× b is, indeed, odd.

For these configurations, I± simplifies and we give the simplified expression of I+, i.e when
I2 = +1.
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In order to simplify I6, we use the fact that the product of an odd by an even number
modulo 4 equals the even number: (2p+ 1)× 2n≡ 2n(mod 4). We thus have,

1
2

ax ay az bx by bz(mod 4) =
1
2

ay bx(mod 4), (50)

because ax az by bz is odd and 1
2 ay bx even, so that

1
2

I6(mod 4) =
1
2
(ay bx + bx cz + czay)(mod 4). (51)

We show that the sum of the last two terms vanish. If cz , which is even, is a multiple of
4, then 1

2 cz(bx + ay) ≡ 0(mod 4) because bx + ay is also even. If cz ≡ 2(mod 4), we get
cz = ax +ay + bx + by ≡ 2(mod 4). Consider ax + by . By using the definition I2 = a ·b(mod 4)
and Eq. (39), we get I2 = ax by(mod 4) = 1. Since ax by = (2n+1)(2p+1) = 1+2(n+p)(mod 4),
we must have n + p even. As a consequence, ax + by = 2 + 2(n + p) ≡ 2(mod 4), hence
bx + ay ≡ 0(mod 4). Therefore, in this case too, 1

2 cz(bx + ay)≡ 0(mod 4) and

1
2

I6(mod 4) =
1
2

ay bx(mod 4). (52)

We now consider I+5 [Eq. (47)], and replace (ax + ay) by −az etc.,

I+5 = −(ax ay az + bx by bz + cx cy cz)χ. (53)

We note that,
3ax ay az = a3

x + a3
y + a3

z . (54)

Since (2n+ 1)3 ≡ 2n+ 1(mod 8) and (2n)3 ≡ 0(mod 8), and since only ay is even, Eq. (54)
reduces, modulo 8, to

a3
x + a3

z (mod 8) = ax + az(mod 8) = −ay(mod 8). (55)

Now since 3× 2n≡ −2n(mod 8), we get ax ay az(mod 8)≡ ay(mod 8). We thus obtain,

1
2

I+5 (mod 4) = −
1
2
(ay + bx + cz)χ(mod 4). (56)

Consider χ(mod 4) = ax by − ay bx(mod 4) = I2 = +1 for the current value of the parity.
Note that χ is globally not conserved modulo 4 (only modulo 2) because it changes sign in
permutations. We can replace χ ≡ 1(mod 4) and combine the two equations,

I+ =
1
2
(ay bx − (ay + bx + cz))mod 4, (57)

which can be used provided that the configuration has the parity given by Eq. (49). Since,
however, it breaks the symmetry between the three types of loops, we have to consider the
three types of transformations in turn.

4.3.1 Invariance in the insertion of a-type loops

The transformation Ta(k = ±1) is combined with a permutation, Pa.Ta(k = ±1), in order
to conserve the correct parity pattern of Eq. (49). Applying this transformation to a general
configuration (a, b, c), we obtain

(a′, b′, c′) = (a− 2(g + k)â, b+ (g + k)â, c + (g + k)â), (58)
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where g = gcd(ax , ay). We see, indeed, that

(a′, b′, c′) mod 2= (a, b, c) mod 2, (59)

because g is odd in the odd sector and k = ±1. By using the transformation Eq. (58) and the
form [Eq. (57)] of the invariant, we obtain,

(I+)′a =
1
2
(a′y b′x − (a

′
y + b′x + c′z)) mod 4 (60)

= I+ +
1
2
(g + k)ây(gâx + 3) mod 4, (61)

after removing two multiples of 4. Now, 1
2(g+k) is an integer, ây is even according to Eq. (49),

gâx is odd (both are odd), so that (gâx+3) is even and the product is a multiple of 4. Therefore
(I+)′a = I+.

4.3.2 Invariance in the insertion of b-type loops

Consider the action of the parity-conserving transformation Pb.Tb(k = ±1),

(a′, b′, c′) = (a+ (g + k)b̂, b− 2(g + k)b̂, c + (g + k)b̂), (62)

where g = gcd(bx , by). The invariant is similar,

(I+)′b = I+ +
1
2
(g + k)b̂x(g b̂y + 3) mod 4, (63)

where (g + k), b̂x and (g b̂y + 3) are all even. The variation therefore vanishes, (I+)′b = I+.

4.3.3 Invariance in the insertion of c-type loops

Last, consider similarly the action of Pc .Tc(k = ±1),

(a′, b′, c′) = (a+ (g + k)ĉ, b+ (g + k)ĉ, c − 2(g + k)ĉ), (64)

where g = gcd(cx , cy). The invariant becomes,

(I+)′c = I+ +
1
2
(g + k)(ay ĉx + bx ĉy + (g + k)ĉx ĉy + 3ĉz) mod 4.

The terms in brackets are even, because (g + k) is even, and ay , bx , and cz are the three even

components. If g+k
2 is even, then the variation is a multiple of 4 and vanishes. Consider g+k

2
odd, in the rest of the proof. By using, again, (2p+ 1)× 2n≡ 2n(mod 4), we get

(I+)′c = I+ + (ay ĉx + bx ĉy + (g + k)ĉx ĉy + 3ĉz) mod 4

= I+ + (ay + bx + (g + k)− ĉz) mod 4,

where, in the second line, we have eliminated the odd factors multiplied by even numbers.
Note that g + k = 4n + 2 ≡ 2(mod 4). Note also that cz = gĉz = (4n + 1)ĉz where ĉz is an
integer by definition, implying ĉz ≡ cz(mod 4). We now replace ĉz by cz = ax + ay + bx + by ,

(I+)′c = I+ + (2− ax − by) mod 4.

Since ax + by ≡ 2(mod 4) (see above), we have therefore (I+)′c = I+.
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Table 2: Examples of configurations of winding numbers (a, b, c) with the smallest
norm n2, in the Kempe sectors labeled by (Ia

2 , I2, I±), for L mod 3= 0, 1,2 (from top
to bottom). One can check that a + b + c = 0, ax + ay + az = 0, a − b ≡ L(mod 3)
etc.

Ia
2 I2 I± (a, b, c) n2

0 - - 0 0
1 1 ±1 ±(2,−1,−1,−1,−1, 2,−1, 2,−1) 3
1 -1 ±1 ±(3,−1,−2,−3,2, 1,0,−1,1) 5

Ia
2 I2 I± (a, b, c) n2

0 - - (0,0, 0,−1,−1,2, 1,1,−2) 2
1 1 ± 1 ±(−3, 2,1, 2,1,−3,1,−3,2) 7
1 -1 −1 (−1, 0,1, 1,−1,0, 0,1,−1) 1
1 -1 1 (−3,4,−1,5,−3,−2,−2,−1,3) 13

Ia
2 I2 I± (a, b, c) n2

0 - - (0,0, 0,1, 1,−2,−1,−1, 2) 2
1 1 ± 1 ±(−3,1, 2,4,−1,−3,−1,0, 1) 7
1 -1 1 (1,0,−1,−1,1, 0,0,−1,1) 1
1 -1 −1 (−1,1, 0,3, 2,−5,−2,−3,5) 13

4.4 Number of sectors from the invariants

The three invariants Ia
2 , I2 and I± allow to label the Kempe sectors. We have Ia

2 = 0 for the
even sector which is connected, and (Ia

2 , I2, I±) = (1,±1,±1) for the odd sectors. We thus have
five sectors that define disconnected configurations.

In table 2, we give examples of the winding numbers with smallest norm n2 [as defined by
Eq. (17)], to show that each sector is, indeed, realized (provided that L is large enough). We
note that, when L is not a multiple of three, antipodal sectors do not always exist, but different
sectors of I± do exist. We also show the labels of the five large sectors in Fig. 6.

Since we have enlarged the number of winding configurations compared with the coloring
problem, we have checked that all the values of the invariants are also realized in the coloring
problem (see table 1).

There are still many disconnected sectors labeled by the same invariants (see Figs. 5 and
6) and this point is studied in section 5.

4.5 Symmetries

The two large sectors labeled by (1,1,±1) have the same size, because they are the chiral im-
age of each other in mirror plane symmetries P. For a given configuration of winding numbers,
there is always another configuration obtained by exchanging two axis among the x , y or z
axis. When I2 = 1, we see that I+5 in Eq. (47) is reversed in an exchange of axis (because χ
takes a minus sign). Hence I+ → −I+ and the two mirror configurations are in separate sec-
tors. Note, indeed, that there are special states (a, b, c)with ay = az , by = cz , bz = cy , bx = cx
(see the example in the top table of Table 2), which a mirror plane yz transforms effectively ac-
cording to (a, b, c)→ (a, c, b). An allowed permutation gives in turn (a, c, b)→ (−a,−b,−c)
which is the opposite of the original state. The antipodal transformation T , therefore, results
in a lattice symmetry operation when I2 = 1. As a consequence, the two sectors must have
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the same size. This symmetry implies an equal number of homotopy classes in the two sectors
(see the degeneracy in Fig. 6), and also an equal number of color configurations (see the mul-
tiplicity in table 1). Since a configuration in one of these sectors and its mirror image are not
connected, the dynamical evolution remains chiral.

The two other sectors (1,−1,±1) are nondegenerate, however. When I2 = −1, a configu-
ration and its mirror image are in the same sector: I−5 → I−5 [Eq. (47)] (χ cancels the sign of
say ax − ay), hence I− is invariant in mirror planes. In this case, the antipodal transformation
is not a symmetry. Note that, for a given (a, b, c), (−a,−b,−c) may violate the constraints
(see Eqs. (14)-(16)), so that the asymmetry of the constraints implies that of the two sectors
(1,−1,±1).

The dynamics conserves I+ = ±1 which distinguishes two degenerate chiral sectors, and
I− = ±1 that defines two antipodal achiral nondegenerate sectors.

5 Steric constraints, dilute limit

We argue that all the remaining disconnected sectors (see Fig. 6), which do share the same in-
variants (Ia

2 , I2, I±), cannot be distinguished by any other invariant. The remaining obstruction
is not a property of the transformations, but is of steric origin.

9
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18

18

18

18

18

18

18

18

18

18

9

9

9
9 18

Figure 9: Example of a Kempe sector with (Ia
2 , I2, I±) = (1,−1, 1) for L = 18, repre-

sented as a graph: nodes (winding number configurations (a, b, c), up to permu-
tations) are connected by the dynamics. Indicated is the minimal size L for the
configuration to fulfill the constraints, thus showing that the paths between L = 9
configurations are cut, giving 1→ 6 isolated sectors by steric obstruction.

We show this by allowing larger sizes at fixed and small winding numbers. As earlier, we
construct the Kempe sectors for a given size L. They are each characterized by a set of winding
numbers up to L. The same set of winding numbers can be considered at larger sizes L1 ≥ L
(provided that L1 ≡ L(mod 3)). We can now redo the construction of the sectors starting with
the same winding numbers. In the dynamics, larger winding numbers are generated and we
test whether they open new paths between the original winding configurations. In Fig. 9, we
give an example of the graph of a Kempe sector. The nodes are winding loop configurations
(a, b, c) (up to permutations), connected by edges when a dynamical transformation between
them exists. The number indicated in each node is the minimal size L for the winding num-
bers to fulfill the size constraints. We see then clearly that the winding numbers existing for
L = 9, for instance, get reconnected through winding number configurations that exist only
for L1 ≥ L. The path between them implies configurations with higher winding numbers.
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Figure 10: Multiscale reconnection of the odd Kempe sectors at size L when winding
numbers up to L1 are allowed. By increasing L1, the number of sectors decrease,
showing reconnections, down to the four (dashed line) odd sectors characterized by
the invariants. Decays as ∼ exp(−L1/L) are shown for comparison (solid lines).

H1,1,±1L
L1

H1,-1,1L
H1,-1,-1L

Figure 11: Configuration space of low-winding numbers as four hierarchical trees
(one for each invariant (1,±1,±1), two are identical by symmetry). Each point rep-
resents a Kempe sector. The level n ≥ 0, from bottom up corresponds to the system
size, L1 = 6+ 3n, i.e. higher winding numbers allowed. Only the lowest two levels
n= 0,1 include all the sectors. For n≥ 2, additional sectors are not shown.

In Fig. 10, we see that, as the size L1 increases, the number of sectors constructed for
size L decrease, so that new connections indeed appear. Moreover, in all cases considered,
all isolated odd sectors merge into four sectors (characterized by the invariants of section 4)
for large enough L1 (dashed line), i.e. when the system is diluted, |a|, |b|, |c| � L1. The
fact that the process converges to four means that there are no other invariants (it cannot go
lower than 4 because of the distinct invariants). There exist paths between the winding loop
configurations, provided that the size is large enough. In other words, the disconnection at size
L, beyond that due to the invariants, is a steric obstruction. This is illustrated in Fig. 11 where
all the odd Kempe sectors at L = 6, 9 are represented by points in the first two bottom levels.
The level n corresponds to the size L1 = 6+ 3n (n ≥ 0). The lower levels get reconnected at
higher levels (through higher winding numbers). Note that for n ≥ 2 not all the sectors are
shown.
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While this occurs for the winding number configurations, the reconnection could take place
through unphysical configurations (see section 3.3) and may be unphysical for the coloring
problem. As noted earlier, the configurations in the dilute limit are not expected to be con-
strained by the discreteness of the lattice, so that we expect all sets of winding numbers in this
limit.

The restoration of ergodicity (equilibration among the sterically-obstructed sectors) is de-
scribed in Fig. 10 by an exponential decrease ∼ exp(−L1/ξ), where ξ = L fits approximately
(solid lines). It means that the path between any two loop configurations with low winding
numbers implies configurations with higher winding numbers of order a few ξ (which we
could think of as higher energy states, if an energy were to be defined). Since there is a distri-
bution of higher winding numbers, the equilibration is thus a multiscale process. The image
is that of a space of configurations consisting of hierarchical trees (Fig. 11). A physical model
of equilibration of configurations with low winding numbers may thus involve the ultrametric
distance between sectors: the dynamics is expected to be slow [19].
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Figure 12: Probability distribution of norms, n2 in winding loop configurations, for
regular odd sectors and sterically-obstructed (odd) Kempe sectors (L = 150). Small
norms (see inset) are absent from the latter: linear (dashed line) and quadratic (solid
line) fits are added.

In order to confirm the connectedness of the space of configurations in the dilute limit for
larger L, we can study the distribution of winding numbers. In Fig. 12, we give the probability
distribution function of the norm squared, n2 = 1

6(|a|
2 + |b|2 + |c|2), over all configurations

for L = 150, by distinguishing configurations of regular or sterically-obstructed sectors. Over-
all, it is apparent that a randomly-chosen odd configuration has more chance to belong to a
sterically-obstructed sector. The probability for a configuration to be odd is 0.37 (0.63 to be
even), and within the odd sector, the probability is 0.65 to belong to a sterically-obstructed
odd sector (0.35 to a regular odd sector). Sterically-obstructed sectors have all norms above a
small size-dependent threshold. In the limit of small ( n

L )
2 � 1 (inset of Fig. 12), the number

of such sectors is vanishingly small, in ∼ ( n
L )

4 (solid line), whereas the number of regular
sectors varies like ( n

L )
2 (dashed line). A randomly-chosen configuration therefore belongs to a

regular sector with a probability 1−α( n
L )

2→ 1 in the limit n� L, and is hence connected to
all other configurations with the same label. This confirms the existence of a proper ergodic
dilute limit where the only obstruction to ergodicity is that described by the invariants. On
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the other hand, the probability to belong to a sterically-obstructed sector increases steadily as
n increases, in agreement with the picture that there is less and less space when n → L and
that steric obstruction is more and more prominent.

6 Conclusion

We have obtained a classification of the Kempe sectors on the regular hexagonal lattice for
generic sizes, based on the loop winding numbers. We have found a set of five sectors labeled
by three invariant parities that are polynomials of the winding numbers. The first invariant
has a simple geometrical interpretation, this is the parity of the number of crossings of the
winding loops. When this number is even, the sector is connected. When it is odd, it splits
into four sectors, two achiral and two chiral. The two chiral sectors have the same number of
classes (degenerate) as they are image of each other by lattice mirror symmetries. Thus, there
are configurations that break mirror symmetries, that the dynamics cannot restore (contrary
to spontaneous symmetry breaking). The two achiral sectors do not break the mirror sym-
metry and are nondegenerate. They are “antipodal”, a symmetry that is broken by the “box”
constraints. We assume that the invariants may be viewed geometrically as linking numbers
of flux lines on the lattice, which is embedded (or immersed) into a 3d manifold.

At fixed L, there are many additional undistinguished sectors that share the same invari-
ants. We have shown that they would be connected to the four odd sectors if there was enough
space to accommodate higher winding numbers. For these additional sectors, the problem is
therefore a steric obstruction, not a conservation law. We have thus argued that the set of three
invariants is complete. This allowed to describe the configuration space by distinguishing di-
lute from more dense configurations. While dense configurations can be sterically-obstructed,
a randomly-chosen configuration in the dilute limit |a|, |b|, |c| � L (where space is available)
belongs to one of the five sectors and can be connected to any other with the same label, with
no further obstruction. Moreover, the reconnection dynamics takes place on hierarchical trees
and involves a multiscale distribution of intermediate winding numbers. For this reason, the
equilibration dynamics of the low-flux lines, up to the conservation laws, is expected to be
“slow”. This gives some perspective as to how an entanglement of flux lines could lead to
slow dynamics [20]: here it results from the need of a distribution of higher-flux intermediate
configurations.
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A Sector with even number of line crossings is connected

We consider here the winding number configurations (a, b, c) with a × b even and show that
they are all connected by the dynamics, Eqs. (24)–(26). We restrict the proof for L a multiple
of three.

Start from the “0-sector” defined by a = b = c = (0,0, 0), which exists only when L is a
multiple of three. The sector is even since a× b = 0. It will be our target state. Create a pair
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of a-type winding loops,

a = 2m (65)

b = −m (66)

c = −m, (67)

where m is an arbitrary vector. A second transformation adds a pair of b-type loops with the
same m,

a = 3m (68)

b = −3m (69)

c = 0. (70)

Now we can add a pair of c-type winding loops with a different m1,

a = 3m −m1 (71)

b = −3m −m1 (72)

c = 2m1, (73)

and a× b = 6m1 ×m is even (since the parity is invariant).
Conversely, consider L a multiple of 3, and any (a, b, c) representing an even configuration.

When a× b = ax by − ay bx is even, we have to inspect 10 out of 16 parity configurations for
the four independent integers (ax , ay , bx , by).

(i) they are all odd. Then c = −a − b has three even components. Define m1 = c/2, it is
an integer vector, so is a+ c/2 = (a− b)/2. When L is a multiple of 3, the three components
of b−a are multiples of 3, according to Eq. (16). We can therefore define an integer vector m
such that 3m = a+ c/2. Now the vectors (a, b, c) have the form of Eqs. (71)-(73). Inverting
all the transformations above, transforms this sector onto the 0-sector.

(ii) they are all even. Again we can define m1 = c/2, and the same argument applies.
(iii) ax even, by odd, and ay even, bx odd. Then c = −a − b is odd. But a is even, so

define m1 = a/2 and the same argument applies again up to a permutation.
(iv) ax even, by odd, and ay odd, bx even. Then cx = −ax − bx is even, and cy = −ay − by

is even. Define m1 = c/2 etc. The other cases are similar.
Therefore any set of winding numbers (a, b, c) such that a× b is even can be cast into the

form of Eqs. (71)-(73) with the definition of two vectors m, m1 which by three transformations
can be transformed onto the “0-sector”. Therefore, any even configuration is connected to any
other even configuration.
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