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Abstract

Within the standard perturbative approach of Peierls, a charge-density wave is usually
assumed to have a cosine shape of weak amplitude. In nonlinear physics, we know that
waves can be deformed. What are the effects of the nonlinearities of the electron-lattice
models in the physical properties of Peierls systems? We study in details a nonlinear
discrete model, introduced by Brazovskii, Dzyaloshinskii and Krichever. First, we recall
its exact analytical solution at integrable points. It is a cnoidal wave, with a continuous
envelope, which may slide over the lattice potential at no energy cost, following Fröh-
lich’s argument. Second, we show numerically that integrability-breaking terms modify
some important physical properties. The envelope function may become discontinuous:
electrons form stronger chemical bonds which are local dimers or oligomers. We show
that an Aubry transition from the sliding phase to an insulating pinned phase occurs
when the model is no longer integrable.
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1 Introduction

In 1955, the instability of a simple linear metallic chain of equidistant atoms was predicted by
Peierls [1, 2]. Below a critical temperature, called Peierls temperature, a new state emerges
which is characterized by a lattice distortion associated to an electronic charge-density mod-
ulation. This state is called a charge-density wave (CDW) state. The current CDW theory
is essentially based on the Fröhlich model [3] where the Hamiltonian of an electron gas is
perturbed by an electron-lattice interaction which is linear with the lattice distortion (for par-
ticularly comprehensive reviews, see Refs. [4,5]). The Peierls transition then results from the
energy lowering of the occupied electronic states below the Fermi level which exceeds the en-
ergy cost of the elastic distortion at low temperatures. Linear response approximation for the
electrons has been extensively used in this theory: the static electronic Lindhard susceptibility
of a one-dimensional metal χ(q,ω= 0), calculated at first-order in perturbation theory, shows
a peak at q0 = 2kF , kF being the Fermi wavevector [6]. An atomic position modulation δxq0

with wavevector q0 then induces a proportional modulation of the electronic charge density
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δρq0
= gχ(q0, 0)δxq0

, where g is the so-called electron-phonon coupling constant. The elec-
tronic energies close to the Fermi level are modified and an electronic gap opens up due to the
perturbation induced by the lattice modulation. The total energy is minimized with respect
to the distortion parameter δxq0

, also fixing the charge modulation δρq0
and the electronic

gap. Below the Peierls temperature, δxq0
and δρq0

are non-vanishing and the CDW state is
stabilized [4, 5]. The resulting modulation of the position of atom i along the chain and its
electronic charge are given by

δx i ∼ δxq0
cos (q0ia+φ) , (1)

δρi ∼ δρq0
cos (q0ia+φ) , (2)

where a is the interatomic distance and φ a phase. One sees that when the parameter q0a
2π

is a rational number, the charge modulation δρi and the lattice distortion δx i repeat after a
period. The chain has a periodicity and the CDW is said to be commensurate. Reversely, when
q0a
2π is an irrational number, the chain has no periodicity and the CDW is incommensurate.
It was suggested by Fröhlich [3] that in the incommensurate case, the total energy does not
depend on the phase φ. In other words, there is a continuous degeneracy of the ground-state
with respect to the phase, and the charge and lattice modulation may move freely along the
chain: the CDW is not pinned by the lattice, it can slide freely. One says that the system has a
Fröhlich conductivity. Reversely, in the commensurate case, this continuous degeneracy is lost
and the CDW is pinned by the lattice [7].

Most discussions on CDW systems, in one or two dimensions, are based on the above linear
response scheme. Further approximations may ameliorate the theory, for example by replac-
ing the Lindhard susceptibility by the generalized susceptibility obtained within the random
phase approximation in order to include Coulomb interactions [8]. Other authors have also
developed strong electron-phonon coupling theories [8–11], especially for two-dimensional
CDW systems. However, these developments remain basically in the same perturbative frame-
work for the electrons and the results are not fundamentally modified: the CDW state results
from the instability of a metal, as proposed by Peierls.

Furthermore, whether or not the Peierls-Fröhlich theory applies to experiments remains a
controversial issue. Indeed, there is now a profusion of materials undergoing CDW transitions,
where the theory can be tested. Beside well-known quasi-one-dimensional (1D) compounds
[12,13] such as the trichalchogenides of transition metals (NbSe3 for example), many 2D and
even 3D CDWs exist. Notably, among the dichalchogenides, the commensurate/incommen-
surate 2D CDW states in 1T-TaS2, 2H-TaSe2 and 1T-TiSe2 were discussed by Rossnagel [14].
Based on detailed experimental ARPES data, he was able to show that it is the lowering of all
occupied electronic bands which stabilizes the CDW, not only the lowering of the electronic
state energies close to the Fermi level. Similarly, square nets of chalcogenides (Se or Te)
are present in many binary, ternary and quaternary compounds [15, 16]. All these square
nets undergo commensurate or incommensurate Peierls distortions which are described in
terms of various polychalcogenide oligomers formation in the nets [15–19]. Here again, as
noted by Patschke [16], the electronic band calculations show that the CDW stabilization is
dominated by low-lying electronic levels. Another striking example has been recently provided
by Gaspard [20]. Many covalent materials of columns 14-16 elements (examples are As, Se,
Te, Br, I) develop 3D networks of successive short and large atomic distances. These structures
appear as Peierls distortions from an unstable cubic structure. Yet, the electronic energy gain
involved in these distortions goes well beyond the simple perturbation of the levels close to
the Fermi level. A last challenging example is provided by the now common observations
of 2D or 3D, static or fluctuating, CDW orders in Cu-based high-Tc superconductors [21–25].
Although it is an ubiquitous phenomenon, the origin of these CDW orders remains elusive [26].
It however enlightens and renews the possibility of electron-based mechanisms (i.e. with an
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electronic “glue”) of superconductivity in cuprates [27–30].
Such observations contradict somewhat the simplistic Peierls-Fröhlich linearized frame-

work. In reality, in order to construct a more general theory of CDW, one needs first to con-
sider models with nonlinear electron-lattice interactions. Any realistic model is, by essence,
nonlinear. The minimal number of ingredients to describe the basic chemical situation is then
three. There is first an attractive term which gives a resonant bonding state for the electrons.
It decreases with the interatomic distance in a nonlinear way. Secondly, one needs a repulsive
part to avoid the collapse of the structure. These first two terms explain the chemical bonding
of atoms in a standard way. Finally, a pressure term is added which may represent the effect
of a real mechanical pressure, or may model a chemical pressure induced by the surrounding
atoms. All these ingredients form discrete models since any atomic structure is discrete. These
models have to be studied nonperturbatively, in order to find both the distortions and the
electronic energies self-consistently and without expanding a priori around a putative metallic
state.

In the present paper, we study such a nonlinear model in 1D, which was introduced by
Brazovskii, Dzyaloshinskii and Krichever [31]. We call it the BDK model and its definition is
given in section 2. In their original paper, the authors have shown that for special values of the
model parameters, the CDW problem can be solved exactly and the solution explicitly written,
whatever the electronic density of the chain. Owing to its theoretical importance, we discuss
and demonstrate the solution anew, partly in our own way, in section 3. The remarkable
result obtained by Brazovskii, Dzyaloshinskii and Krichever is due to the connection which
exists between the BDK model and some classical integrable models [32,33], such as the Toda
lattice [34, 35] and the Volterra lattice [36] (described in section 3.5). Another important
point is that the BDK model appears to be a discrete version of an earlier continuous Peierls
model [37,38]. The exact solution of that model also results from the integrability of nonlinear
equations, the Korteweg-de Vries (KdV) equations.

The exact solution of the BDK model is such that not only the incommensurate phases are
unpinned (a result that seems to strengthen the original views of Peierls and Fröhlich [1–3]),
but also, surprisingly, so are the commensurate phases. In other words, the discrete nature
of the lattice seems to have no effect. This may justify the use of continuous models. How-
ever, the situation is more complex and the question which naturally arises is then: what
happens beyond the range of parameters for which the model is integrable? Dzyaloshinskii
and Krichever have briefly discussed the issue [39]. They have recognized that when inte-
grability is lost, pinning should generically occur in the commensurate cases. They argue by
using an analogy with a model previously proposed by Aubry [40], that in the incommen-
surate case, two regimes should be distinguished [39]: a weak nonlinear regime where the
unpinned incommensurate phase is protected by the Kolmogorov-Arnold-Moser (KAM) the-
orem, and a strong nonlinear regime -the stochastic regime- where many pinned metastable
configurations could appear in the system. Soon after, Aubry and Le Daeron [41] have shown
that a sliding-to-pinned transition occurs for incommensurate ground-states by varying the pa-
rameters in two other discrete models: the Sue-Schrieffer-Heeger (SSH) model [42] and the
Holstein model [43]. These two models are intimately related to the BDK model and appear
as some limit cases (see section 2). The above sliding-to-pinned transition in the incommen-
surate CDW ground-state is an Aubry transition, originally called the transition by breaking of
analyticity [40]. It modifies the physics of CDW systems [44]. In particular, CDWs can hardly
be described in the stochastic regime by continuous models, owing to intrinsic pinning and the
presence of many metastable states separated by local energy barriers [45]. Thanks to the sim-
ilarity between the problem of CDW energy minimization and the time evolution of a discrete
dynamical system introduced by Aubry [40], the pinning is associated with the destruction of
the KAM tori of the dynamical system, when the nonlinearities become strong enough. The
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concomitant apparition of chaos or stochasticity is qualitatively discussed by Dzyaloshinskii
and Krichever when integrability is lost [39].

The present paper next provides a detailed numerical study of the effect of adding pertur-
bations that either break or conserve the integrability of the BDK model. In the commensurate
case (section 4.2), we establish a phase diagram when integrability is preserved, showing the
relative energies of the exact solutions. When integrability is lost, we show that the CDW is
always pinned, as expected on general grounds, and its shape modified. In the incommensu-
rate case (section 4.3), we find that integrability-breaking terms trigger an Aubry transition at
a certain threshold, beyond which the phase is pinned. Pinned phases are computed and have
locally ordered atomic structures, which are dimers or oligomers, distinct from the exact solu-
tions in integrable cases. The transition between pinned and sliding phases is found not only
by breaking integrability, but also by changing the external pressure, making experimental
verification possible.

2 The self-consistent electron-lattice BDK models

2.1 Definition

The BDK model is a combination and a generalization of two paradigmatic tight-binding mod-
els. The first one is due to Holstein and was called the molecular-crystal model [43], whereas
the second is known as SSH model [42]. They are sketched in Fig. 1. The Holstein model in
one dimension describes a chain of molecules i, each carrying an internal vibrational degree of
freedom bi which modulates the on-site electronic energy level. The electrons may move along
the chain with a constant hopping integral between molecules. The SSH model describes an
atomic chain and was originally introduced to explain the physical properties of polyacetylene.
Contrary to the Holstein model, in the SSH model there is a fixed on-site potential energy for
the electrons, but the hopping integrals ai for the electrons to hop from atom i to atom i + 1
are linearly modulated by the interatomic distances ℓi ,

ai = 1+α(ℓi − ℓ̄) , (3)

where ℓ̄ is the mean lattice spacing, and α a parameter which can be interpretated as an
electron-phonon coupling constant. The Hamiltonian of both models may be written with
dimensionless variables and an overall energy scale t, as follows:

HHolstein/t = −
∑

i,σ

(c†
i+1,σci,σ + h.c.) +

∑

i,σ

bic
†
i,σci,σ + ξ
∑

i

bi
2 , (4)

HSSH/t = −
∑

i,σ

ai(c
†
i+1,σci,σ + h.c.) + κ

∑

i

(ℓi − ℓ̄)2 . (5)

In these expressions, i label the sites (atoms or molecules), σ the electron spin, and (c†
i,σ, ci,σ)

are the usual (creation/annihilation) fermionic operators. ξ and κ are dimensionless param-
eters associated to the elastic energies of the distortions. For both models, the kinetic energy
of atoms is neglected and the variables {ℓi} (or {ai}) and {bi} are classical ones which have
to be determined self-consistently, in order to minimize the energy. The spirit of these models
is to keep the first linear and quadratic terms as an expansion in bi or (ℓi − ℓ̄).
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bi

bi

ai ∼ 1 + α(ℓi − ℓ̄)

ℓi

ℓi

ai ∼ e−ℓi

ℓi

ai ∼ e−ℓi

a) Holstein

b) SSH

c) BDK-Volterra

d) BDK-Toda

Figure 1: Illustration of the different models discussed in the text.

The BDK model [31] aims at describing the same physics of 1D chains but introduces some
important differences. It similarly has two versions that distinguish the “Volterra” case from
the “Toda” case.1

• The first BDK Hamiltonian (Volterra case) writes

H/t = −
∑

i,σ

1
2

e−
ℓi
2 (c†

i+1,σci,σ + h.c.) + κ
∑

i

e−
λℓi
2 + p
∑

i

ℓi . (6)

It is a modification of the SSH model (see Fig. 1), in that it assumes that the hopping
parameter is exponentially decreasing with the interatomic distance,

ai =
1
2

e−
ℓi
2 . (7)

By definition of the tight-binding approximation [6], the ai are indeed the overlap be-
tween two successive atomic (or molecular) wave functions and an exponential depen-
dence is a fairly realistic choice. Its special dimensionless form (7) is taken for the sake
of commodity, in particular to match the standard definitions in the classical integrable
models. The first term in the Hamiltonian leads to an effective attraction between atoms.
The second term is necessary to describe the formation of a chemical bond (see below),
it is repulsive and exponentially decreasing. Its range is controlled by the parameter λ.
The last and third term involves the pressure p which controls the mean distance ℓ̄ be-
tween the atoms. Since the distance between sites i and i+1 always satisfies 0< ℓi <∞,

1The use of the names “Volterra” and “Toda” is due to the connection with the classical integrable models with
the same names, that will be explicit in section 3.5. Note that in the BDK paper [31], the Volterra case is also called
model I, and the Toda case, model II.
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Figure 2: Two-body energy (Eq. 10). It has a minimum at ℓ = ℓ0, the equilibrium
length of an isolated covalent bond.

the variables ai satisfy the following constraint for all i,

0< ai <
1
2

. (8)

The model depends on bond length variables {ℓi} (or {ai}) that have to be self-consistent-
ly determined. An important difference with SSH is that it does not linearize the hopping
integrals around a hypothetical metallic state. As a consequence, the issue concerning
the cohesion of the chain, i.e. the formation of chemical bonds, is treated on an equal
footing with that concerning the CDW.

• The second BDK Hamiltonian (Toda case) writes

H/t = −
∑

i,σ

1
2

e−
ℓi
2 (c†

i+1,σci,σ+h.c.)+κ
∑

i

e−
λℓi
2 +p
∑

i

ℓi+
∑

i,σ

bic
†
i,σci,σ+ξ
∑

i

bi
2 . (9)

It is the same as the first BDK model but it contains two additional terms which involve
additional classical variables {bi} that describe the local Holstein vibrational degrees of
freedom (see Fig. 1). They also have to be self-consistently determined.

Let us consider a first and simple example of chemical bond interactione, that of Hamilto-
nian (6) with two sites, two electrons and p = 0. The hopping of electrons between the two
sites at distance ℓ gives a bonding state of energy −1

2 e−
ℓ
2 , which is filled by the two electrons

(spin up and spin down). The electronic energy is −e−
ℓ
2 and the elastic cost κe−

λℓ
2 . The total

energy written in units of 2t is

W0 = −
1
2

e−
ℓ
2 +

κ

2
e−

λℓ
2 , (10)

which is represented in Fig. 2, after normalization. It has a minimum at

ℓ0 =
2

λ− 1
ln(κλ) , (11)

which is the equilibrium length of the covalent bond. The dimer is stable only when κ > 1/λ
and λ > 1. We will always consider that λ and κ satisfy these two conditions.
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In the following, we are particularly interested in periodic configurations of the lattice. We
call N this period which is an integer, so that

ai+N = ai⇔ ℓi+N = ℓi , (12)

bi+N = bi , (13)

for all i. The total number of sites is L = NS, where S is the number of unit-cells in the system.
We thus have N independent variables to determine in the Volterra case, {a1, a2, . . . , aN}, and
2N in the Toda case by addition of the set {b1, b2, . . . , bN}.

The density per site c of pairs of electrons is taken as,

c =
r
N

, (14)

where r/N is an irreducible fraction.
When the configuration is incommensurate, the period N is infinite and c is an irrational

number. In numerical computations, it is convenient to approximate c with a sequence of
irreducible rational approximants rn/Nn where

rn

Nn
→ c , (15)

when n → +∞. An incommensurate configuration is thus approximated by commensurate
periodic configurations with period N = Nn.

2.2 General electronic band structure for an arbitrary 1D periodic lattice

We now determine the electronic band structure of the BDK models with arbitrary nearest-
neighbor hoppings {ai} and local potentials {bi}.

For a system with a discrete lattice periodicity N , the wavevectors k can be chosen in the
first reduced Brillouin zone [−πN , πN ]. A Bloch wave function with wavevector k may then be
written as

|Ψ(k)〉=
L
∑

i=1

ψi(k)c
†
i,σ|0〉 , ψi+N (k) = eikNψi(k) , (16)

where |0〉 is the empty state and L = NS (recall that L is the total number of sites and S
the number of unit cells). The periodic boundary conditions imply ψi+L(k) = ψi(k) so that
eikL = 1. We will choose S even for the sake of simplicity so

k =
2πn

L
, with − S/2< n≤ +S/2 . (17)

Since the first N amplitudes ψi(k) are independent complex numbers, one defines a vector,

ψ(k)≡t (ψ1(k),ψ2(k), · · · ,ψN (k)) ,

which satisfies the eigenequation,

H(k)ψ(k) = E(k)ψ(k) , (18)

where H(k) is the N × N square matrix defined by

H(k) =





















b1 −a1 0 . . . −aN eikN

−a1 b2 −a2 0 . . . 0

0 −a2 b3 −a3
. . .

...
...

. . . . . . . . . . . .
...

0
.. . . . . . . . . . . −aN−1

−aN e−ikN 0 . . . −aN−1 bN





















, (19)
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in the Toda case for N > 2. In the Volterra case, H(k) is the same, replacing bi by 0. Since
H(k) is an Hermitian matrix, it has N real eigenvalues Eν(k) labeled by ν= {1, · · · , N}, and N
eigenvectors ψν(k). The N energy bands {Eν(k)} completely determine the electronic struc-
ture. Also note that H(−k) = H(k)∗, which implies Eν(k) = Eν(−k).

We show in the Appendix A that the eigenvalues are given by solving the equation,

Q(E) = cos kN , (20)

where Q(E) is a polynomial of degree N , written as

Q(E) = A0

�

EN − I1EN−1 + · · · − IN

�

, (21)

where the amplitude A0 respects A0 ≡
(−1)N
2CN

, with CN =
∏N

i=1 ai . By introducing the length of
the unit-cell,

I0 ≡
N
∑

i=1

ℓi , (22)

one gets A0 = (−1)N 2N−1e
I0
2 . The other quantities Im, m = 1, . . . , N , that appear in Q(E), are

polynomials in the variables {ai}, {bi}. They can be derived explicitly at a given N , e.g. by
iteration over the amplitudes of the eigenvectors (as shown in Appendix A) or by the direct
calculation of the characteristic polynomial. As an example, for N = 3 in the Toda case, we
have

I1 = b1 + b2 + b3 ,

I2 = a1
2 + a2

2 + a3
2 − b1 b2 − b2 b3 − b1 b3 ,

I3 = b1 b2 b3 − b1a2
2 − b2a3

2 − b3a1
2 .

(23)

For N = 4, in the Volterra case (bi = 0), we have

I1 = 0 ,

I2 = a1
2 + a2

2 + a3
2 + a4

2 ,

I3 = 0 ,

I4 = −a1
2a3

2 − a2
2a4

2 .

(24)

The corresponding Q(E) with N = 4 is given in Fig. 3 (a). Note that the coefficients Im with m
odd vanish. That remains true for any even value of N in the Volterra case. As a consequence
Q(E) =Q(−E), so that if Eν(k) is a solution of Eq. (20), then −Eν(k) is another solution. The
energy spectrum is symmetric with respect to E = 0. This symmetry is not true in the Toda
case, however.

In the general case, for any N , the first terms can be immediately obtained, e.g.

I1 =
N
∑

i=1

bi , (25)

which is the trace of the matrix H(k). It can be chosen to be zero by adding a constant to the
energy. Similarly,

I2 =
N
∑

i=1

�

1
2

bi
2 + ai

2
�

−
1
2

I2
1 . (26)

The band structure equation (20) is an algebraic equation of degree N that has N real
solutions, Eν(k). We emphasize that the solutions Eν(k) are thus some functions of {Im}, the
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Figure 3: (a) Example of the polynomial Q(E) [Eq. (21)] for a periodic problem with
N = 4 in the Volterra case. (b) Corresponding generic band structure, Eν(k), solution
of Eq. (20). The bands are entirely determined by the three parameters I0, I2, I4. Note
the E→−E symmetry of the spectrum.

parameters of the equation, and not of the individual {ai}, {bi} (only through the Im). The
band structure is thus entirely determined by a number of parameters that is smaller than the
number of actual variables. Expected values of Q follow

−1≤Q(Eν(k))≤ 1. (27)

The positions of the energy bands can thus be deduced from the plotting of Q(E). An example
with N = 4 is given in Fig. 3 (b): it has four bands in the reduced Brillouin zone. Note that
gaps separate all the bands, which is the generic situation.

A periodic perturbation with periodicity N couples the degenerate energy states labeled by
k and k ± 2π

N and opens a gap. But the perturbation also couples the states labeled by k and
k± 4π

N , k± 6π
N , etc. This implies secondary gaps away from Fermi energy. However, there are

specific configurations, with some symmetries of the potentials and kinetic terms, where the
higher-order couplings effectively vanish, thus leaving the corresponding gaps closed.

2.3 Energy to be minimized for a periodic lattice

The total electronic energy Eelec of models (6) or (9) when the chain has periodicity N is
obtained by filling energy bands Eν(k) up to Fermi energy. Including spin degeneracy, it writes

Eelec = 2
∑

k,νocc.

Eν(k) . (28)

For a concentration c = r/N of pairs of electrons, the r lowest bands are fully occupied:
νocc. = 1, . . . , r and the sum over k extends in the whole first Brillouin zone. Thanks to the
periodicity of variables {ai}, {bi}, the elastic and pressure energies are equal in all S unit-cells.
For example, the following sum over the L sites of the chain becomes

κ
∑

i

e−
λℓi
2 = Sκ

N
∑

i=1

e−
λℓi
2 . (29)

It is thus convenient to define an energy W per unit-cell, and use 2t as the unit to eliminate
the spin degeneracy factor 2 in Eelec . The total energies of the two models write
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• in the Volterra case:

W =
1
S

∑

k,νocc.

Eν(k) +
1
2
κ

N
∑

i=1

e−
λℓi
2 +

1
2

p
N
∑

i=1

ℓi . (30)

• in the Toda case:

W =
1
S

∑

k,νocc.

Eν(k) +
N
∑

i=1

�

1
2
ξbi

2 +
1
2
κe−

λℓi
2

�

+
1
2

p
N
∑

i=1

ℓi . (31)

We now consider the integrable and nonintegrable cases which differ by the values of some
parameters.

2.3.1 Integrable BDK model

We first consider the case which was originally treated in Ref. [31], where the parameters were
taken to be

λ= 2 , κ= ξ/2λ−1 . (32)

Equations (32) restrict the space of parameters of the model but, even if they could be only
accidental, they are perfectly admissible. What matters the most is that they make the model
integrable. With conditions (32), the elastic energy writes

1
2
κ

N
∑

i=1

e−
λℓi
2 = ξ

N
∑

i=1

ai
2 = ξI2 , (33)

using Eq. (26) with bi = 0. Similarly, the pressure can be expressed in terms of I0. Finally, one
can check that the energies W take the form

W =
1
S

∑

k,νocc.

Eν(k) + ξI2 +
1
2

pI0 , (34)

for both Volterra and Toda cases. Since Eν(k) is a function of {Im}, the conditions (32) im-
plies that the total energy W is only a function of {Im}. We show later that the property
W =W ({Im})makes the model integrable. A further generalization of BDK models that keeps
this particularity has been introduced later [39]

W =
1
S

∑

k,νocc.

Eν(k) +
N
∑

m=0

ξm Im , (35)

for both Volterra and Toda cases, where ξ0 =
1
2 p and ξ2 = ξ. For m> 2, ξm are new parame-

ters describing more general elastic energies. The expressions of {Im} differ between Volterra
and Toda cases and are given in section 2.2. In the Volterra case, Im = 0 for odd m.

The main feature of integrability is that, whatever the special form the energy takes, it de-
pends on variables {ai}, {bi} only through Im = Im({ai}, {bi}). As a consequence, all solutions
{ai}, {bi} which satisfy Im({ai}, {bi}) = C st

m (where C st
m are some constants), are degenerate.

We discuss this point in more details in section 3.5.
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2.3.2 Nonintegrable BDK model

Second, we would like to find the solutions when the integrability is broken and test which
properties hold in these cases. Since we will mainly discuss the Volterra case, the simplest way
to make the model nonintegrable is to choose λ ̸= 2:

W =
1
S

∑

k,νocc.

Eν(k) + ξ
N
∑

i=1

ai
λ +

1
2

p
N
∑

i=1

ℓi , (36)

for Volterra case. Indeed, for λ ̸= 2, the energy does not depend solely on the Im. Recall that,
physically, λ is the ratio of two length scales and has no reason to be equal to 2.

For the Toda model we keep the special balance between the Jahn-Teller term and elastic
repulsion, κ= ξ/2λ−1, but allow similarly, λ ̸= 2,

W =
1
S

∑

k,νocc.

Eν(k) + ξ
N
∑

i=1

�

1
2

bi
2 + ai

λ

�

+
1
2

p
N
∑

i=1

ℓi , (37)

for Toda case.
The models (36) and (37) are sufficient to break integrability and are more generic. The

nature of the new solutions will be addressed in section 4.

2.4 Nonlinear minimization equations

In order to find the chain configuration self-consistently, one needs to minimize the energy
with respect to the variables of the model, for example,

∀i,
δW
δai

= 0 ,
δW
δbi

= 0 . (38)

These are the equations for the {ai}, {bi} that have to be solved. The difficulty is that they are
nonlinear equations in general. Explicit equations are derived in Appendix B.

For the sake of simplicity, let us focus our study on the Volterra case. One gets

δW
δℓi
= 0 , (39)

for all sites i.
The linear response consists in linearizing these equations close to a non distorted uniform

state, i.e. a metallic state of lattice constant ℓ̄. Writing

ℓi = ℓ̄+δℓi , (40)

and δℓi ≪ ℓ̄, the expansion of (39) at linear order in δℓ j gives

∑

j

Mi jδℓ j = 0 , (41)

where the matrix M involves the Lindhard charge or bond charge susceptibility (depending on
the model which is considered) calculated for the metal (see Appendix B). If the matrix M has
positive eigenvalues, the only solution is δℓi = 0 for all i and is a metal. When an eigenvalue
vanishes, however, the metallic state is unstable. In a 1D chain, the Lindhard susceptibility is
infinite for a modulation at q0 = 2kF , so that CDW instabilities develop at q0 for infinitesimally
small coupling strength.
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Given that the modulation is expected at q0, one assumes in the standard Peierls ap-
proach [4,5] that the solution of Eqs. (39) for the bond lengths ℓi is given by a simple cosine
Ansatz,

ℓi = ℓ̄+ u cos(q0iℓ̄+φ) , (42)

where u is the amplitude and φ a phase. For u = 0, the model is that of an undistorted
metal with lattice parameter ℓ̄. This approach assumes a weak modulation, u ≪ ℓ̄. The
energy spectrum is then calculated by including the resulting perturbation, at first order in
perturbation theory. The energy W of the Peierls Ansatz is calculated as function of u and φ.
Note that in the incommensurate case, the energy generally depends on u but not on φ: the
energy as a function of u and φ has a “Mexican hat” shape. The minimization of the energy
with respect to u,

δW
δu
= 0 , (43)

fixes the optimal modulation amplitude u and the energy gap at Fermi level: it is called the
“gap equation” and results from the special cosine Ansatz and from keeping the lowest order
terms in u in the energy including a logarithmic singularity.

In section 3, we explain the exact solutions of the BDK model at integrable points without
relying on the linear response and Peierls Ansatz, which proves in general incorrect. We detail
in section 4 the solutions of Eq. (39) which shape can be very different from the cosine and
brings important physical consequences.

3 Exact solution at integrable points

In this section, we review the minimization of the total energy of BDK models, W , at the special
points where they are integrable [Eqs. (34) or (35)]. The reader not interested in the explicit
derivation may skip most of it and read the exact solutions given in section 3.6.

In integrable cases, since this energy W depends only on the band structure parameters Im
and if we assume that those can be varied independently, we obtain the groundstate by solving
the N + 1 equations (m= 0, . . . , N),

δW
δIm

= 0 , (44)

which determine, in principle, the N+1 parameters Im. This approach is different from Peierls’s
one which introduces the Ansatz (42) and minimizes the energy with respect to the sole pa-
rameter u, which, in turn, fixes the (Peierls) gap of the band structure. Equations (44) replace
the standard gap equation (43).

As we will examine in details, it is not always true that the Im are independent parameters.
There are some special states, which play an important role, for which it is not true. These
states, called the g-gap states, do not have all gaps opened, as in the generic case, but only
a certain number g. This may be seen as the consequence of some special symmetries of
the chain configuration. In this case, the parameters Im are not all independent, so that the
number of equations (44) changes. In fact, we will see in section 3.3.2 that the exact solution
of the model in its simplest form (34), is the 1-gap Ansatz (g = 1) for the Toda case and the
2-gap Ansatz (g = 2) for the Volterra case.

In the generic case, the calculation of the gradients δW/δIm is done in section 3.1. For
the g-gap Ansätze, for which the Im are not independent quantities, the gradients are given in
section 3.2. The resulting equations are made explicit in section 3.3. The degeneracies of the
solutions are discussed in section 3.4. Finally, as reviewed in section 3.5, the expressions of the
g-gap Ansätze for the chain configuration defined by variables {ai}, {bi} are explicit, thanks to
a connection with classical integrable models. The solutions are summarized in section 3.6.
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3.1 Generic candidate solution: energy gradients

Let us consider first small independent changes from Im to Im + δIm, keeping the period con-
stant, and seek the corresponding linear change of Eν(k) at a given k. Eν(k), as a solution of
Eq. (20), is solely a function of all Im (m= 0, . . . , N), and its differential formally writes

δEν(k) =
N
∑

m=0

∂ Eν(k)
∂ Im

δIm . (45)

We recall that the Im themselves are functions of the variables ai , bi and the δIm can be also
expanded over the basis δai ,δbi by a similar expression. From Eq. (20) and the definition
(21) of Q(E), we get the important relation

Q′(Eν(k))δEν(k)− A0

N
∑

m=1

δImEν(k)
N−m +

1
2
δI0Q(Eν(k)) = 0 , (46)

for any eigenenergy Eν(k). It can be rewritten, assuming temporarily that Q′(Eν(k))) ̸= 0,

δEν(k)≡
N
∑

m=0

lm(Eν(k))
Q′(Eν(k))

δIm , (47)

with the definitions of the polynomials in E,

l0(E) ≡ −
1
2

Q(E) , (48)

lm(E) ≡ A0EN−m , (m≥ 1) , (49)

which are of degree at most N .
The change of the electronic energy (per unit-cell) when Im are changed to Im + δIm be-

comes,

δEelec =
1
S

∑

k,νocc.

δEν(k) =
N
∑

m=0

JmδIm , (50)

with

Jm =
1
S

∑

k,νocc.

lm(Eν(k))
Q′(Eν(k))

. (51)

The corresponding variation of the total energy (35) is

δW = δEelec +
N
∑

m=0

ξmδIm =
N
∑

m=0

(Jm + ξm)δIm , (52)

i.e.

δW
δIm

= Jm + ξm , (m= 0, . . . , N) . (53)

This is the expression of the gradient we were looking for. An explicit illustration of the deriva-
tion in the quarter-filled case, c = 1/4 (which will be useful in section 4.2), is given in Ap-
pendix C.

In the thermodynamic limit (S → +∞ with N fixed), the sum over k in Eq. (51) can be
transformed into an integral. For a given density of electron pairs c = r/N , the electronic bands
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are occupied up to ν = r. Let us call E−ν and E+ν , respectively the minimum and maximum of
the energy for the band ν. In that case, we may introduce the density of states, ρ(E) and write

∑

k,νocc.

→
r
∑

ν=1

∫ kF

−kF

Ldk
2π
=

r
∑

ν=1

∫ E+ν

E−ν

dEρ(E) , (54)

where the factor 2 for the spin has been removed from the very first definitions. When passing
onto an integral over E, the ±k degeneracy implies a factor 2, so that ρ(E) = L

π
dk
dE , which can

be calculated directly from Eq. (20),

ρ(E) = (−1)ν
S
π

Q′(E)
p

R2N (E)
, E−ν ≤ E ≤ E+ν , (55)

R2N (E) ≡ 1−Q2(E) , (56)

where the sign (−1)ν makes sure that the density of states is positive in each band. R2N (E) is
a polynomial of degree 2N that can be factorized: each of the root of Q(E)± 1 = 0 is a band
edge (see Fig. 3), so that R2N (E) ≥ 0 and (−1)νQ′(E) > 0 in the allowed energy bands. One
obtains for Eq. (51)

Jm =
r
∑

ν=1

(−1)ν
∫ E+ν

E−ν

dE
π

lm(E)
p

R2N (E)
. (57)

Since the numerator is a polynomial and the denominator is the square-root of a polynomial,
it is called a hyper-elliptic integral when N > 2. We will omit, thereafter, to explicitly write
the limits of the integrals and the sum over ν, and use the symbolic notation

r
∑

ν=1

(−1)ν
∫ E+ν

E−ν

dE
π
≡
∫

dE . (58)

Either written in the form of an integral, or of a discrete sum over k, Jm should be viewed as
a function of all the band parameters {In}.

3.2 Special g-gap Ansätze

In general, a periodic Hamiltonian system with period N has N distinct bands separated by
N −1 gaps. Some degeneracies may happen and some of the gaps may be closed accidentally
or as the consequence of some symmetry of the chain configuration. Suppose that some gaps in
the spectrum are closed. We are facing now an “inverse” problem: what is (are) the possible
chain configuration(s), i.e. the values of the local potentials {bi}, and hopping parameters
{ai}, that give rise to a particular spectrum, for which those gaps close (for a more general
definition, see Ref. [47])?

3.2.1 Closing gaps, dependency relations and symmetries

In the present 1D problem, the band gaps may occur at k = 0 or at the Brillouin zone edge,
k = ±π/N . Suppose that two consecutive bands ν and ν+ 1 touch,

E+ν = E−ν+1 ≡ e , (59)

so that there is no gap there. If the degeneracy occurs at k = 0, the algebraic equation,
Q(E) = 1 (obtained from Eq. (20)), has two equal roots, i.e. a double root e. If instead, it
occurs at k = ±π/N , equation Q(E) = −1 has a double root. Wherever it occurs, e is a double
root of R2N (E)≡ 1−Q(E)2 = 0.
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When an algebraic equation has a double root, its discriminant∆ vanishes [48]. A discrim-
inant is a nonlinear function of the coefficients of the equation (here the Im). Here, we want
to vary the coefficients from Im to Im+δIm with the constraint that the double root remains a
double root, i.e. we have the constraint δ∆= 0, which implies

δ∆=
N
∑

i=1

�

∂∆

∂ Im

�

δIm = 0 , (60)

and gives a linear dependency relation between all δIm. As an example, let us consider an
equation of degree 2, E2 − I1E − I2 = 0. The discriminant ∆ = I2

1 + 4I2 gives, at linear order,
a dependency relation δ∆ = 0 which writes 2I1δI1 + 4δI2 = 0. This condition ensures that,
however the coefficients Im vary, degenerate solutions remain so. More generally, one may
find such dependency relations at linear order in δIm, without computing the discriminants.
In our case, since a double root e of equation Q(E) = 1 is also a simple root of Q′(E) = 0, the
first term of Eq. (46) vanishes, Q′(e) = 0, and, keeping the notations defined above, one gets

N
∑

m=0

lm(e)δIm = 0 , (61)

which is a dependency relation of the δIm. One finds such an equation for any double root e
of R2N (E).

Equation (61) should be viewed as an Ansatz for the chain configuration, when a gap is
closed. To see this more clearly, let us rewrite it as a system of equations in ai variables,

N
∑

m=0

lm(e)
δIm

δai
= 0 , (62)

for all sites i. Since Im are functions of {ai}, {bi}, these equations are local equations that
determine some constraints or symmetries on the hopping parameters, {ai} and the potentials,
{bi}. This defines some special Ansatz of the chain configuration. We give an explicit example
in section 4.2.

Equations (61) are formal conditions forcing the matrices H(k) to have a spectrum with a
closed gap at e (see also [33,49]). More generally, similar conditions apply for other problems,
for example for the continuous Schrödinger equation.2

3.2.2 Energy gradients with closed gaps

When the spectrum has g gaps with g < N − 1, the gradient of the energy, Eq. (50) can
be simplified. Since the {δIm} are no longer independent in that case, the gradient can be
rewritten as a sum over the independent ones. In appendix D, we prove the following result

δEelec =
g+1
∑

m=0

GmδIm , (63)

which involves a sum over g + 2 independent terms, and where

Gm =

∫

dE
gm(E)
Æ

P2g+2(E)
. (64)

gm(E) and P2g+2(E) are two polynomials defined in appendix D. Note that the expression of
the integrals Gm also simplifies. There are still hyperelliptic in general, but with a lower degree
2g + 2. For the solution of the BDK model, they reduce to elliptic integrals [31].

2In the case of the continuous Schrödinger equation with a periodic potential, an infinite number of gaps open in
the k2 spectrum, unless the periodic potential is carefully chosen. This issue is discussed in the context of periodic
KdV in Ref. [49]. For example, the Schrödinger equation has a unique gap if the potential is a Weierstrass elliptic
function with an amplitude precisely equal to 2 (Lamé equation).
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3.3 Gap equations become equations for the entire band structure

3.3.1 Generic case

The minimization of the energy gives

0= δW =
N
∑

m=0

(Jm + ξm)δIm , (65)

where δW stands for the differential of the function W ({Im}). For generic points in the phase
space (i.e. almost everywhere), the Im are functionally-independent.3 It implies the linear
independence of the δIm. Note that this is so far an assumption: there may be special so-
lutions (at nongeneric points) where the δIm are dependent. This occurs solely [49] for the
g-gap Ansätze that will be considered below. The most generic solution, if it exists, implies
Jm + ξm = 0, i.e.

1
S

∑

k,νocc.

lm(Eν(k))
Q′(Eν(k))

+ ξm = 0 , m= 0, . . . , N . (66)

These are N +1 coupled “gap equations” for the N +1 unknowns I0, . . . , IN that determine the
band structure (Toda case). In the Volterra case, only the equations with even m exist. Note
that the Eq. (66) are rather formal because Eν(k) is not known in general.

One can replace the sum over k by the integral (57) in the thermodynamic limit using the
special notation defined in (58). For the BDK model in its simplest form (ξ0 =

1
2 p, ξ1 = 0,

ξ2 = ξ, ξm = 0 for m≥ 3), the “gap equations” take the following form (N > 2):
∫

dE
EN−m

p

R2N (E)
= 0 , 3≤ m≤ N , (67)

∫

dE
EN−2

p

R2N (E)
+ ξ = 0 , m= 2 , (68)

∫

dE
EN−1

p

R2N (E)
= 0 , m= 1 , (69)

∫

dE
l0(E)
p

R2N (E)
+

p
2
= 0 , m= 0 . (70)

In these equations, starting from m = N , the integrals involving the polynomials lm(E) are
replaced by integrals involving powers of E, using the fact that many of them vanish. Similarly,
recalling that l0(E) =

1
2Q(E) is a polynomial of degree N , but taking advantage of the fact that

integrals in Eq. (67) vanish, one can replace the integral in Eq. (70) by one involving only EN .
Note that all these integrals are pure functions of {Im}.

These nonlinear equations, provided they have solutions, fix the parameters {Im} as func-
tion of the model parameters, i.e. fix the entire electronic band structure and the total energy
of the system. They are more general versions of the usual gap equation of CDW which controls
the spectrum at the Fermi level [4].

Eventually, as shown in Ref. [31], there is no solution to this system of equations, i.e. there
is no set of I0, . . . , IN that can be extracted from the model parameters (p,ξ), because the
integrals (67) have constant sign integrants and cannot vanish. Thus, the solution cannot
be at a generic point in the phase space. For the generalized BDK model (35), however, the
integrals (67) do not vanish anymore (ξm ̸= 0 for m ≥ 3) and the existence of a solution
remains an open question.

3Two functions f and g are functionally-independent at a point p if their gradients are linearly independent
(noncollinear) at p. This is also a condition that the constants of motion in integrable systems must satisfy [51].

17

https://scipost.org
https://scipost.org/SciPostPhys.14.3.051


SciPost Phys. 14, 051 (2023)

3.3.2 Special Ansätze: possible metastable states

The independence of all δIm assumed above is not true in all parts of the phase space. For
some special values of the ai , bi , the δIm are dependent. We have seen that this is precisely
the case if some gaps in the band structure are closed. When only g gaps are open, one has to
use Eq. (63) for the gradient to get,

0= δW =
g+1
∑

m=0

(Gm + ξm)δIm , (71)

which is a sum over the g + 1 independent δIm. Similarly,

Gm + ξm = 0 , m= 0, . . . , g + 1 , (72)

giving g + 2 nonlinear equations for the g + 2 independent Im.

• For the BDK model, Eq. (34) (ξm = 0 for m≥ 3), one uses Eq. (64) for Gm and the defi-
nitions of the polynomials gm(E) in appendix D. As above, one can replace the integrals
involving gm(E) by integrals over some powers of E,

∫

dE
E g+1−m

Æ

P2g+2(E)
= 0 , 3≤ m≤ g + 1 , (73)

∫

dE
g2(E)
Æ

P2g+2(E)
+ ξ = 0 , m= 2 , (74)

∫

dE
g1(E)
Æ

P2g+2(E)
= 0 , m= 1 , (75)

∫

dE
g0(E)
Æ

P2g+2(E)
+

p
2
= 0 , m= 0 , (76)

where, for example, in the second line, the integrand contains only a term in E g−1 since
all other integrals (73) vanish. Note that these integrals exist only for g > 1.

If g > 1, following the same argument as above, there is no solution to these equations.
If g = 1, only the last three equations remain in the Toda case, and they do have a
solution in general (the integrals, which are elliptic for g = 1, can be inverted). We
emphasize that this is the most important result obtained by Brazovskii, Dzyaloshinskii
and Krichever in their paper [31]: a minimum of the energy is realized for the 1-gap
Ansatz, in the Toda case. In the Volterra case, a slight modification of the argument is
needed. The equations with odd m (in particular Eq. (75)) do not exist and the solution
is the 2-gap Ansatz [31] (see also Ref. [50]), which results from the E→−E symmetry.
We present numerical check of these claims afterwards.

• For the generalized BDK model, Eq. (35), with finite ξm, the integrals (73) do not vanish
anymore and other solutions with g > 1 may exist. All the Ansätze with different g
become possible solutions for the minimization equations. However, one must discard
these solutions in the following cases:

– there is no solution {Im} to these equations and this g-gap Anzatz is not an ex-
tremum.

– a solution {Im} exists, but the corresponding {ai}, {bi} do not respect physical con-
straints, for instance ℓi > 0.
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– a solution {Im} exists, but is not an absolute minimum, only a local minimum or
maximum. In that case, one needs to compare its energy with that of the other
solutions, in order to qualify it.

Therefore, for the generalized BDK model, many metastable states -the g-gap states-
may coexist. We will consider in section 4.2 the simplest example of a quarter-filled
band, and discuss the various possible Ansätze.

3.4 An implicit solution: definition of the degenerate manifold of states

The gap equations (of the previous section) allow to find, in principle, the actual values of Im,
for some given model parameters. Once all Im are known, the ai , bi are implicitly determined
by the equations

Im = C st
m , m= 0, . . . , N , (77)

where Im are polynomials of {ai}, {bi} (for examples, see Eqs. (23)-(24)). These equations
define an algebraic manifold in the phase space, of dimension 2N , spanned by the variables
{ai}, {bi}. By construction, the energy W , which only depends on {Im}, is constant on this
manifold, so that it is a degenerate manifold.

How large is the degenerate manifold? Is it a single point (or a few isolated points), or
is there a continuous degeneracy? Note that even the “generic” Ansatz in the current model
has a very special property. Since all gaps are opened in that case, the N + 1 (resp. N

2 + 1)
nonzero Im are independent in the Toda case (resp. Volterra). The dimension of the space is 2N
(resp. N), so that the manifold associated with this Ansatz has dimension 2N−(N+1) = N−1
(resp. N − (N

2 + 1) = N
2 − 1), which implies a large continuous degeneracy and the existence

of N −1 (resp. N
2 −1) zero modes (known as phasons in the CDW context). When some gaps

are closed, the dimension is, in general, less. In particular, for the 1-gap and 2-gap Ansätze,
we will see that there is a single zero mode. An exact parametrization can be given, thanks
to the existence of an integrable model with explicit solutions. In this case, the degenerate
ground-state manifold is a Liouville torus, as we will see next.

3.5 An explicit solution from the connection with classical integrable models

The problem has an explicit connection with classical integrable models, namely Toda or
Volterra lattices.

A classical model with 2N dynamical variables is integrable in the sense of Arnold and
Liouville if there are N conserved quantities which are independent functions of the variables
and in involution [32, 51]. In that case, there is a canonical transformation to a new set of
action-angle variables (Im,ϕn) where Im are the N conserved quantities ( İm = 0) and ϕn are
the N angle variables with a simple time evolution, ϕn =ωn({Im})t.

It is known since the 1970’s that the Toda and Volterra lattices are classical integrable
models and some analytic solutions of the nonlinear dynamical equations are known. From
this connection, as we recall below, it is known how to construct all matrices of the form (19)
(including the case when bi = 0) that have a spectrum with a given number of gaps, i.e. it is
possible to construct the g-gap potentials. They have been extensively studied in the past and
many examples are known, e.g. KdV [32,33].
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3.5.1 Integrable Toda chain

The Toda lattice is a 1D chain of N classical anharmonic oscillators governed by the following
classical Hamiltonian [35],

H({pi}, {x i}) =
N
∑

i=1

p2
i

2
+ e−(x i+1−x i) , (78)

where x i+1− x i ≡ ℓi is the dimensionless distance between two consecutive atoms at positions
x i and x i+1. By noting

bi ≡
pi

2
, ai ≡

1
2

e−
xi+1−xi

2 , (79)

the nonlinear Toda equations of motion are [35,52],

ḃi = 2(ai−1
2 − ai

2) ,

ȧi = ai(bi − bi+1) ,
(80)

for i = 1, . . . , N . Periodic boundary conditions are assumed, i.e. aN+1 ≡ a1, bN+1 ≡ b1. These
equations of motion have a remarkable property, they can be rewritten as the time evolution
of a pair of “Lax matrices”. The way to construct them is given explicitly by Flashka [52], who
defines H(0) and A, two matrices of size N × N , by

H(0) =





















b1 −a1 0 . . . −aN
−a1 b2 −a2 0 . . . 0

0 −a2 b3 −a3
. . .

...
...

. . . . . . . . . . . .
...

0
.. . . . . . . . . . . −aN−1

−aN 0 . . . −aN−1 bN





















, (81)

A=





















0 −a1 0 . . . aN
a1 0 −a2 0 . . . 0

0 a2 0 −a3
. . .

...
...

. . . . . . . . . . . .
...

0
.. . . . . . . . . . . −aN−1

−aN 0 . . . aN−1 0





















. (82)

Note that H(0) is real and symmetric and A is real and antisymmetric. The important point is
that the equations of motion (80) can be recast in the form,

Ḣ(0) = [H(0), A] . (83)

The evolution of H(0)(t) subject to this equation is unitary, i.e. H(0)(t) and H(0)(0) are related
by a unitary transformation. An immediate consequence is that the N eigenvalues of H(0) are
conserved quantities when the variables ai(t), bi(t) obey the Toda nonlinear equations (80).
In other words, the spectrum of H(0) is invariant when the variables evolve under the Toda
flow. Since there are N independent conserved quantities and 2N variables, it is a classical
integrable model in the sense of Arnold and Liouville.

The connection with the BDK problem arises because H(0) is precisely the matrix defining
the tight-binding problem, Eq. (19), at k = 0. The eigenvalues of H(0) being conserved,
the coefficients of its characteristic polynomial are also conserved. They are precisely the
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coefficients Im, defined by Eq. (21), which are therefore also constants of motion of the Toda
chain. The Im form a set of action variables and the level sets Im = C st

m are the Liouville tori of
the classical integrable model (for corresponding angle variables, see Ref. [35]).

Back to the minimization of the Peierls problem, a solution of the Toda equations of motion,
parametrized by the time t, conserves the same Im, and since the energy W depends only on Im,
W is also conserved. The configurations ai(t), bi(t) have the same energy W than the initial
configuration ai(0), bi(0). The solution of the equations of motion thus provides continuously
degenerate solutions of the Peierls model parametrized by t.

Some solutions of the Toda equations of motion are explicitly known. In particular, if the
initial conditions ai(0), bi(0) (or the Im) are such that the matrix H(k) has a single gap, then
any ai(t), bi(t) define the same spectrum with a single gap. In fact, the one-gap solution is
precisely the original constant profile solution, Toda’s cnoidal wave [34], rewritten as,

ai(t) = ā

�

ϑ3(k0i + vt, q)ϑ3(k0(i + 2) + vt, q)
ϑ2

3(k0(i + 1) + vt, q)

�1/2

,

bi(t) = v̄ + v

�

ϑ′3(k0i + vt, q)

ϑ3(k0i + vt, q)
−
ϑ′3(k0(i + 1) + vt, q)

ϑ3(k0(i + 1) + vt, q)

�

,

(84)

with ϑ3(z, q) the Jacobi ϑ-function defined by its Fourier series (see Appendix F for details),

ϑ3(z, q) = 1+ 2
+∞
∑

n=1

qn2
cos(2πnz) , (85)

where z is a real number here (but could be a complex number). ϑ3(z, q) is a periodic function
in z with period 1 and depends on a parameter q, called the nome, which satisfies 0 ≤ q < 1.
This parameter determines the weights of the harmonics. In the limit q → 0, the function is
close to a cosine with small amplitude 2q (and at q = 0, it becomes a constant, 1). When
q→ 1, on the contrary, it contains many harmonics and becomes highly distorted. Examples
of plots of ϑ3(z, q) can be found in appendix F.

At t = 0, the solution depends on some parameters. Apart from the speed of the center of
mass, v̄ which describes the collective translational motion of all atoms, the solution is charac-
terized by a dimensionless wavevector k0, an amplitude ā and a shape/amplitude parameter q.
First, to ensure that the variables ai(t) and bi(t) are periodic in space, ai+N (t) = ai(t), etc.,
one needs because of the periodicity of ϑ3(z, q),

k0 =
r
N

, (86)

where r is an integer. The other parameters can be chosen arbitrarily, and characterize a given
initial condition.

In order for Eqs. (84) to be a solution of the nonlinear equations of motion (80), the
parameter v has to satisfy the condition (see Ref. [53] for a correction of the initial result of
Toda),

v = ±
ϑ1(k0, q)
ϑ′1(0, q)

ā , (87)

which depends on the amplitude ā and ϑ1(z, q) is defined in Appendix F.
The solution has some definite values for the conserved quantities {Im}, such as

N
∏

i=1

ai(t) = āN =
1

2N
e−
∑N

i=1 ℓi(t)/2 , (88)
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which proves that the total length is conserved. One gets

ā =
1
2

e−
I0
2N . (89)

Furthermore, from the second Eq. (84) and the periodic boundary conditions, one finds,

I1 =
N
∑

i=1

bi(t) = v̄N , (90)

which is the conservation law of the total momentum or that of the trace of the matrix H(0),
since all eigenvalues are conserved. I2 can be computed by

I2 =
N
∑

i=1

ai(t)
2 −

N
∑

i=1

bi(t)bi+1(t) , (91)

and is conserved. Eq. (89) determines ā knowing I0, Eq. (90) determines v̄ knowing I1 and
finally Eq. (91) determines q knowing I2. The other Im, m > 2 are no longer independent
parameters for the 1-gap solution, as we have seen in section 3.2.1, so that there is a complete
equivalence between (I0, I1, I2) and (ā, v̄, q), the parameters of the solution. We emphasize that
this is the very special cnoidal wave solution of the Toda equations of motion, which moves
without deformation and can be seen as a “soliton train” [34,35]. It has a single gap in the spec-
trum (H(0) has many doubly degenerate eigenvalues), the position of which depends on k0.4

Some other, multi-gap, solutions are known, and can be expressed with multi-dimensional ϑ-
functions.5 They are more complicated and depend on further parameters. They will not be
useful in the following.

It is remarkable that all matrices H(0) with a single gap are known and take the form of
Eq. (81) with {ai}, {bi} explicitly given by Eqs. (84), where vt, noted φ below gives a free
parameter for this family of solutions.

Since the exact solution of the BDK model at integrable points (in its nongeneralized ver-
sion) is given by a 1-gap Ansatz, its explicit form is necessarily given by Eqs. (84). As we have
seen, its explicit parameters (ā, v̄, q) are in direct bijection with (I0, I1, I2), extracted by solving
the “gap equations”. Therefore, the Toda-BDK model gives a continuous family of degenerate
extrema, parametrized by the continuous parameter t (or φ = vt).

3.5.2 Integrable Volterra chain

Volterra nonlinear equations write [36],

ȧi = ai(ai−1
2 − ai+1

2) , (92)

for i = 1, . . . , N . Periodic boundary conditions aN+1 ≡ a1 are chosen. This model is also
integrable and relates to Toda’s one [36]: the pair of Lax matrices involves the same matrix
H(0) (Eq. (81)), but with bi = 0, and a matrix A defined by,

A=











0 0 a1a2 0 . . . −aN−1aN 0
0 0 0 a2a3 . . .
−a1a2 0 0 0 . . .

. . .
0 . . . 0 0











. (93)

4Note that a potential with wave-vector k0 mixes, in k-space, the modes k and k ± k0, k ± 2k0, etc. and opens
gaps at those locations in the energy spectrum. For the 1-gap potential, only the first gap is opened. When the
periodicity is N and the spectrum folded in the reduced Brillouin zone, the position of the gap thus depends on r
in k0 = r/N .

5For the original derivation in the context of KdV, see Ref. [54]. In the context of the Toda chain, see Ref. [55].
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The pair of Lax evolves again according to

Ḣ(0) = [H(0), A] , (94)

when the variables ai obey Volterra equations. Thus, similarly to the previous section, Eq. (92)
defines an isospectral evolution: the eigenvalues of H(0) and all coefficients Im are indepen-
dent of t. In particular, the energy defined by the BDK model (34), which is a pure function
of Im, does not vary in time. Any solution of (92), evolving with time, remains at the same
energy and defines a degenerate manifold of states for the BDK model.

Consider the following particular solution, which is related to Toda’s solution by a Bäcklund
transformation [34],

ai(t) = ā
�

ϑ3(k0i + vt, q)ϑ3(k0(i + 3) + vt, q)
ϑ3(k0(i + 1) + vt, q)ϑ3(k0(i + 2) + vt, q)

�1/2

, (95)

where

v = ±2
ϑ1(2k0, q)
ϑ′1(0, q)

ā2 . (96)

Fixing the amplitude ā, the wavevector k0 =
r
N , where r is an integer to ensure the period-

icity, and the initial shape parameter q, completely determines the initial condition that will
propagate as a wave, without deformation, at speed v. Note that the change of variables,

ai =
1
2 e−ℓi/2 leads to the conserved averaged length ℓ̄ and ā = 1

2 e−
ℓ̄
2 . For this solution, the

spectrum of H(0) has two gaps (as a consequence of the symmetry with respect to E = 0): it
is the 2-gap Ansatz which is thus the explicit solution of the BDK model in the Volterra case.
Depending on r in k0,4 the degenerate eigenvalues of H(0) occur in a different order. As in
Toda’s case, other special solutions are known but will not be useful here.

3.6 Conclusion

In conclusion of this section, the simplest BDK model at integrable points given by Eq. (34)
has explicit solutions for the ground states of the chain configuration. The ground-states form
a degenerate manifold of dimension one. The expression of the ground state is parametrized
by a single continuous parameter [31]:

• Toda case: the solution is the following 1-gap Ansatz. The chain configuration {ai}, {bi}
is given by Eqs. (84) (replacing vt by φ and fixing k0 = c):

ai(φ) = ā

�

ϑ3(ic +φ, q)ϑ3((i + 2)c +φ, q)
ϑ2

3((i + 1)c +φ, q)

�1/2

,

bi(φ) = v̄ + v

�

ϑ′3(ic +φ, q)

ϑ3(ic +φ, q)
−
ϑ′3((i + 1)c +φ, q)

ϑ3((i + 1)c +φ, q)

�

.

(97)

• Volterra case: the solution is the following 2-gap Ansatz. The chain configuration {ai}
is given by Eq. (95) (replacing vt by φ and fixing k0 = c):

ai(φ) = ā
�

ϑ3(ic +φ, q)ϑ3((i + 3)c +φ, q)
ϑ3((i + 1)c +φ, q)ϑ3((i + 2)c +φ, q)

�1/2

, (98)

ℓi(φ) = ℓ̄+ ln
ϑ3((i + 1)c +φ, q)ϑ3((i + 2)c +φ, q)
ϑ3(ic +φ, q)ϑ3((i + 3)c +φ, q)

. (99)
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Figure 4: Example of two degenerate CDW ground states: the bond lengths ℓi ac-
cording to Eq. (99) with φ = 0 and φ = 0.03. The period is N = 21 sites and 2
unit-cells are shown with a density of electron pairs c = 8/21, ā = 0.25, q = 0.1.
The small zero energy deformation between the two curves is the phason mode.

In both cases, the energy of the configuration does not depend on the free parameter φ. It
ensures that the CDW can slide between the different degenerate states at no energy cost. This
result, which holds at integrable points, is valid for both the commensurate and incommen-
surate CDW. An example of plot of ℓi , Eq. (99) is given in Fig. 4 for two degenerate solutions
(corresponding to two different values of φ).

The parameters of the solutions (ā, v̄, q), or the independent parameters {Im} are obtained
by solving the nonlinear “gap equations”. The parameters {Im} also determine the entire band
structure: the Peierls gap at the Fermi level is open (and so is the symmetric gap with respect
to E = 0 in the Volterra case) while all other secondary gaps are closed, which is a specificity
of these 1 and 2-gap Ansätze. Strictly speaking, the solutions are not only extrema, but from
an analysis of small fluctuations, they are minima [56].

For the generalized BDK model at integrable points (35), all g-gap Ansätze are possible
extrema: it is not known in this case which of them is the ground state and it certainly depends
on the model parameters.

We emphasize that the degeneracies result, at least in the commensurate case, from the
very special choice of the BDK model W . The integrability of the Toda chain, for exam-
ple, ensures that there is a canonical transformation from {ai}, {bi} to action-angle variables
{Im}, {ϕm}. A canonical transformation is a bijective nonlinear change of coordinates [51], so
that any generic model, not necessarily at integrable points, can be expressed in terms of the
new variables by

W ({ai}, {bi}) = Ω({Im}, {ϕm}) . (100)

The BDK approach assumes that the model depends only on the {Im} and does not take into
account the dependence in the {ϕm}, which would lift the degeneracy of the solutions. The
motion on a Liouville torus generated by the Toda or Volterra equations implies no energy
change in the Peierls model, thanks to this special choice.6 We will illustrate the lifting of the
degeneracy for a generic model in section 4.

6Alternatively, one could construct a model with an exact energy for the 1-gap Ansatz by including conjugate
variables. For this Ansatz, all but one angular variables are time-independent [35], so that if W depends on the
unique time-dependent variable ϕ, the degeneracy is lifted: the solution describes a pinned CDW with a Peierls-
Nabarro barrier.
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4 Beyond integrability

In this section, our concern is to understand what happens when the BDK model departs from
integrable points in the parameter space. We will focus exclusively on the Volterra case, but
our qualitative conclusions remain the same in the Toda case.

On general grounds, one expects that the degeneracy of the exact solutions, parametrized
by the continuous parameter φ that describes free sliding, should be lifted, because the BDK
model would no longer depend solely on the coefficients {Im} (see Eq. (100)). In that case,
the states would be pinned. The situation is, however, more subtle. The change of regime
from freely sliding states to pinned states is characteristic of an Aubry transition and we will
show that such transitions occur here.

The Aubry transition, originally called the transition by breaking of analyticity, is associated
to nonlinear terms in the equations as well as to chaotic transitions [40, 57, 58]. Indeed, the
minimization equations,

∀i ,
δW
δℓi

= 0 , (101)

are essentially nonlinear equations for the chain configuration variables {ℓi} (for example see
Eq. (B.7) in appendix B). They can be viewed as a discrete-time map (where i plays the role
of discrete time) where ℓi is a function of the previous ℓ j , j < i. Since this map is nonlinear,
a chaotic transition may take place when the nonlinearity is strong enough: from the regular
integrable solutions, the system can enter a stochastic regime characterized by the destruction
of KAM tori and the rising of chaotic regions in the phase space [40,57,58]. This is the stochas-
tic regime qualitatively suggested by Dzyaloshinskii and Krichever [39] for the present model.
On the other hand, when the nonlinearity is small enough, KAM tori (evolving from Liouville
tori of the integrable system) may nevertheless survive in incommensurate cases, thus preserv-
ing integrable sliding solutions. In a one-dimensional system as it is the case here, the Aubry
transition between the two regimes is characterized by the apparition of discontinuities in the
envelope function of the CDW modulation (which are nonanalyticities due to the destruction
of KAM tori) [41, 44], which is defined and computed below for the present model. Further-
more, in the stochastic regime, many metastable states emerge (at higher energies) due to
chaotic regions and coexist with the ground-state. It is important to stress that, although the
ground-states are obtained inside the stochastic (chaotic) regime, they remain either periodic
(in the commensurate case) or quasi-periodic (in the incommensurate case).

After the definition of the envelope function in section 4.1, we examine two examples, a
commensurate case, c = 1/4 (in section 4.2) and an incommensurate case, c = (3−

p
5)/2 (in

section 4.3).

4.1 Definition of the envelope function, Aubry breaking of analyticity

Consider a wave with a modulated amplitude ai at site i and wavevector 2πc. The definition
of the envelope function7 is aimed at filtering out the fast oscillations of the wave, which are
necessarily discontinuous for a model with discrete sites (such as that in Fig. 4). It will replace
a fast cosine modulation, e.g. ai = u cos(2πic) by the 1-periodic function, f (φ) = u cos(2πφ),
i.e. f (ic) = ai . This definition allows one to address the issue of the continuity or analyticity
of the envelope function f .

In the incommensurate case, the wave is not periodic and c is an irrational number. There
is an infinite number of distinct amplitudes {ai}. The envelope function f is defined to be a

7It is also called the “hull” function. The envelope of a wave is generally defined as a smooth curve connecting
the maxima or minima, this is not the definition we use here.
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periodic function with period 1, i.e. f (φ + 1) = f (φ), and

f (ic) = ai . (102)

Since the numbers ic (mod 1) cover densely the interval [0, 1] when c is irrational, the func-
tion f is well-defined.

In the commensurate case, the wave is periodic with c = r/N and period N . The wave is en-
tirely determined by a finite number of amplitudes {a1, . . . , aN}. The numbers φi = ic (mod 1)
take N discrete values inside [0,1], so that the function

f (φi) = ai , (103)

is defined only at the N discrete points φi . To extend f to the entire interval [0,1], one could
choose other close commensurabilities, for example,

cm =
mr + rp−1

mN + Np−1
. (104)

Indeed, when m increases, cm → c = r/N and the points φi = icm(mod1) fill more and more
the interval [0,1]. It thus makes sense to define an envelope function f in [0, 1] as the limiting
function when m → +∞. In practice, in the incommensurate case as well, we consider a
sequence of rational approximants of c, cn = rn/Nn (see Eq. 15), and only define the envelope
functions fn(φi) at the Nn points, φi = ic (mod 1). When n increases, the number of points Nn
increases and fn(φi) will converge onto f (φ) defined in the interval [0,1].

At integrable points (as in section 3), we have analytic solutions of the form,

ai(φ) = f (ic +φ) , (105)

where φ characterizes a given solution and f is periodic of period 1, see e.g. Eq. (98). If c
is irrational, it is thus exactly of the form (102). If c is rational, there is no difficulty since f
does not depend on c and one can choose a close irrational number for example. f is thus
the envelope function. At integrable points, it is, therefore, a continuous function, both in
commensurate and incommensurate cases.

Away from the integrable regime, we will see the emergence of discontinuities in the enve-
lope function: this is the breaking of analyticity characterizing the Aubry transition. We will
argue that it occurs abruptly for the commensurate case. For the incommensurate case, the
continuity of the envelope function may persist away from integrable points, at least in certain
regions of parameters.

4.2 Example of commensurate solution: c = 1/4

In this section, we consider the BDK model (Volterra case) at quarter filling c = 1/4. Since
the chain has a periodicity of N = 4 sites in this case, the present example is the simplest, yet
nontrivial example where the BDK results can be tested: the chain is defined by the only four
inequivalent bond length variables, (ℓ1,ℓ2,ℓ3,ℓ4).

At integrable points, the ground state of the simplest BDK model [Eq. (34)] was argued
to be the 2-gap Ansatz. We will compare that result with the numerical one. Furthermore,
we consider two kinds of perturbations: one that conserves integrability (the generalized BDK
model of Eq. (35)) in sections 4.2.1-4.2.3. This allows us to understand whether or not the
other g-gap Ansätze with g > 2 could be the ground state of some generalized model. In
section 4.2.4, we consider a perturbation that explicitly breaks integrability and compute the
solutions numerically.
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4.2.1 Solving the “gap equations” at integrable points

At integrable points, the energy of the generalized BDK model takes the form

W =
1
S

∑

k

E1(k) +
2
∑

m=0

ξ2m I2m , (106)

where only the first band (out of four) is filled. The model parameters are ξ0 = p/2, ξ2 = ξ
and ξ4 (defined in Appendix C). The model depends solely on the {Im} and the minimization
leads to (Eq. (65)),

δW =
2
∑

m=0

(J2m + ξ2m)δI2m = 0 , (107)

J0, J2, J4 are given in Appendix C. By considering the different g-gap Ansätze, we obtain dif-
ferent “gap equations”. Solving them allows to extract the optimal band structure parameters
{Im}, and determine the stability of the different phases in parameter space and the corre-
sponding energies.

Generic 3-gap Ansatz

In the most generic case, the four bands are separated by three gaps, as in Fig. 3. We
expect the distortions to be generic in the phase space, so that all δIm must be independent.
From Eq. (107) and the definitions of J0, J2, J4 in Appendix C, the “gap equations” then write

1
S

∑

k

Q(E1(k))
Q′(E1(k))

= p , (108)

1
S

∑

k

A0E1(k)2

Q′(E1(k))
= −ξ , (109)

1
S

∑

k

A0

Q′(E1(k))
= ξ4 . (110)

They are three nonlinear equations for the three unknowns I0, I2, I4. We have solved them
numerically for given model parameters. However, it is not always possible to find a set of
I0, I2, I4 satisfying these equations. For example, if ξ4 = 0, there is no solution to these equa-
tions, as originally shown by BDK. Indeed, it is clear that the left-hand-side of Eq. (110) has
Q′(E1(k)) < 0 for all k (see Fig. 3 (a)) and is therefore strictly negative: ξ4 must be nega-
tive, in order to have a chance to have a 3-gap solution. Similarly it is also clear that p and
ξ must be positive. The zone where the three equations have a solution that, furthermore,
respects the constraints (C.5), is shown by the grey area in Fig. 5. A direct way to determine
it is to compute the three sums for a large sample of physically-allowed coefficients I0, I2, I4
which values are chosen in a compact set. Outside this area, the 3-gap phase is no longer an
extremum and other phases have to be sought. Once I0, I2, I4 are known, the energy W of the
3-gap Ansatz (which depends only on I0, I2, I4) can be computed. It is given as function of ξ4
in Fig. 6 (green circles) for p = 0.02 and ξ= 1, as an example.

2-gap Ansatz

Consider the situation of Fig. 7 where the gap at E = 0 (k = 0) is closed. By imposing this
extra condition, which implies a condition on the {Im}, we impose a dependency relation of the
δIm, as we have seen in section 3.2.1. First, which symmetry of the chain configuration does
correspond this degeneracy? The degeneracy implies that the discriminant of the algebraic
equation Q(E) = 1 vanishes, i.e. (see appendix C),

I4 = −2C4 . (111)
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Figure 5: Regions of existence for the various phases at c = 1/4: the 3-gap phase
exists only in the grey area. The 2-gap phase exists everywhere except in the “no
solution” region where the constraints, ℓi > 0 for all i, are not fulfilled. The 0-gap
phase (not shown) exists wherever the other phases exist. Here, p = 0.02.

Deriving this relation with C4 =
1
16 e−I0/2 leads to

δI4 +
1
2

I4δI0 = 0 , (112)

which indicates that δI4 and δI0 are dependent. Note that it can be found without the explicit
form of the discriminant, thanks to Eq. (46). From the definition, I0 = −2

∑

i ln 2ai ,
δI0
δai
= − 2

ai
,

one obtains a series of equations,

ai
δI4

δai
= I4 , (113)

which implies that ai
δI4
δai

is a constant, independent of i. With the definition of I4, Eq. (C.3) in
Appendix C, these equations become,

a1
2a3

2 = a2
2a4

2 = −
I4

2
. (114)

It means that the distortions ui , away from the average, ℓi ≡ ℓ̄+ ui satisfy

u1 = −u3 and u2 = −u4 . (115)

This is a particular symmetry of the chain modulation. Any perturbation of the Hamiltonian
respecting this symmetry, whatever its strength, leaves the gap at zero energy closed.8 This is
the special 2-gap Ansatz for N = 4.

In the minimization equation (107), use the dependency relation (112) to replace δI4, and
the independence of δI0 and δI2 to obtain the two “gap equations”,

J0 +
p
2
+

1
2
ξ4 I4 +

1
2

J4 I4 = 0 , (116)

J2 + ξ = 0 , (117)
8This is somewhat different from a periodic perturbation in the continuous Schrödinger equation, where one-

gap potentials have finite-amplitudes (see footnote 2).
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Figure 6: Comparison of energies for the various solutions, 0-gap, 2-gap, or 3-gap.
We see that the 2-gap Ansatz is always at lower energy, whatever ξ4. Here p = 0.02,
ξ = 1. The values of ξ4 between the two dashed lines correspond to the physical
region of stability of the 3-gap state for ξ= 1 (see Fig. 5).

which are rewritten

1
S

∑

k

1− cos kN
Q′(E1(k))

= −p− ξ4 I4 , (118)

1
S

∑

k

A0E1(k)2

Q′(E1(k))
= −ξ , (119)

thanks to A0 I4 = −1 (which is zero discriminant condition) and Q(E1(k)) = cos kN . These are
two nonlinear equations for two unknowns variables I2 and I4, which are solved numerically.
Alternatively, BDK replaces the sum over k by elliptic integrals that can be inverted with elliptic
functions. It turns out that they have a solution in the whole range of the parameter space
shown in Fig. 5: the physical constraints Eqs. (C.5) are also fulfilled, except in the region called
“no solution”. The energy of the 2-gap Ansatz is given in Fig. 6 (in red squares).

0-gap Ansatz (metal)

Consider finally that the gaps at k/π = 1/4 in Fig. 7 vanish (both the low energy and the
high energy gaps have to vanish simultaneously). As above, it is possible to find an additional
dependency relation from the zero discriminant. In this case, we have an undistorted metallic
chain respecting a translational symmetry with a single parameter to optimize, its length. Its
optimal energy is obtained in the thermodynamic limit and shown in Fig. 6 (black diamond).

By comparing the energies of the three considered states in Fig. 6, we see that the 2-gap
Ansatz is always the lowest energy state, whatever ξ4. It is lower than that of the metal (which
proves the Peierls transition). It is also lower than the 3-gap Ansatz in the stability region (in
between the two dashed lines) where both states coexist. The two energies are very close for
ξ4 ∼ −2.5, because the third gap of the 3-gap Ansatz closes continuously and the two states
merge at the same time. These results have been confirmed by a direct numerical minimization
(see section 4.2.3).

All the g-gap solutions may be extrema of the energy, at the condition that the “gap equa-
tions” have a solution. In the present example, where a perturbation ξ4 is added to the stan-
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Figure 7: Band structure of the 2-gap Ansatz for N = 4: the bands have now two
gaps. The gap at E = 0 is closed (compare with Fig. 3).

dard BDK model, the 2-gap Ansatz still remains the lowest energy state.

4.2.2 Implicit solution: degenerate manifold of states

Once the parameters I0 (or C4), I2, I4 are known for given model parameters (as shown in
the previous section), one can obtain the distortions, ai . They can be obtained by solving the
equations,

I2 = a1
2 + a2

2 + a3
2 + a4

2 , (120)

I4 = −a2
2a4

2 − a1
2a3

2 , (121)

C4 = a1a2a3a4 , (122)

where I2, I4, C4 are given constants. Three equations in a 4D space (a1, a2, a3, a4) define, in
general, a 1D manifold. All points on this curve have the same Im and are therefore degenerate:
they are all equally valid solutions. It is easy to use Eqs. (121) and (122) to eliminate a3 and
a4 and obtain two possible solutions,

I2 = a1
2 + a2

2 −
I4

2

�

1
a1

2
+

1
a2

2

�

±

q

I2
4 − 4C2

4

2

�

1
a1

2
−

1
a2

2

�

, (123)

which defines two curves in the (a1, a2) plane, when I4 ̸= −2C4 (Fig. 8, left) or one when
I4 = −2C4 (Fig. 8, right). The solution for (a1, a2) is anywhere on these curves, and (a3, a4)
are simply obtained from

a1
2a3

2 =
−I4 ±
q

I2
4 − 4C2

4

2
, (124)

a2
2a4

2 =
−I4 ∓
q

I2
4 − 4C2

4

2
. (125)

We note that a1a3 ̸= a2a4 when I4 ̸= −2C4 and can be interchanged by symmetry (they play
the same role in the translation). When I4 = −2C4,

a1
2a3

2 = a2
2a4

2 = −
I4

2
, (126)
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which is the symmetry responsible for the absence of zero-energy gap in the spectrum of the
2-gap state, already discussed in Eq. (114). One can define an order parameter,

M = a1
2a3

2 − a2
2a4

2 = ±
q

I2
4 − 4C2

4 , (127)

that is zero in the 2-gap phase and nonzero in the 3-gap phase.
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Figure 8: Degenerate 1D manifolds showing the possible values of a1, a2 for the 3-
gap Ansatz (left) and the 2-gap Ansatz (right, continuous line) for p = 0.02,ξ = 1
and ξ4 = −2 [Eq. (123)]. The discrete blue points are from direct numerical mini-
mization starting from random configurations (section 4.2.3), and fall precisely onto
the calculated line. The black point is the optimal metal (same parameters). Away
from integrability (λ ̸= 2), the continuous degeneracy is lifted since all the random
configurations fall onto the same set of discrete points, related by translation sym-
metry: pink points for λ = 1.98,1.95, 1.9, red points for λ = 2.03, 2.06,2.1 (same
other parameters).

In both cases (2 or 3 gaps), the solutions lie in a 1D manifold (with one or two curves),
so there is a continuous degeneracy that can be characterized by a single zero-energy phason
mode. The solutions are unpinned commensurate CDW. The metal (or 0-gap) state is obtained
from the 2-gap one when the “radius” of the 1D manifold vanishes. Indeed, the right-hand-
side of Eq. (123) has a minimum which is reached at the uniform state a1

4 = a2
4 = − I4

2 when
I4 = −2C4. This minimum is represented by a point (in black on the diagonal a1 = a2 of
Fig. (8). The degenerate manifold continuously evolves when the gaps successively close, by
the coalescence of the two curves onto a single one and the shrinking of the remaining curve
onto a point.

In summary, for commensurate quarter filling, the distortions are nonzero but the modu-
lation can be continuously deformed without energy cost. The sliding property results from
the special choice of the energy that depends only on the Im of the band structure. For larger
N , the degenerate manifold is of higher dimension, and one has, in general, more phason
modes. For given model parameters, we have found that the lowest energy state is the 2-gap
state. This approach allows one to visualize the degenerate chain configurations, even for the
higher-energy Ansätze.

We now solve numerically the minimization problem for the variables ai , instead of solving
the nonlinear “gap equations” and taking a solution from the degenerate manifold. This allows
one to check whether the lowest energy state found in section 4.2.2, is indeed a minimum.
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Since one knows, from the Volterra classical integrable model, the exact form of the distortions
that give a spectrum with 2 gaps, one can compare the numerical solution with the exact
one. Furthermore, one can modify the model, such as adding terms that cannot be expressed
in terms of the {Im} and observe how the commensurate phases acquire some pinning, as
generally expected.

4.2.3 Numerical minimization compared to the exact solution

For a given set of model parameters at integrable points, we find the ground-state configu-
rations of the chain (a1, a2, a3, a4) by a direct numerical minimization of the energy W (see
appendix E). The various solutions are obtained by minimization of many randomly distorted
chains as initial conditions: many degenerate solutions are thus obtained. For example, for
p = 0.02, ξ = 1, ξ4 = −2, the solutions are shown in Fig. 8 (right) in blue points: they fall
perfectly onto the expected degenerate manifold of the 2-gap Ansatz (in solid line). Once the
{ai} are known, the values of Im are computed and are in perfect agreement with those ex-
tracted by solving the “gap equations”. Furthermore, we find that the 2-gap phase is always the
ground state, as originally shown by BDK for ξ4 = 0. When ξ4 varies, the 3-gap phase is never
found as a minimum, although it corresponds to a higher-energy extremum in the parameter
region delimited by the grey area in Fig. 5. It may be either a maximum or a metastable state
with a small basin of attraction.
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Figure 9: Various degenerate solutions for the CDW distortions a1, . . . , a4 in the inte-
grable case (λ = 2): numerical results (blue circles) and exact results (lines). Here
p = 0.02, ξ= 1, ξ4 = 0→ I0 = 6.321, q = 0.225. In the nonintegrable case (λ ̸= 2),
the solutions are non degenerate and are shown by the pink points (λ = 1.9) -the
middle point is twice degenerate, and by the red points (λ= 2.1) -the two points are
twice degenerate, corresponding to the structures shown in Fig. 11.

In Fig. 9, we plot directly the four ai for various degenerate solutions (in blue solid circles).
Numerically, the points are obtained by fixing the first distortion a1 to various exact values
and let the other distortions relax in the minimization procedure. Fixing a1 is done here for
representation purpose, so as to plot as a function of a phase φ. The exact result for the 2-gap
Ansatz is given by Eq. (98):

ai(φ) = ā
�

ϑ3(ic +φ, q)ϑ3((i + 3)c +φ, q)
ϑ3((i + 1)c +φ, q)ϑ3((i + 2)c +φ, q)

�1/2

, (128)
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for i = 1, . . . , 4. The parameters of the solution are all fixed (except φ): c = 1/4 ensures that

the single gap opens at the Fermi energy; ā = 1
2 e−

I0
2N , I0 and I2 were obtained from section 4.2.1

by solving the “gap equations”. Since I2 =
∑N

i=1 ai
2 is a function of q, the parameter of the

ϑ3 function, q is numerically determined. Therefore, in the exact solution above, there is no
free parameter left, except φ which reflects the continuous degeneracy, i.e. the one-parameter
family of ground states. The four curves ai(φ) are plotted in Fig. 9 and are in perfect agree-
ment with the numerical results, thus confirming that the 2-gap Ansatz is the ground state at
integrable points.
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Figure 10: Envelope functions defined by Eq. (105) at the integrable point λ = 2
(continuous blue curve) and computed numerically at λ = 1.99: the points for
c = 11/43, 21/83, 31/123 (magenta, orange, red) converge onto the limit envelope
function of c = 1/4 (discontinuous dashed line at the limit). The four points for
c = 1/4 at λ= 1.99 are also shown (large pink points). Here p = 0.02, ξ= 1. There
is thus an abrupt Aubry transition at λ= 2 in this simple commensurate case c = 1/4.

Two special configurations have to be noticed. First, note that a change of φ by φ + 1/4
corresponds to a translation of the bonds, so that in Fig. 9 the same translated configurations
are found. At φ = 0 (or equivalently at φ = 1

4 , 1
2 , 3

4), the configuration consists of two neigh-
boring short bonds of equal length (a trimer) followed by two long bonds of equal length. At
φ = 1

8 = 0.125 (or at equivalent points), the configuration has a single short bond (a dimer)
surrounded by two equal-length bonds, followed by a longer bond. As we have emphasized,
these configurations are degenerate with many others.

The envelope function f , defined by Eq. (105), is thus directly obtained from Eq. (128). f
is periodic with period 1, and continuous in this integrable case. It is represented by the solid
line (for λ= 2) in Fig. 10.

4.2.4 Numerical minimization for nonintegrable cases: Aubry transition

We now consider the BDK model (36) away from integrable points,

W =
1
S

∑

k

E1(k) + ξ
N
∑

i=1

ai
λ +

1
2

p
N
∑

i=1

ℓi . (129)

33

https://scipost.org
https://scipost.org/SciPostPhys.14.3.051


SciPost Phys. 14, 051 (2023)

When the ratio of length scales λ ̸= 2, the model does not depend solely on the {Im} and is no
longer integrable. The minimization of W is therefore now exclusively numerical: the bond
lengths {ℓi} (or {ai}) are self-consistently determined numerically (see Appendix E).

For λ < 2, we find the chain configuration shown in Fig. 11 (left): the four atoms are
represented in their effective positions (atom 1 is fixed at the origin). The short bond (here
between atoms 2 and 3) is represented by a thick line and corresponds to the formation of
a dimer, where the pair of electrons ensures the covalent bonding: the unit-cell, shown by a
dashed rectangle, is periodically repeated, giving a

L1SL1 L2 L1SL1 L2 . . . (130)

sequence, where L1 and L2 are two different long bonds and S is the short dimer bond. The
electronic density is stronger on the two sites of the dimer, but nonzero elsewhere and is shown
in Fig. 11 by the color code. Contrary to the integrable case, starting the minimization from
many random configurations always leads to the same solution, up to the four translations
(which move the strong bond to any one of the four bonds). The continuous degeneracy has
been lifted and one of the solutions has now the lowest energy: the solution corresponds
to a slight modification of the solution φ = 1

8 . The comparison is given in Fig. 9 where this
solution is indicated by pink circles (the middle circle corresponds to the two equal distortions).
Similarly, in Fig. 8, the new solution, instead of being continuously degenerate, corresponds
to four discrete pink circles, which can exchanged thanks to the translational symmetry.

It is still possible to define an envelope function f , as explained in section 4.1. For c = 1/4,
the numbers ic (mod 1) take only four values, 1/4, 1/2, 3/4, and 1 (= 0 (mod 1)), so that
f can be defined only at those four points by f (1/4) = a1, f (1/2) = a2, f (3/4) = a3 and
f (1) = a4. They are represented by the large pink points in Fig. 10. To define the function
outside these points, consider the commensurabilities cm = (m + 1)/(4m + 3), in particular
11/43, 21/83, 31/123 which are closer and closer to c = 1/4. The points icm (mod 1) fill
more and more densely the interval [0, 1] when m increases and a true envelope function can
be defined by the limit of successive set of points and is represented by a dashed line in Fig. 10.
At λ= 1.99, that limiting function is not a continuous smooth curve but has clear abrupt steps.
At λ= 2, the envelope function, represented by a solid line in Fig. 10 is continuous. The lifting
of the degeneracy away from integrable points is associated with the opening of discontinuities
in the envelope function. An Aubry transition occurs abruptly at λ = 2 in the commensurate
case.

For λ > 2, the situation is different: the degeneracy is also lifted but the structure selected
is different (see Fig. 11, right). A trimer is formed with a sequence of bonds

LSSLLSSL . . . , (131)

i.e. two short (S) and two long (L) bonds repeating. The points a1, a2 are also shown in Fig. 8,
they are slightly away from the degenerate manifold and at a different place than for λ < 2.
It is also reported in Fig. 9 by the red circles, and corresponds to the φ = 0 structure. The
envelope function can be defined as in the previous paragraph and is also discontinuous.

Importantly, in both cases, the continuous degeneracy is lifted and the structure, therefore,
cannot be deformed continuously at constant energy. The gap at k = 0 (as in Fig. (12), right)
is now open as in the 3-gap solution, but, with a difference in the configurations and no contin-
uous degeneracy. Thus, in this generic case away from integrability, we find what one expects
from general arguments: a definite set of distortions related by discrete symmetries, while
all the gaps are opened and there is no degeneracy: the commensurate CDW is pinned. The
integrable case at λ= 2 thus appears as a special point where not only the two configurations
at λ < 2 and λ > 2 become degenerate, but, also appears a continuous manifold of degenerate
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Figure 11: Solution in the nonintegrable case, λ ̸= 2. λ < 2 (left): the pair of
electrons ensures a strong covalent bond between sites 2 and 3 (dimer), other bonds
are weaker. λ > 2 (right): the pair of electron occupies a trimer, other bonds are
weaker. The unit-cell (dashed rectangle) with N = 4 atoms is periodically repeated.
The density of electrons is indicated by the color scale, it is strong in red and weaker
in blue. The integrable case appears as a special point where dimer and trimer, as
well as continuous configurations between them, are degenerate. Here, p = 0.02,
ξ= 2, ξ4 = 0.

states, thus allowing the structure to be continuously deformed at no energy cost. It has the
peculiar property that a commensurate charge-density wave achieves Fröhlich conductivity.

To show more clearly the lifting of the continuous degeneracy, we continuously deform
the solutions. In this purpose, we fix the length of the strong bond to a given value ℓ with
ℓmin ≤ ℓ ≤ ℓmax , where ℓmin is the length of the strongest bond (S) in the ground state and
ℓmax that of a weaker bond (L or L1), and minimize the energy W numerically. For ℓ = ℓmin
or ℓ = ℓmax , we have W = Wmin. In Fig 13, we plot the difference of energy W −Wmin as a
function of ℓ. For λ = 2, we see that changing ℓ in the specified range does not change the
energy: this is the continuous degeneracy of the integrable case. For λ ̸= 2, the degeneracy
is lifted and the energies of the intermediate configurations with ℓmin < ℓ < ℓmax are higher.
There is an energy barrier which is necessary to deform the CDW, called the Peierls-Nabarro
barrier. Note that it can be weak near λ = 2, since it continuously vanishes. To interpret its
magnitude, it is interesting to compare with the dimer case. Consider three sites: sites 1 and 2
are separated by the vacuum length, ℓ0 (defined in Eq. (11)) and site 3 is at a larger distance.
What is the energy needed to transfer the first bond onto the second? In the limit when the
total length becomes large enough, it is the energy corresponding to the separation of the two
bound atoms (using Eq. (10) with ℓ= ℓ0),

W −Wmin =
1− 1

λ

(ξλ)
1
λ−1

. (132)

For λ = 1.9 and ξ = 1 (as chosen in Fig. 13), one gets W −Wmin = 0.2321, which is con-
siderably larger than the magnitude of the barrier at p = 0.02. At larger pressures, when the
Peierls gap becomes smaller, the barrier of the three site problem can be considerably smaller.
The small amplitude shown in Fig. 13 is thus the result of a combination of large pressures
and proximity to the integrable point (where the barrier vanishes).

4.3 Example of incommensurate solution: c = 2−ϕ

We now consider an incommensurate filling, which we choose to be c = 3−
p

5
2 = 2 − ϕ

≈ 0.38197 . . . , where ϕ is the golden number. In order to study this case, we approximate
c by a sequence of commensurate fractions rn/Nn obtained from continued fraction:
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Figure 12: Band structure of the commensurate CDW at quarter filling (filled band
showed with red points) for the integrable case λ = 2 (left) and nonintegrable case
λ = 1.6 (right). The gap at E = 0 opens when λ < 2 and the CDW gets pinned.
Here, p = 0.02, ξ= 2, ξ4 = 0. The black lines are the band structure for the uniform
structure with the same averaged length (metallic state), for comparison: not only
the Peierls gap opens at the Fermi energy but all energy levels are affected.
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This sequence converges to c (Fig. 14), with an error smaller than 1/N2
n [46]. Various chains

of period Nn with rn pairs of electrons will be considered and Nn → +∞ corresponds to the
incommensurate limit. The numerical minimization is done for the BDK Volterra model at
λ= 2 (integrable case) and away from the integrable point at λ ̸= 2.

4.3.1 Integrable case

In the integrable case, λ = 2, we have minimized numerically the energy of various chains
with the successive rational approximants of c. In Fig. 15 (top), we plot (ℓi − ℓ̄)/ℓ̄, where
ℓi are the optimal distortions obtained and ℓ̄ the average bond length, versus ic (mod 1)
at p = 0.006, ξ = 2 and for various rational approximants of c. When the approximant gets
better, the numbers irn/Nn (mod 1) fill more and more the [0, 1] segment, allowing to visualize
more clearly the envelope function. The envelope function clearly appears continuous. On the
other hand, the exact solution for the bond length ℓi is given by Eq. (99),

ℓi(φ) = ℓ̄+ ln
ϑ3((i + 1)c +φ, q)ϑ3((i + 2)c +φ, q)
ϑ3(ic +φ, q)ϑ3((i + 3)c +φ, q)

, (134)

where i = 1, . . . , L. Here and above, we have chosen a given φ which reflects the simple
possible translations. The averaged bond length ℓ̄ is known from the numerics. The parameter
q = 0.248 is deduced from I2 =

∑N
i=1 ai(φ)2. The envelope function is given by Eq. (134)

(shown by the solid line in Fig. 15 (top)). The agreement between numerical results and the
analytic result of BDK is excellent (there is no free parameter). It confirms that the 2-gap
Ansatz is the ground state in this incommensurate case at integrable points.

The continuity of the envelope function ensures that the energy barriers for the CDW to
slide are vanishingly small. Indeed, to transfer the strongest bond (and its electrons) on the
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Figure 13: Energy barrier of Peierls-Nabarro to transfer a strong bond (with its elec-
trons) onto the next bond, for λ = 1.9, 2,2.1. The barrier vanishes at the integrable
point λ= 2 and the commensurate CDW is unpinned. Here, p = 0.02, ξ= 1, ξ4 = 0.

3 − 5
2

Figure 14: The first rational approximants of 3−
p

5
2 given by Eq. (133).

next one, one finds a slightly weaker bond (by a vanishing quantity in the incommensurate
limit) somewhere along the chain: a new state, obtained by translating the original state so that
the slightly weaker bond is placed on the original strongest bond, has almost the same energy.
A very small barrier (vanishingly small in the incommensurate limit) has to be overcome. By
iterating this procedure, one understands that there is no energy barrier to elongate the first
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Figure 15: Envelope functions of the optimal bond lengths for the incommensurate
CDW with various rational approximants. Top: integrable case (λ = 2), continu-
ous cnoidal wave. We show the exact result (solid line) from Eq. (134). Bottom:
nonintegrable case (λ= 1.9), discontinuous envelope. Here p = 0.006, ξ= 2.

bond (and reduce the second bond).

4.3.2 Nonintegrable case: Aubry transition

Away from integrability when λ is decreased to λ= 1.9, one sees in Fig. 15 (bottom) that the
envelope function is no longer continuous but has gaps at several places. This is the breaking
of analyticity, which occurs in other similar models [41, 44, 45]. The chain configuration can
be described in the limit of small pressure (e.g. p = 0.006). For a rational approximant
c = r/N , there are r short bonds which form distinct local dimers or strong covalent bonds
in the unit-cell of N sites (see Fig. (16) when c = 5/13). This explains the r lower distinct
values of (ℓi− ℓ̄)/ℓ̄ in Fig. 15 (bottom). The dimers occur in a special sequence (see Fig. (16))
which corresponds to a uniform structure (the definition of uniform structures is found in
Ref. [59, 60]): this way, the pairs of electrons located on each dimer gain the most energy.
This analysis only stands for low enough pressures. When the pressure increases, as shown in
Fig. 17, the discontinuities in the envelope function decrease and vanish above some critical
pressure. The envelope function becomes continuous in the incommensurate limit and the
phase is sliding as in the integrable case. This is an Aubry transition from a high-pressure

38

https://scipost.org
https://scipost.org/SciPostPhys.14.3.051


SciPost Phys. 14, 051 (2023)

x

1 2 3 4 5 6 7 8 9 1011 1213

λ= 1.9

0.32

0.40

0.48

0.56

0.64

0.72

0.80

0.88

0.96

Figure 16: Ground state configuration for a chain of period N = 13 filled with 5 pairs
of electrons (c = 5

13), in the nonintegrable case (λ = 1.9) and low enough pressure
(here p = 0.006) to be below the Aubry transition: the CDW form local dimers (five
strong covalent bonds with the five pairs of electrons). The scale on the right is the
electronic density.

unpinned phase to a low-pressure pinned phase. It is similar to that occurring in the SSH
model as function of pressure [41, 44] or electric field via an electromechanical effect [45].
The corresponding band structures are shown in Fig. 18: the main Peierls gap does not change
much but the secondary gaps are clearly visible at small enough pressures. While the transition
is an insulating to metal transition, the electronic gap remains open, but the deformation of
the incommensurate CDW leads to Fröhlich conductivity.

The order parameter of the Aubry transition can be taken as the main gap in the envelope
function (as in Fig. 17). It is plotted as a function of pressure in Fig. 19. While it shows a
smooth crossover for c = 5/13, one sees that the crossover is much sharper for c = 34/89,
which indicates the onset of a transition in the incommensurate limit: the order parameter
vanishes linearly with pressure (except for a very slow convergence of the minimization at the
transition). The energy is, however, continuous at the transition (see the inset of Fig. 19). The
Peierls-Nabarro barrier also vanishes at the transition. The barriers and their evolution as a
function of pressure are shown in Fig. 20. As in the commensurate case, the barriers increase
slowly in the pinned phase and remains much smaller than the zero-pressure limit.

At strong pressures, the length of the chain must be small and each bond is compressed. It
turns out that not only the averaged bond length is small but the distortions around the average
ℓi − ℓ̄ = δℓi are small. For example, for p = 0.1, the result of the numerical minimization9

is given in Fig. 21. Both in the integrable and nonintegrable cases, we find a standard cosine
CDW. In the integrable case, the exact solution can be expanded when q→ 0, by keeping the
first term in the Fourier series of ϑ3(z, q) [Eq. (85)],

ℓi = ℓ̄+ u cos(2πic +φ) , (135)

where u = 8q sin(πc) sin(2πc) → 0 and φ a phase. The Peierls Ansatz is exact in this limit.
Since u ≪ ℓ̄, the model can be expanded around a true metallic state and the perturbative
approach summarized in section 2.4 is essentially correct.

9Note that the numerics has to be done carefully, because on small chains, the minimization gives an undistorted
metallic state as the ground state. It is necessary to increase the number of unit-cells, i.e. the number of k points,
for the system to converge to a distorted state, as expected on general grounds [61].
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Figure 17: Envelope functions for the c = 34
89 approximant of the incommensurate

case, for different pressures p, showing an Aubry transition from a continuous to a
discontinuous envelope function. Here λ= 1.90, ξ= 2.

What makes the Peierls approach break down at smaller pressures with the emergence of
discontinuities in the envelope function? This is precisely a regime where the nonlinearities in
δℓi become important. When δℓi get larger, the Hamiltonian acquires a large modulated per-
turbation. The minimization equations (39) get larger nonlinear terms in δℓi and define real
nonlinear maps. In these maps, the growing nonlinearities are eventually responsible for the
destruction of the KAM tori. It is therefore not sufficient to treat the problem in perturbation
theory, nor to restrict, as it is done in the standard Peierls approach, the effect of the modulated
potential to the energy levels close to the Fermi energy. We have in particular observed that
the whole spectrum is modified with respect to that of the metallic state (see e.g. Fig. 12). The
linear response and the choice of the Peierls Ansatz obviously miss the nonlinear regime.

Although it is difficult to represent the KAM tori in such high-dimensional phase-space,
we show some sections of them by plotting ai+1 as a function of ai , i = 1, . . . , N , in Fig. 22.
For λ = 2 and a given pressure (Fig. 22 (left)), the set of points corresponding to the exact
solution forms a regular “trajectory” and corresponds to a section of the Liouville torus on
which the solution takes place. When λ = 1.9 (at the same pressure), one sees that the torus
is destroyed. Similarly in Fig. 22, right, one sees the effect of the external pressure at non-
integrable points: regular trajectories corresponding to continuous solutions still exist, they
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Figure 18: Energy bands in the unfolded Brillouin zone for the c = 34
89 approximant

of the incommensurate case, for different pressures p showing gap openings at low
pressures. λ= 1.90, ξ= 2.

are sections of the KAM tori, but eventually at smaller pressures, the KAM tori are destroyed.
This is another representation of the Aubry transition, which emphasizes the connection with
nonlinear dynamical systems.

It is also important to stress that the SSH Hamiltonian (see Fig. 1) is a linearized version
of the BDK model but also exhibits an Aubry transition [41]. The energy and the minimiza-
tion equations remain nonlinear in the local modulation amplitudes. However, the SSH model
breaks down at strong couplings when the distortions become large enough: the hopping am-
plitude changes sign. The BDK model does not suffer such a setback: the hopping remains
well-defined. This allows the chain to remain stable in the weak pressure regime where the
averaged bond length and the modulation amplitudes get larger. Thus the chain can be con-
nected to the zero pressure limit, where the atoms form isolated molecules: this is the “anti-
integrable” limit (in the language of Aubry and Abramovici [57]) where the physics is local.
This limit does not exist in the SSH model.

Note, however, that, when the Aubry transition takes place, the amplitudes of the distor-
tions can be much larger than experimentally observed: this suggests that the intrinsic pinning
would occur at too strong energy scales. Pinned CDWs with much smaller amplitudes can be
achieved in some other nonlinear models. Indeed, in order to get an Aubry transition, the
nonlinearities need to be above a threshold: this does not imply that the distortions should
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Figure 19: Order parameter of the Aubry transition as a function of pressure defined
as the largest gap in the envelope function, see Figs. 17. Inset: no abrupt change in
energy nor in its first derivative. Here λ= 1.90, ξ= 2.

be large, only the local gradients. The local gradients can be sufficiently large if the Hamil-
tonian contains electron-lattice interactions that are strong nonlinear functions of the atomic
distance. An example of such a model will be provided in a further publication [62].

5 Conclusion

While a 1D Peierls system develops a 2kF charge-density wave at low temperatures, the shape
of its envelope function is an interesting issue, both theoretically and experimentally.10 We
have emphasized here that the shape depends on the interaction terms and energy parameters
and implies qualitative physical consequences.

First, for the BDK model at integrable points, we have confirmed numerically that its
ground-state is a cnoidal charge-density wave (1-gap state in the Toda case, 2-gap state in
the Volterra case), as originally predicted [31]. The other g-gap Ansätze, which develop more
zero-energy phason modes, cannot be excluded for a generalized BDK model: we have inves-
tigated in details the example of the quarter-filled chain, and found that, although the g-gap
states could be metastable, the cnoidal wave remains the ground state in that case. The BDK
model thus provides an interesting example of a nonlinear model where the shape of the CDW
can be explicitly calculated in a nonperturbative regime. It reduces to the Peierls cosine shape
in the perturbative regime.

Second, when integrability is broken, we have explained that the commensurate phases are
pinned, as expected on general grounds. The absence of pinning at integrable points and for
the commensurate phases results from the fine-tuning of the model, which consists of defining
a constant energy on a Liouville torus of the underlying classical integrable model.

10The intensity of higher harmonics are measured in synchrotron X-ray diffractions (see [63]). It is possible to
obtain some details about the local atomic structure through the atomic pair distribution function technique [18].
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Figure 20: Energy barriers of Peierls-Nabarro for different pressures. There is a
pinned-to-unpinned Aubry transition when the barrier vanishes. Here λ = 1.90,
ξ= 2.

Now, in the incommensurate case and thanks to KAM theorem, two situations arise:

• At strong pressures, the bonds are contracted and their lengths weakly modulated. The
resulting modulated potential implies weak nonlinearities in the ground state equations.
There is no fundamental difference with the integrable case and this reflects the KAM
theorem in the weak nonlinear regime. The envelope of the wave remains continuous
and close to a cnoidal wave. The incommensurate CDW phase is sliding. It corresponds
to a dynamical strong-pressure fixed-point and to Peierls-Fröhlich phase.

• At weak pressures, the bonds are elongated and more strongly modulated. The mod-
ulated potential being larger, the nonlinearities become important. The system enters
the nonlinear stochastic regime in which the KAM tori are broken. The envelope func-
tion of the wave is discontinuous. The CDW phase is intrinsically pinned. Atoms tend
to form some oligomers (like dimer or trimer local structures): the system has evolved
towards an “anti-integrable” limit. It corresponds to a dynamical weak-pressure fixed
point. Many metastable states with local defects emerge at higher energies.

In the incommensurate case, an Aubry transition (which is not a crossover) takes place
between these two regimes. This is a form of transition to chaos in which Liouville (KAM)
tori of the integrable model are destroyed [40]. The resulting pinning of these states appears
as an intrinsic nonlinear mechanism. In this case, the Peierls approach breaks down because
the modulated potential is strong and must be treated nonperturbatively: the band structure
is strongly affected as a whole, even far from the Fermi energy, which is confirmed by some
recent experimental results [14]. These states with discontinuous envelope functions could
explain the observed charge-density waves and their pinning. Eventually, the exact states with
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Figure 21: Envelope function of the incommensurate CDW at strong pressure
(p = 0.1), in the integrable case, λ = 2 and nonintegrable case λ = 1.9. Here
ξ = 2. In full line, exact result from Eq. (134) with q = 0.0225 and cosine from
Eq. (135).

continuous envelope functions found in the BDK model at integrable points do not exhaust the
physical possibilities of Peierls systems.
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A Equation for the electronic band structure of a 1D problem

How do we compute the energy bands of a 1D periodic tight-binding model with arbitrary
nearest neighbor hoppings and potentials? In this appendix, we show that the electronic bands
Eν(k) satisfy an algebraic equation of the form:

Q(E) = cos kN , (A.1)

where N is the period and Q(E) a polynomial of degree N .
Let us consider a Bloch-wave function with wavevector k, amplitudeψi(k) at the site i and

eigenvalue E = Eν(k) = Eν(−k). It satisfies the eigenequation for all sites i,

−aiψi+1(k)− ai−1ψi−1(k) + biψi(k) = Eψi(k) . (A.2)

The successive amplitudes can be obtained by iteration:
�

ψi+1(k)
ψi(k)

�

=
(−1)

ai

�

E − bi ai−1
−ai 0

��

ψi(k)
ψi−1(k)

�

. (A.3)
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Figure 22: Ground state solutions represented in some sections of the phase-space
(ai+1, ai), i = 1, . . . , N . Left: a section of the Liouville torus (λ = 2) and its destruc-
tion at λ= 1.9, for p = 0.006, ξ= 2 and c = 55/144. Right: persistence of KAM tori
at strong pressures away from integrable points and its eventual destruction at small
pressures, with the same data as in Fig. 17.

Starting from ψ1(k) and ψ2(k), we iterate the relation over one period N , and we get
�

ψN+2(k)
ψN+1(k)

�

=
(−1)N

CN

�

p1(E) p2(E)
p3(E) p4(E)

��

ψ2(k)
ψ1(k)

�

≡ T

�

ψ2(k)
ψ1(k)

�

, (A.4)

where CN =
∏N

i=1 ai . pi(E) are polynomials in E with real coefficients: p1(E) is of degree N ,
where the coefficient of EN is 1. p4(E) is of degree N − 1. For a Bloch wave function, one has
ψi+N (k) = eikNψi(k), i.e.

�

ψN+2(k)
ψN+1(k)

�

= eikN

�

ψ2(k)
ψ1(k)

�

. (A.5)

This vector t (ψ2(k),ψ1(k)) is an eigenvector of the matrix T with eigenvalue eikN .
The same result holds for the wavevector −k and in that case, the eigenvector is

t (ψ2(−k),ψ1(−k)) with the eigenvalue e−ikN . Eventually, one gets the two eigenvalues of
the 2× 2 matrix T , eikN and e−ikN , which gives

eikN + e−ikN = Trace(T ) = 2cos(kN) . (A.6)

By defining

Q(E) =
1
2

Trace(T ) , (A.7)

one gets Eq. (A.1). On the other hand, half the trace of T is given by

Q(E) =
(−1)N

2CN
(p1(E) + p4(E)) = A0(E

N − I1EN−1 + · · · − IN ) , (A.8)

which is Eq. (21).
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B Energy gradients and nonlinear minimization equations

We calculate the gradient of the energy with respect to the classical variables {ai} (local hop-
pings) and {bi} (local potentials) and obtain the minimization equations.

In the Hamiltonian (9), let i be an arbitrary site, where bi is changed into bi + δbi , let
other b j , j ̸= i, unchanged. At first order, one gets the following perturbation:

δH/t = δbi

∑

σ

c†
iσciσ + 2ξbiδbi . (B.1)

At first order in perturbation theory, it gives an energy correction δW = 〈δH〉/(2St),

δW =
1

2S
δbi

∑

σ

〈c†
iσciσ〉+

ξ

S
biδbi . (B.2)

The gradient is
δW
δbi

=
1

2S

∑

σ

〈c†
iσciσ〉+

ξ

S
bi , (B.3)

and the minimization equations δW/δbi = 0 write

2ξbi = −
∑

σ

〈c†
iσciσ〉 , (B.4)

where
∑

σ〈c
†
iσciσ〉 ≡ ni is the electronic density at site i. The linear response consists of

linearizing these equations, for example, when the instability of a metal is studied. In this
case, using b j = b̄ + δb j , one has ni = n(0)i +

∑

j δb j
∂ ni
∂ b j
≡ n(0)i +
∑

j χi jδb j where χi j is
the electronic susceptibility of the metal. In general, these equations are coupled nonlinear
equations, the right-hand-side being a nonlinear function of {a j}, {b j}. The aim of the present
paper is to point out the effects of the nonlinearities and solve the nonlinear equations.

Similarly for the hopping variables ai =
1
2 e−

ℓi
2 , or the bond length ℓi , consider a change

ℓi → ℓi + δℓi for a site i, leaving ℓ j , j ̸= i unchanged. The corresponding energy change at
first-order is

δW =
1

8S
e−

ℓi
2 δℓi

∑

σ

〈c†
i+1σciσ + h.c〉 −

λ

2S
ξ(

1
2

e−
ℓi
2 )λδℓi +

p
2S
δℓi , (B.5)

and the gradient writes

δW
δℓi
=

1
4S

ai

∑

σ

〈c†
i+1σciσ + h.c〉 −

λ

2S
ξai

λ +
p

2S
. (B.6)

The extrema should satisfy δW/δℓi = 0, i.e.

λξai
λ =

1
2

ai

∑

σ

〈c†
i+1σciσ + h.c〉+ p , (B.7)

which involve the bond charge
∑

σ〈c
†
i+1σciσ + h.c〉, which is also a nonlinear function of the

classical variables. Eqs. (B.7) and (B.4) form coupled nonlinear equations for {ai} (or {ℓi})
and {bi}.
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C Energy gradients, explicit example of c = 1/4

We illustrate the derivation of the energy gradients δW/δIm in the Volterra case at quarter-
filling, c = 1/4, for which the periodicity of the chain is N = 4.

We have seen that to obtain the energy bands and the characteristic polynomial of H(k),
it is convenient to define the polynomial Q(E), Eq. (21), which writes, for N = 4,

Q(E) = A0(E
4 − I2E2 − I4) . (C.1)

It only involves even powers of E (giving a E→−E symmetry), so the only nonzero Im terms
are

I2 = a1
2 + a2

2 + a3
2 + a4

2 , (C.2)

I4 = −a2
2a4

2 − a1
2a3

2 , (C.3)

C4 = a1a2a3a4 . (C.4)

We use also A0 =
1

2C4
and C4 =

1
16 e−

I0
2 . A generic example of plot of Q(E) is given in Fig. (3) (a).

Because the model makes sense only when ℓi > 0, i.e. ai =
1
2 e−

ℓi
2 < 1

2 , the coefficients follow

0< I2 < 1 , −
1
8
< I4 < 0 , 0< C4 <

1
16

. (C.5)

For N = 4, we can explicitly solve the algebraic equation,

Q(E) = cos kN . (C.6)

The solutions are the four energy bands (supposing I2
2 ≥ 4(−I4 + 2C4)):

Eν(k) = ±

√

√1
2

�

I2 ±
q

I2
2 + 4(I4 + 2C4 cos4k)

�

. (C.7)

A plot of the energy bands is given in Fig. 3 (b): the four bands are separated by three gaps.
They are symmetric with respect to E = 0, thanks to the special symmetry mentioned above.
Note that the energy bands are expressed in terms of I2, I4, C4.

At c = 1/4, the lowest band (ν= 1) is filled and the others empty. One wants to minimize
the generalized BDK energy,

W =
1
S

∑

k

E1(k) +
2
∑

m=0

ξ2m I2m , (C.8)

The model parameters are ξ0 =
1
2 p, ξ2 = ξ and ξ4. The gradient of the energy writes

δW =
1
S

∑

k

δE1(k) +
2
∑

m=0

ξ2mδI2m . (C.9)

We follow the same procedure than that leading to Eq. (50) and get

1
S

∑

k

δE1(k) =
2
∑

m=0

J2mδI2m , (C.10)
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where

J0 = −
1

2S

∑

k

Q(E1(k))
Q′(E1(k))

, (C.11)

J2 =
1
S

∑

k

A0E1(k)2

Q′(E1(k))
, (C.12)

J4 = −
1
S

∑

k

A0

Q′(E1(k))
, (C.13)

which are sums over k in the first Brillouin zone. J0, J2 and J4 are functions of I0, I2 and I4.
With these definitions, Eq. (C.9) writes

δW =
2
∑

m=0

(J2m + ξ2m)δI2m , (C.14)

Eventually, the energy gradients are given by

δW
δI2m

= J2m + ξ2m , ∀m= 0, 1,2 . (C.15)

D Energy gradients for g-gap Ansätze

In this appendix, we find the expression of the gradient of the energy of the integrable model
for the special g-gap Ansätze. The general expression Eq. (50) can be expressed in terms of
the remaining independent δIm, leading to Eq. (64).

Suppose that the spectrum has g gaps (instead of N −1), which means that N −1− g gaps
are accidentally closed. In other words, the polynomial of degree 2N ,

R2N (E) = 1−Q(E)2 , (D.1)

the zeros of which gives the energy of the band edges, has N − 1− g double roots, ei (which
correspond to degenerate band edges). It can be written,

R2N (E) = P2g+2(E)
N−1−g
∏

i=1

(E − ei)
2 , (D.2)

where P2g+2(E) is a polynomial of degree 2g + 2.
On the other hand, each closed gap (corresponding to a double root ei) gives a relation of

the form (Eq. 61),
N
∑

m=0

lm(ei)δIm = 0 , (D.3)

where

l0(E) ≡ −
1
2

Q(E) , (D.4)

lm(E) ≡ A0EN−m , ∀m≥ 1 . (D.5)

The double roots can then be factorized out of the polynomial,

N
∑

m=0

lm(E)δIm =
g+1
∑

m=0

δAmEm
N−1−g
∏

i=1

(E − ei) , (D.6)
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where the δAm can be explicitly obtained by expanding and identifying the coefficients of the
successive powers of E, from EN , EN−1 down to EN−g−1,

−
1
2

A0δI0 = δAg+1 , (D.7)

A0δI1 −
1
2

A0 I1δI0 = δAg −δAg+1

N−g−1
∑

j=1

e j , (D.8)

. . .

A0δIg+1 −
1
2

A0 Ig+1δI0 =
g+1
∑

m=0

αmδAm . (D.9)

This system of g+2 equations is directly invertible thanks to its triangular form. For example,
one finds that δAg+1 is simply proportional to δI0 from the upper equation. Then, from the
second equation, δAg is a linear combination of δI0 and δI1, etc. down to δA0, which is a
linear combination of all δIm from m= 0 to g + 1. One finds that

δAm =
g+1
∑

j=0

βm, jδI j , (D.10)

for m = 0, . . . , g + 1. δAm are thus linear combinations of, at most, g + 2 independent δIm.
We have βm, j = 0 for j +m> g + 1 and, using s1 =

∑

j e j and s2 =
∑

i ̸= j eie j ,

βg+1,0 = −
1
2

A0 , (D.11)

βg,0 = −
1
2

A0(I1 + s1) , βg,1 = A0 , (D.12)

βg−1,0 = −
1
2

A0[(I1 + s1)s1 + s2 + I2] , βg−1,1 = A0s1 , βg−1,2 = A0 , etc. (D.13)

When the system has only g gaps, the gradient of the electronic energy, given by Eq. (50),
simplifies, thanks to Eqs. (D.2) and (D.6), into

δEelec =

∫

dE

∑g+1
m=0δAmEm

Æ

P2g+2(E)
. (D.14)

By using Eq. (D.10), we get (renote the indices)

δEelec =
g+1
∑

m=0

GmδIm , (D.15)

where

Gm =

∫

dE
gm(E)
Æ

P2g+2(E)
, (D.16)

gm(E) =
g+1
∑

j=0

β j,mE j , (D.17)

which is the expression given in Eq. (64). If the number of gaps corresponds to the generic
case, g = N − 1, the expression reduces to (50). When g < N − 1, thanks to the dependency
relation, the gradient (D.15) can be expressed as a sum over the g + 2 independent variables
δIm only.
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E Numerical gradient descent algorithm used for the minimiza-
tion

The numerical minimization is a standard gradient descent algorithm. Suppose that you want
to minimize a function W of some variables {x i}. The steepest descent consists in updating
the variables downhill, by a finite amount in the negative direction of the local gradients. For
this, one needs to compute the gradients δW/δx i at each step and iterate the equations,

x ′i = x i −
δW
δx i

δt , (E.1)

where δt is a small numerical increment, until the gradient is smaller than a given threshold.
It is equivalent to solving a first-order (overdamped) dynamical equation of motion

∂ x i

∂ t
= −

δW
δx i

. (E.2)

While this method allows one to find a local minimum, it is possible to find distinct minima
starting from random configurations, i.e. exploring the phase space.

In the present problem, one needs to minimize the energy W which is a function of {ai}
(or {ℓi}) and possibly {bi}. The respective gradients δW/δbi and δW/δℓi are calculated
in Appendix B. Numerically, they are computed as follows. Let us introduce the Bloch wave
function |Ψν(k)〉 with mode ν having energy Eν(k) and complex amplitude ψi,ν(k), one gets

∑

σ

〈c†
iσciσ〉= 2
∑

k,νocc.

|ψi,ν(k)|2 , (E.3)

where the factor 2 comes from the spin degeneracy. The sum is up to the Fermi energy (the
sums over k are performed numerically and using the k→−k symmetry). The gradient (B.3)
writes

δW
δbi

=
1
S

∑

k,νocc.

|ψi,ν(k)|2 +
ξ

S
bi . (E.4)

Similarly for the second gradient (B.6), one finds

δW
δℓi
=

1
S

ai

∑

k,νocc.

Re[ψ∗i+1,ν(k)ψi,ν(k)]−
λ

2S
ξai

λ +
p

2S
. (E.5)

These quantities are computed by diagonalizing the matrix. To get the local extremum, the
variables are updated according to

b′i = bi −
δW
δbi

δt , (E.6)

ℓ′i = ℓi −
δW
δℓi

δt , (E.7)

until the gradients are smaller than a given threshold, typically 10−7. The number of iterations
needed to reach this precision depends on the parameters, and varies from 104 to 106 near
the Aubry transition where the convergence is slow.
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F Definitions of Jacobi ϑn(z, q)-functions

Jacobi ϑn(z, q)-functions are important analytic functions which play a special role in the the-
ory of elliptic functions (see, for instance, Ref. [64]). In particular, Jacobi ϑ3(z, q) function is
defined by its Fourier series,

ϑ3(z, q) =
+∞
∑

n=−∞
e2iπnzqn2

= 1+ 2
+∞
∑

n=1

qn2
cos(2πnz) , (F.1)

with z ∈ C. q is a complex parameter, called the nome, and such that |q|< 1 to ensure that the
series converges. The parameter q is sometimes noted q = eiπτ, where τ is a complex number
in the upper half-plane, ℑm(τ) > 0, so that |q| < 1. Higher harmonics become rapidly small
when |q| → 0. By a direct calculation, one finds that, for n and m integers,

ϑ3(z + n, q) = ϑ3(z, q) , (F.2)

ϑ3(z +mτ, q) = e−iπm2τ−2iπmzϑ3(z, q) . (F.3)

The function ϑ3 is periodic with period 1 (by definition) but not elliptic. One finds that
ϑ3(

1+τ
2 , q) = 0 and that the only zeros of the function are off the real axis (because the imagi-

nary part of τ is strictly nonzero).
In this paper, we are only interested in z ∈ R and q ∈ R. Some examples of plots of ϑ3(z, q)

are given in Fig. 23 for q = 0,0.1, 0.5,0.9.
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0

1

2
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z

Θ
3Hz

,q
L

Figure 23: ϑ3(z, q) periodic function (with period 1) for z ∈ R and q = 0, 0.1,0.5, 0.9.

When q is small, one finds

ϑ3(z, q) = 1+ 2q cos(2πnz) +O(q4) , (F.4)

and so ϑ3 is very close to a cosine modulation with amplitude 2q. When q increases, the
modulation amplitude around 1 increases, and the shape is deformed, becoming more and
more localized around zero (and, by periodicity, around any integer). ϑ3(z, q) never strictly
vanishes for z ∈ R, since its zeros are in the complex plane.
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Other Jacobi ϑn(z, q)-functions are defined by

ϑ1(z, q) = eiπτ/4+iπ(z+1/2)ϑ3(z +
1
2
+
τ

2
, q)

= q
1
4 eiπ(z+1/2)[1+ 2

+∞
∑

n=1

(−1)nqn2+n cos(2πnz)] , (F.5)

ϑ2(z, q) = eiπτ/4+iπzϑ3(z +
τ

2
, q) , (F.6)

ϑ4(z, q) = ϑ3(z +
1
2

, q) = 1+ 2
+∞
∑

n=1

(−1)nqn2
cos(2πnz) . (F.7)
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