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Instabilities and insulator-metal transitions in half-doped manganites induced by magnetic-field
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We discuss the phase diagram of the two-orbital model of half-doped manganites by calculating self-
consistently the Jahn-Teller (JT) distortion patterns, charge, orbital and magnetic order at zero temperature. We
analyze the instabilities of these phases caused by electron or hole doping away from half-doping, or by the
application of a magnetic-field. For the CE insulating phase of half-doped manganites, in the intermediate JT
coupling regime, we show that there is a competition between canting of spins (which promotes mobile
carriers) and polaronic self-trapping of carriers by JT defects. This results in a marked particle-hole asymmetry,
with canting winning only on the electron doped side of half-doping. We also show that the CE phase
undergoes a first-order transition to a ferromagnetic metallic phase when a magnetic-field is applied, with
abrupt changes in the lattice distortion patterns. We discuss the factors that govern the intriguingly small scale
of the transition fields. We argue that the ferromagnetic metallic phases involved have two types of charge

carriers, localized and bandlike, leading to an effective two-fluid model.
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I. INTRODUCTION

“Half-doped” manganites, corresponding to the general
formula Re;_,A,MnO; with x=1/2 where Re is a 3+ rare-
earth metal ion and A a 2+ alkaline earth metal ion, e.g.,
La;;»,Ca;,MnOs3, have been the object of extensive experi-
mental and theoretical studies for many years.!> Here each
Mn has an average valence of 3.5+ i.e., an average configu-
ration of @3, corresponding to one Mn-¢ electron for every
two Mn sites hopping around amongst the two [(x*>~y?) and
3z22-r)] eg orbitals on each Mn. The remaining three 7,4
electrons on each Mn are spin-aligned by strong correlations
(Hund’s rules) to form “core spins” with S=3/2. Similarly to
the end members, i.e., LaMnO; or CaMnOs, the half-doped
compounds, thanks to their commensurate filling, are simpler
in some ways than the doped manganites for general x.!2
Nevertheless, they exhibit a very rich variety of properties as
well.! Specifically, as the system is cooled, there are phase
transitions involving changes in magnetic, charge and orbital
order, and, in some cases, metallicity. The details vary from
material to material, depending systematically on the sizes of
the “A site” ions of the perovskite structure. Generally, the
lowest temperature phase is insulating, with simultaneous
charge, orbital and CE type antiferromagnetic order (see be-
low), and the charge/orbital order sets at first, at higher tem-
peratures, compared to the antiferromagnetic order [e.g., for
PrCa Tco00~ 240 K, whereas Ty~ 170 K (Ref. 3)]. The
NdSr and PrSr systems show ferromagnetic metallic order at
intermediate temperatures, but in the LaCa and PrCa sys-
tems, the different phases obtained with increasing tempera-
ture continue to be insulating. Typically, the charge order and
insulating behavior at low temperatures persist on the “over-
doped” side (x>1/2), whereas the charge order disappears
rather quickly on the “underdoped” side (x<<1/2), and is
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often accompanied by metallicity (except in the PrCa system,
which stays insulating for all x). This asymmetry between
“electron doping” and “hole doping” away from half-doping
is a striking feature of the majority of the half-doped man-
ganites.

One simplifying feature of the half-doped manganites is
that the low temperature phase is generally regarded as rea-
sonably well characterized. Early neutron diffraction work
by Wollan and Koehler* suggested that the magnetic struc-
ture of La;,,Ca;,MnOj5 can be viewed as a set of ferromag-
netic zig-zag chains antiferromagnetically ordered relative to
each other, with an 8-sublattice, (212 X 212) unit cell, and is
referred to as the CE magnetic order (Fig. 1). The structure
was qualitatively explained soon thereafter by Goodenough,’

FIG. 1. (Color online) A depiction of the CE charge-ordered
antiferromagnetic phase (CE-CO). The “bridge sites” (1,3), at the
centers of the arms of the zig-zag chains which are ferromagneti-
cally ordered, have alternate occupancies of the 3x>—72 and 3y>
—r% orbitals. At the “corner sites” (2,4), there is no orbital order,
unless JT interactions are present. J is the charge disproportionation
between the occupancies of the corner sites and the bridge sites.
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who proposed additionally that the phase also has a
2-sublattice, V2 X 2 charge order with alternating Mn3* and
Mn** sites, and a 4-sublattice, 2v2 X \2 striped orbital order,
as indicated in Fig. 1. Since then, CE order has been found in
several other half-doped systems, such as Nd;;,Sr;,»,MnO;
(Refs. 6 and 7) or Nd,,,Ca,,Mn0O5,® though some, such as
Pr,,,S1,,,Mn03,%7 show A-type antiferromagnetism, corre-
sponding to [0,0, 7] spin order, i.e., ferromagnetic planes of
spins which are antiferromagnetically aligned in the z direc-
tion.

The presence of charge and orbital order is, however,
harder to establish directly experimentally because of the
lack of experimental probes that couple directly to them.
Indeed, the perfect Mn**/Mn** charge ordering proposed by
Goodenough® is currently regarded as controversial.’~!2
X-ray diffraction data do suggest the presence of large Jahn-
Teller (JT) distortions of the oxygen octahedra surrounding
the Mn sites”!3 with two inequivalent Mn sites, of effective
valence 3.5+ J and 3.5- 6, but J is not really known, and is
unlikely to be close to 0.5. In PryCay,MnO5 (which is
slightly underdoped though), the charge or valence contrast
seems further reduced, and it has been suggested on the basis
of neutron diffraction data that the electron is rather shared
by two Mn sites paired in dimerlike structures, referred to as
“Zener polarons,” with (6§<0.5).!0 It is not clear, however,
whether this is due to the presence of additional electrons'#
or a general feature of many half-doped manganites.'> A re-
cent work on PrjsCaysMnOj; claims indeed to confirm the
picture of the original CE state at precisely half-filling.' An
alternate, closely related picture of the half-doped system is
that of a bond-charge-density-wave, with no charge contrast
of the Mn ions, substantial hole occupancy on the oxygen
ions on the chains, and alternating “O?~/O~" order.!” There
have been x-ray studies on orbital order and correlations as
well as charge and magnetic order using a variety of methods
such as soft x-ray resonant diffraction,'® coherent x-ray
scattering,'® which explore the spatial extent of orbital order,
in particular. The resonant scattering experiments in
Pry¢Cap4sMnO;5 conclude that the charge disproportionation
is less than complete, that there is orbital mixing, and that
therefore the simple Goodenough model is not right. On the
other hand, when holes are in excess (x>0.5), it has been
suggested that charge order persists but becomes
incommensurate.?*2!

A closely related family of manganites carefully studied
recently is Ay A sMnO3, where A is a rare earth (Y, Tb, Sm,
Nd, Pr, La in order of ion size) and A’ is Ba.?? The phases
have been studied as a function of the A-A’ site order/
disorder. When there is order, the low temperature phase is
charge-ordered (CO) and orbitally ordered (OO) for ion size
from Y to Nd. Beyond Nd, up to La, the phase is a ferromag-
netic metal. However, when A-A’ sites are disordered, there
is no CO phase at all, but only a spin glass (SG) phase, from
Y to Sm, after which the ground state is ferromagnetic (FM).
This means that the CO/FM and CO/SG competition de-
pends on ion size as well on the A site ordering in the per-
ovskite ABOj structure.

Another interesting and intriguing property of the
CE charge-ordered (CE-CO) phase is the magnetic-field-
induced insulator-metal transition first discovered in
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(Nd,Sm),,Sr,,Mn0;,>>?* and later shown to be
ubiquitous.! Though insulating at zero field, these materials
become metallic by the application of magnetic-fields of the
order of 10-40T via sharp, first-order, resistive
transitions.?® The magnetic-field energies involved are much
smaller than the thermal energies (of order 200 K) needed to
destroy the charge order, and orders of magnitude smaller
than the charge gap of 0.2—0.3 eV, as observed as a function
of field by STM in Nd, 5Sry sMnO5.%> This can be viewed as
a different manifestation of the colossal magnetoresistance
seen at the metal-insulator transition of doped manganites for
x~0.25,! and the microscopic understanding of the above
features poses similar difficult theoretical challenges.'-?

Theory: A variety of models and mechanisms have been
examined in the context of half-doped manganites as well.!
The simplest model has mobile electrons moving amongst
nondegenerate orbitals, coupled to the Mn #,4 core spins by a
large Hund’s rule (double) exchange coupling Jy. The latter
promotes ferromagnetism, but competes with a direct antifer-
romagnetic coupling Jr between the core spins. Even in this
simple model, the ferromagnetic or CE types of order are
stabilized depending upon the strength of J,r.2%*” Van den
Brink ef al. considered a more realistic model with the two
types of ey orbitals of Mn, and found that the CE phase is
orbitally-ordered: the “bridge sites” of the zig-zag chains
have alternating preferred occupancy of (3x>—r%) and (3y?
—r?) orbitals?® as indicated in Fig. 1. They also showed that
a charge contrast & (not bigger than 0.2) can be generated by
including on-site Coulomb interaction. This is because the
“corner sites” turn out to have equal occupancy of (x’—y?)
and (3z2—r?) orbitals, and that costs the Coulomb energy. To
reduce this, the system adopts a preferred occupancy of the
bridge sites which are orbitally ordered. In later work, near-
est neighbour Coulomb interactions were also included.?-*
However, the charge order due to long-range Coulomb inter-
actions is generally of the Wigner-type with wave vector O
=(m,m, ), contrary to the (7, r,0) order, with charge stack-
ing along the z direction, suggested by experiment. To stabi-
lize the (7r,7,0) order in a wider regime of parameters, JT
interactions between the Mn ions and their surrounding oxy-
gen octahedra, which are supposed to be quite large,'? have
to be included.?! The consequent JT distortions further lower
the energy of the CE phase because of the already present
(3x*=r?)/(3y*>~r?) orbital order. Classical Monte Carlo
simulations including static JT distortions on small clusters
as well as self-consistent mean field treatments of models
including JT and Coulomb interactions®! suggest that the CE
charge stacked state has the lowest energy in an intermediate
range of J,p, unless the nearest neighbor Coulomb interac-
tion V becomes much too large.

However, to our knowledge very few of these studies
have addressed the other issues, such as the magnetic-field-
induced insulator metal transition, and the electron-hole
asymmetry. The first issue was tackled in Refs. 26, 27, and
32 by assuming model parameters very close to the phase
boundary between the ferromagnetic and CE states. The re-
sulting small energy difference between the two phases can
then be overcome by an arbitrarily small magnetic field. But
it is hard to justify why the system parameters should be so
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finely tuned for so many systems. As regards the second
issue, band structure arguments,28 and treatments including
JT distortions on small clusters®!' necessarily lead to metallic
phases upon addition of electrons or holes, in contrast to
experiments.

Recently, a theory for doped manganites has been
proposed?® where it is argued that due to strong JT interac-
tions the ey electrons dynamically reorganize themselves into
two types. The majority of the electrons (labeled €) become
localized polarons, trapped by large local JT distortions; and
a minority of them (labeled b) can remain mobile and non-
polaronic. Still virtual adiabatic transitions to empty neigh-
boring sites induces a ferromagnetic exchange referred as
virtual double exchange.*® The resulting Falicov-Kimball-
type, €-b model Hamiltonian treated in a simple dynamical
mean-field treatment in the framework of an “orbital liquid”
description, gave a good account of the properties of doped
manganites.

In this paper, we propose an extension of the above theory
to the half doped case, which has to include the possibilities
for orbital, charge, and antiferromagnetic order. We obtain
pointers to this by studying the properties of electronic exci-
tations coupled with JT defects in the lattice distortion pat-
tern. We find that such a study suggests the incipient insta-
bilities of the CE phase indicative of the doping and
magnetic-field induced phase transitions seen experimentally,
as well as the presence of localized and mobile carriers. The
localized states on the defects which we obtain are different
from the microferrons suggested at small x around a dopant,’
as they are self-generated and could exist even in the absence
of chemical disorder. In principle, the JT defects we are con-
sidering could be mobile on a longer time scale, although
disorder may indeed pin them down.

More specifically, in this paper, we first determine the
zero temperature phase diagram of the 3D two-orbital model
of half-doped manganites for periodic phases in the thermo-
dynamic limit, including JT distortions, but ignoring Cou-
lomb interactions. We do this by minimizing the energy as-
suming a periodic unit-cell of eight sites,’ inside which
static JT distortions and core spin directions are allowed to
be arbitrary. This allows us to determine them self-
consistently without using finite-size clusters, thereby ex-
tending and reinforcing earlier work.>""% In particular we
obtain analytical results for the phase boundaries at strong JT
coupling.

Next, we show that the periodic ferromagnetic phase ob-
tained at small J,r by the method discussed above can be-
come unstable with respect to a phase with two types (¢-b)
of electrons when the JT coupling is lowered. We show in-
deed that it becomes energetically favourable to create single
site JT defects, i.e., release the distortion on a finite number
of sites that were previously distorted and promote previ-
ously trapped electrons onto a mobile band, thus suggesting
a metallic phase. The exact nature of the phase cannot be
figured out by such an instability analysis. Nonetheless, it
suggests an effective (¢-b) Hamiltonian with orbital degrees
of freedom explicitly included.

The observed phases at half-doping, such as the CE
phase, are antiferromagnetic, corresponding to appropriately
larger values of J,p. But they show transitions to ferromag-

PHYSICAL REVIEW B 73, 035218 (2006)

netic metallic phases in an external magnetic-field or when
electrons are added. To understand such transitions, in addi-
tion to considering changes in the JT distortions, canting of
spins is important.

Canted phases are expected to appear not only in a
magnetic-field, but also upon doping with carriers (and irre-
spective of their nature), following the original argument by
de Gennes.?> Here we show, however, that canted metallic
phases appear only when electrons (and not holes) are added,
because of the underlying asymmetry of the density of states
at half-doping. When we allow for JT distortions, we find a
competition with a disordered phase where the added elec-
trons are trapped by JT distortions, the latter phase winning
only at small electron concentration. On the hole-doped side,
added holes are simply trapped by the lattice distortions and
the system remains insulating. Thus our work provides an
explanation for the particle-hole asymmetry near x~ 1/2, at
intermediate JT couplings which we argue are relevant for
the majority of the manganites.

Similarly, we find that there is a strong interplay between
turning on a magnetic-field at half doping and the JT distor-
tion pattern. This is consistent with x-ray measurements in
La,;,Ca; ,MnOj in a field.®3 Starting from the distorted CE
phase, we find in addition an instability of the high-field
ferromagnetic phase to the formation of JT defects. This sug-
gests that the high-field phase seen in experiments may need
a two-fluid description.

Interestingly, a very similar two-carrier hypothesis was
proposed based on phenomenological grounds to understand
the resistivity of La,_,Ca,MnO; (x~ 1/2).3¢ More recently, a
particle-hole asymmetric Ginzburg-Landau theory was pro-
posed to explain®’ the incommensurate charge order®® seen
for x>0.5. We believe that our theory provides the micro-
scopic basis for both these facts.

The rest of this paper is organized as follows: In Sec. II,
we discuss the phase diagram of the half-doped manganites
restricted to periodic ground states with the most general
8-sublattice structure. We give in particular an analytic
strong-coupling description (Sec. II D). In Sec. III, we study
the instabilities of some of these phases: instability of the
strong JT coupling ferromagnetic phase, which defines a new
phase (Sec. IIT A); instability upon doping to the canted
phases (Sec. IIIB 1) or to self-trapping of added carriers
(Sec. I B 2), and the competition between the two (Sec.
II B 3). The effect of the magnetic-field on the CE phase is
studied in Sec. III C, where we also discuss the nature of the
high-field ferromagnetic phase. In Sec. IV, we summarize
and discuss the possibilities for testing these ideas experi-
mentally. A short account of some of these results has been
presented elsewhere.*

II. OPTIMIZED PERIODIC PHASES AND PHASE
DIAGRAM FOR HALF-DOPED MANGANITES

A. Model Hamiltonian

Our discussions are based on the following Hamiltonian
for the manganites:
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where cfaa creates an e electron (in a low-energy-projected
Wannier orbital with e, symmetry*'), on the sublattice site a
(Mn site) of the unit-cell i in the 3D cubic lattice, and in the
orbital state a=1,2, with Idez_),2,25d3z2_,z. The original
lattice is decomposed into eight sublattices, labeled with a.3*
There are N sites and cN=(1-x)N electrons (when x=1/2
the number of electrons is denoted Ny=N/2). The first term
is the kinetic energy of the electrons. The hopping param-
eters are taken to be of the usual Anderson-Hasegawa form*
which takes care of the Hund’s coupling, J42;S,,-s;, in the
limit of large Jy/t, with S;,, the S=3/2 core spin formed
from the Mn 1,4 electrons being approximated as a classical
spin. As a consequence only the electrons with spin projec-
tions parallel to the core spins are present, and their hopping
amplitudes are functions of the polar angles of the core spins
given by*>+
o; 0,
?;’l{’,’.j(s,-a,sjb) = Z‘ﬁ-j X (cos ?’a cos ~2Lb

+ sin O sin %Lbe"(d’iﬂ_d’f”)) (2)

Here tj‘[ﬁj is the usual, anisotropic and symmetry determined,
hopping amplitude®' between the e, orbitals a and 3 at the
two nearest neighbor sites (i,a) and (j,b), respectively, aris-
ing from their hybridization with the O-p, orbitals [with
4t/3 being the hopping between (3z%-7?) orbitals in the z
direction].** The second term J,p is the antiferromagnetic
coupling of the 7,4 core spins that comes from standard su-
perexchange processes.*> It can be roughly estimated from
the Néel temperature of a system with only 7,4 core spins,
such as CaMnOs, although the structure of the half-doped
system is not exactly the same. The third term is the Zeeman
energy where H is the external magnetic-field. The last two
terms include the Jahn-Teller (JT) phonons and their cou-
pling to the ey electrons. We neglect the Piza/ 2M,;, terms
since fiwy <t (Where wy, is the typical phonon frequency), but
include their effects heuristically when we argue that JT de-
fects lead to polaron formation. Q,, and ©,, are, respectively,
the amplitude (measured in units of the typical JT distortions
in these materials) and the angle of the JT distortion at the
site (i,a). The coupling matrix is given by

cos O

sin ©

sin O
L e

—cos O

7(®)=(

K is the lattice stiffness of a simplified noncooperative model
where distortions on neighboring sites are not coupled. More
detailed and realistic models would include cooperative JT
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couplings and coupling to breathing modes such as in the
lattice model of Ref. 46.

We have neglected the on-site Coulomb interaction,
UZn;, i, between different orbital states. Although it is an
important interaction in the problem, we cannot treat it using
the methods used in this paper except in a mean-field ap-
proximation. However, it is effectively taken into account
when orbital order occurs. We comment on the effects of its
inclusion at appropriate places in the paper. When a local JT
distortion occurs on a site, the degeneracy of the eg orbitals
is lifted. If only one electron is present, there is a gain by
occupying the lowest energy level. If a second electron is
added, however, it has to occupy the higher energy level
because of the strong Hund’s coupling. There is a compen-
sation and the energy gain vanishes. JT distortions therefore
suppress double occupancy of sites, mimicking the effect of
U. When g<t, the distortions are small or zero and it is
important to explicitly include U, which does play a role. For
instance, it induces a charge-ordering in the CE phase,?® just
as a finite g/t does.’! When g>t (see Sec. II D), JT distorted
phases appear naturally, and the inclusion of U is not crucial.
Similarly, the inclusion of the term UZ;n;n;| is unimportant
(completely irrelevant when Jy— ) because the large
Hund’s coupling prevents double occupancy of this type. We
have also neglected the longer range Coulomb interactions as
they are expected to be weak because of the large dielectric
constant of the manganites, and we do not consider issues
(such as macroscopic phase separation) which are sensitive
to their presence.

Note also that regarding the direct coupling of the 1,4
spins, we restrict ourselves to a pure Heisenberg superex-
change coupling. This may not be absolutely accurate for S
=3/2 spins. Further couplings, such as single-ion anisotro-
pies, are certainly present in the real materials, but are not of
crucial importance for the issues we focus on in this paper.
We therefore restrict ourselves to the Hamiltonian of Eq. (1).

B. Method

The Hamiltonian of Eq. (1) represents mobile electrons
coupled to local classical degrees of freedom that act like
annealed disorder. The probability weight of a particular
configuration of the classical variables is given by
exp[—Fg/ (kgT)] where F,, is the electronic free energy in the
presence of that configuration; their distribution thus has to
be determined self-consistently. At zero temperature, it is
reasonable to assume that the classical degrees of freedom
are frozen and have well-defined values. On a finite lattice
these can, in principle, be determined as follows. One can
diagonalize the Hamiltonian exactly for a given (arbitrary)
configuration of lattice distortions (Q;,®;) and polar angles
of the spins 6; (for simplicity we are ignoring the azimuthal
angles of the spins ¢;). For each configuration, one can thus
find the electronic energy levels, fill the states up to the
Fermi energy, and calculate the total energy. To obtain the
ground state of the system, one then needs to minimize this
energy with respect to all the possible configurations of clas-
sical variables. Such a procedure can be implemented, for
example, using a Monte Carlo technique*’ for a finite lattice,
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FIG. 2. Phase diagram of the 3D two-orbital model (7=0, x
=0.5, K/t=10). FM (resp. FM,): ferromagnetic metallic phase with
no distortions (resp. small uniform distortions). FI-CO (resp. FM-
CO): charge-ordered ferromagnetic insulating (resp. metallic) phase
with distortions that favour occupancy of the x?>—y? orbitals (Fig.
3). A, ferromagnetic planes AF aligned with uniform distortions.
A-CO, A with charge order. CE-CO, ferromagnetic zig-zag chains
AF ordered, charge and orbital ordered (3x*—r%/3y*—r?) (Fig. 1).
G-CO, Néel AF phase with charge-order. Inc.; Possible incommen-
surate states that interpolate between CE and G. Dotted dashed lines
come from analytical expressions derived in the strong-coupling
limit (Sec. 11 D). Solid (dashed) lines show first-order (second-
order) phase transitions.

but becomes a more and more difficult task as the number of
lattice sites, and hence the number of variables, increases.
Since our aim is to explore the physics of the experimen-
tally observed CE state, we adopt a simpler approach. We
assume a 8-sublattice periodic structure that is compatible
with the periodicity of the CE state, which permits us to
tackle the problem in a lower dimensional space of the clas-
sical variables. [Needless to say, this rules out the possibility
of incommensurate (with respect to the assumed eight sub-
lattice structure) or inhomogeneous phases.] We have imple-
mented a simulated annealing routine to minimize the total
energy with respect to (essentially all possible) distortions
and spin angles on the 8-sublattices. Thus our approach dif-
fers from and is complementary to earlier numerical ap-
proaches which have considered small clusters and done a
full classical Monte Carlo simulation for the spin and lattice
variables.?! For us, the only limitation is the number of sub-
lattices, which we fix to be eight; the system size is vastly
larger (we are treating the real 3D case), and practically in
the thermodynamic limit. [The system size, i.e., the total
number of sites, is 8 times the number of periodic repetitions
of blocks of 8 sites (the spin and distortions being the same
in all the blocks), and we have done calculations using up to
6912 blocks.] The computational effort of such an approach
compared with that of Ref. 31 is, on one hand, much reduced
because we do not have to equilibrate a large number of
variables. On the other hand, the calculation of the energy of
each configuration takes more time because we sum over a
large number of k-points (equal to the number of blocks) in
the Brillouin zone corresponding to the periodic structure.
We have carefully studied the finite-size effects on these
Brillouin zone sums. The error on the total energy due to the
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FIG. 3. (Color online) A depiction of the ferromagnetic insulat-
ing (resp. metallic) charge-ordered phase [FI-CO (resp. FM-CO)]
stable at strong JT coupling and small antiferromagnetic coupling
(see Fig. 2). Alternate sites have charge disproportionation & (given
in Fig. 5 as a function of g/t). The sites with higher occupancies
also have strong JT distortions (see Fig. 4), of such orientation as to
promote the occupancy only of (x2—y?) on these sites, leading to
orbital order as well. Note that the lattice is rotated by 45° with
respect to Fig. 1.

truncation of the sums is of the order of 1072, where ¢ is the
typical energy scale of the problem. The thermodynamic
limit is therefore reached within this accuracy, i.e., for all the
phases compatible with the sublattice structure we expect
that our results are within 1% of the thermodynamic limit
results.

C. Results

Figure 2 shows the phase diagram as a function of the JT
coupling, g/t, and the antiferromagnetic coupling, J,pS>/1,
at zero temperature. [We choose units such that the JT dis-
tortions are dimensionless, where K and g both have dimen-
sions of energy, which we specify in units of . We use a
fixed K/t=10. To compare with earlier work, the JT energy
is then E;p/t=(g/t)?/(2K/1)=(g/1)?/20.] We basically find
the same phases that were found before either by comparing
the energies of selected phases at g=0,2%>%% or by Monte
Carlo simulations at finite g;*' except that now we have pro-
vided confirmation that they are indeed the optimal
8-sublattice structures in the thermodynamic limit.

We now describe the different phases shown in Fig. 2,
including the amplitudes of the JT distortions in them and the
corresponding electronic properties.

For small values of J 4 an undistorted metallic phase with
3D ferromagnetic order (FM) is stable up to a critical value
of g/t~5. Above this threshold, there is a ferromagnetic
phase with very small uniform distortions (see Fig. 4 below),
noted FM,. There is also a narrow region (5.6<g/1<5.9)
where the solution displays many inequivalent sites. As dis-
cussed later, we believe that this is consistent with the insta-
bility that we find in Sec. III. For g=5.9, the stable phase is
the FM-CO followed by the FI-CO. These phases have the
structure depicted in Fig. 3; i.e., a layered structure with
large JT distortions on two sites out of four in a checkerboard
pattern in each layer, and oriented in such a way as to favor
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FIG. 4. Amplitudes of distortions of the four inequivalent sites
of the unit-cell as function of the coupling parameter g/z. The dif-
ferent panels represent the various phases found previously:
F,A,CE,G. The last three phases do not exist for all values of g/t;
the curves are then obtained by fixing the magnetic structure and
optimizing with respect to the distortions. For the G-CO phase, the
distortions are exactly given by g/K since the electrons are com-
pletely localized.

the (x>—y?) orbital on the strongly distorted sites (Fig. 3).
There is a charge disproportionation ¢ that is given in Fig. 5
(below). The structure is metallic (FM-CO) up to g/t~ 6.3,
and is insulating (FI-CO) for larger g/t, as is clear from Fig.
6. This structure has been found before,’! and is known to
compete with a similar structure which prefers a (3x?
—1r?)/(3y*~r?) orbital order, when strong anharmonic and
cooperative JT couplings are taken into account.®

The A phases, which are more stable at larger J,p (the
larger the g/¢, the smaller the coupling Jf required for the
transition) are similar to the ferromagnetic phases we have
just described except that successive layers are now antifer-
romagnetically ordered. For g/t up to ~5.1, the phase noted
A, is uniformly distorted with a distortion amplitude given in
Fig. 4. It is metallic in this regime (see the charge gap in Fig.
6 below). For larger values of g/t, the A phase become
charge-ordered and insulating, as in case of the FI-CO phase
(Fig. 3).

The CE-CO phase, the CE phase with charge stacked or-
der and orbital order (Fig. 1), is the stablest over a wide
range of parameters for intermediate J,p, as is clear from
(Fig. 2). As pointed out in Refs. 28 and 31, there is orbital
ordering even at g=0, but no charge ordering; the “bridge
sites” having an average occupancy of 0.5, but only of
(3x?>=7?) and (3y>—7?) orbitals alternately (Fig. 1). The “cor-
ner sites” on the other hand, have equal occupancy (0.25
each) of (x>—y?) and (3z%>—r?) orbitals. The sites are undis-
torted at g=0, but get distorted as soon as g>0 (Fig. 4,
bottom-left panel). The distortions on the bridge sites are the
largest, and are oriented in such a way as to further stabilize
the alternating occupancy of the (3x>—7?) and (3y*-r?) or-
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FIG. 5. Charge disproportionation defined by the valence of the
two inequivalent Mn ions, Mn>>*% and Mn3>~9 (see Figs. 1 and 3),
as a function of g/t [or Ejp/t (inset) defined by 2Ejp= g0 max, Where
Onmax 18 the distortion of the site with the largest distortion] for the
CE, F, and A type-phases.

bitals that already exists at g=0, since distortions that pre-
cisely favor this alternation lower the energy of the system.
In addition, small distortions get generated also on the corner
sites that favor the (x?—y?) orbital (Fig. 4). As a further con-
sequence, a charge disproportionation & between the bridge
and corner sites develops, favoring a higher occupancy of the
former. The variation of § with g/t is shown in Fig. 5. The
system is an insulator whatever the charge disproportion-
ation, as shown by the finite charge gap in Fig. 6.

For strong JT coupling (g/t> 1), the CE-CO phase is de-
generate energetically with the C-CO phase which consists
of straight ferromagnetic chains antiferromagnetically or-
dered with respect to each other. The charge order is accom-
panied by orbital order of the (3z2—7?) type if the chains are
oriented along the z-direction. This degeneracy is discussed
in explicit detail in Sec. II D. In this limit, it is easy to show
(see Sec. II D) that the G phase (completely 3d-AF phase
with localized electrons) is always the stablest for large val-
ues of Jp. For smaller values of g/t (and large J,p) we find
solutions with many inequivalent (canted) sites, suggesting
that the transition from the CE phase to the G phase in this
regime might proceed via intermediate states that are incom-
mensurate relative to the periodicity of the unit-cell we have
considered (Fig. 2).

6

B

ot

FIG. 6. Charge gap vs g/t for the CE, F, and A type-phases. The
CE phase is always insulating, while the A and F phases are insu-
lating beyond g,.4/t=5.1, and g,.r/t~ 6.3. The dotted line is the gap
obtained with nonoptimized distortions [Eq. (11) in Sec. III B].
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We consider next the strong JT coupling limit, g/t>1,
whence we can calculate the energetics of the phases and the
phase boundaries discussed above analytically.

D. Localized description for g/t>1

At large g/t, it is energetically favourable for all the elec-
trons in the system to be self-trapped by local lattice distor-
tions since the JT energy gain is large. We hence start with
Wannier-type wave functions with electrons fully localized
on strongly distorted sites. The local energy per electron is
the sum of the elastic energy %KQ2 and the electronic energy
gain —gQ which is minimal at Q=g/K with a net energy
gain of E;p=g?/(2K). In the limit of large g/t, there is a
large degeneracy because electrons can be trapped on any
site and in any orbital state, as long as the orbital state cor-
relates with the orientation ®; of the JT distortion as

(OF 0,
|¥(0,)) = cos ?l|dxz_yz> +sin ?l|d3zz_,z) 4)

(fozr instance, ®,=—m/3 for 3x*>~r?, and ©,=m/3 for 3y>
-r).

This degeneracy is lifted at second-order in perturbation
theory in the kinetic energy of the electrons. Consider an
electron localized on a site with an empty neighboring site
and with the corresponding core spins aligned. Then, in the
adiabatic limit (1> 7%iw, where wy is the frequency of the JT
phonons) appropriate here, it can hop virtually onto any of
the two orbital states of that site and back, without giving the
lattice distortions time to relax (the relevant energy denomi-
nator being 2Ejr), and hence lower its energy. This energy
lowering is less if the core spins are misaligned whence the
hopping amplitude is reduced (and even fully suppressed in
case of antialignment). It is also less if the neighboring site is
occupied, whence the energy denominator is larger, equal to
4E5r (4E5r+ U in the presence of U, so that the process gets
suppressed altogether for large U). Such a process hence
gives rise to a effective double exchange term in the Hamil-
tonian as pointed out in Ref. 33 and labeled virtual double
exchange. The dominant term in the effective Hamiltonian is
then*

H=—Epn2 ni+ 2 Jx6S;. S - gup> H- S,
i I i

IS8+ A -m)C G )L (9)
(i.j)

Here Ejp=g°/(2K), n; is the electronic occupancy on site i,
J=P1(2E;1S?), T=41/3. C;;=cos[(©,+W;)/2] with ¥,
=W i=+m/3, V=V, ,=-7/3, and ¥;;, . =W¥; _;=m.
The effective Hamiltonian of Eq. (5) is a classical spin-
charge-orbital model with no quantum fluctuations. If the
charges are assigned specific positions (so as to minimize the
energy), the model reduces to a spin-orbital model. It is dif-
ferent from the spin-orbital model proposed for undoped
LaMnO; obtained by projecting out double occupancies®®
because double occupancy is irrelevant in the limit being
explored here. The orbital (and JT distortion orientation)

PHYSICAL REVIEW B 73, 035218 (2006)

4 T T T T T T
g>>t

3 - -
=z
z Ll FL-CO 1
£ G-CO
[+11]

1 C-Co ]

0 1 A“C|() CIIE—CO’ IC—CO 1

0 01 02 03 04 05 06 07
Nl

FIG. 7. Phase diagram when g/t>1 at T=0 (x=0.5). The
phases are the same as in Fig. 2. JS?=72/2E;r. The CE-CO and
C-CO phases are degenerate at zero field, but the latter wins at finite
fields.

variables on neighboring sites are not directly coupled in this
model (as C;; involves only one orbital angle ®,). Such a
coupling would arise if one takes into account a direct cou-
pling between JT distortions on neighboring sites, as in the
cooperative JT model. Nevertheless, even in this simplified
approach, the virtual double exchange lifts the degeneracy
between different orientations of the JT distortions and the
corresponding orbital degeneracy. In addition, it clearly fa-
vors ferromagnetic bonds and charge disproportionation.
We can now understand the strong-coupling limit of the
phase diagram (Fig. 2), and furthermore even in the presence
of a magnetic field, by estimating the energies of the various
phases using Eq. (5). For the fully charge disproportionated

phases the energies per site are obtained by minimizing H
with respect to the canting angle (at finite fields) and orbital
angle (the latter depends on the field for the CE phase, and
only the leading term in H—0 is given)

Egp.co=3JapS? = 3J8%2 — gupHS,

H2
EA_CO=JAF52—3JS2/2—M,
8JAF
(gpsH)?
Ecco=—JapS—J8? - —=-22—
C-CO AF 16JAF_2J
E =—7 S2_JS2_M (HHO)
CE-CO AF 16JAF_J >
E =-3J SZ_(gM—BFI)Z
oo A4 -6

At zero field, there is only one free parameter, J,r/J, which
determines the relative energies. At J,p=0, the FI phase
(which is orbitally disordered in this limit) is degenerate with
the A-type phase [with (x*>—y?) orbital order], but the latter is
favored as soon as J,r>0. There is a succession of first-
order phase transitions as J,p/J is increased, first to the
CE-CO phase (degenerate with the C-CO phase) at Jyp/J
=1/4 and then to the G-CO phase (see Fig. 7). In terms of
the original variables, the first transition at 1/4 is located at
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JApS?/t=4tK/(99%); the second transition is at JpS*/t
=8tK/(9¢%). The phase boundaries given by these equations
in the strong-coupling regime are displayed as dash-dotted
lines in the phase diagram (Fig. 2) and are in good agreement
with the phase boundaries obtained numerically.

Similarly we can compare the energies of the different
phases as a function of the magnetic field and draw the cor-
responding phase diagram in the (J5p/J, gugH/JS) plane
(Fig. 7). The degeneracy between the C and the CE phases is
lifted and the C phase wins at finite fields. This is because
the fourth term of Eq. (5) favors Wigner-crystal type of or-
dering. For the C phase, for instance, the critical field is
gupH . =8JApS—JS.

As noted earlier, in the limit of large g/t much of the
physics is insensitive to the inclusion in the model of the
on-site Coulomb interaction between different orbital states,
Un,;n;z- The total energy is hardly affected since double oc-
cupancy is much reduced. We emphasize again that this is
contrary to what happens in the other limit g/¢<<1 where the
electron density is uniform. In the latter case, it is known that
U by itself will induce charge-ordering in the CE phase,?® at
least if the latter is not destabilized by other phases.’! In the
CE phase at large g/¢, U will slightly modify the charge
contrast by pushing the electrons further off the corner sites.
We have performed a self-consistent Hartree-Fock calcula-
tion to confirm this point. At g=0, the calculation gives the
same results as the slave-boson approach.”® At g/t=7 and for
the optimized lattice distortions, the charge contrast in-
creases, with respect to U=0, by a very small amount of
order 0.05 for U/t even as large as 25. Therefore, we con-
clude that the effect of U is small and does not change the
nature of the insulating phases in the limit of large g/t.

We next consider the interesting question as to what the
appropriate low energy effective Hamiltonian replacing Eq.
(5) is when ¢/ Eyp becomes sufficiently large that perturbation
theory in ¢/Eyr and the Hamiltonian (5) are not valid any-
more. We argue below, by studying the excitations and insta-
bilities of the original model (1) in the ferromagnetic phase,
that the effective model that replaces (5) when t/E;; gets
larger takes a similar form except that mobile electrons have
to be included.

III. INSTABILITIES OF THE PERIODIC PHASES

We have discussed in the previous section the various
phases stable in the thermodynamic limit that are periodic
with a 8-sublattice unit-cell. We will discuss in this section
several instabilities that point to nonperiodic phases, at half-
doping (Sec. IIT A) and also upon doping (Sec. III B) or ad-
dition of a magnetic-field (Sec. IIT C). We will show that the
ferromagnetic insulating phase (FI-CO) is in fact unstable
when g/t is lowered below a critical value g./t~ 6.8. This
instability occurs before any of the transitions discussed
above (at g./t~6.3 and 5.9) take place.

For this purpose, we study the energetics of defects in the
lattice distortion pattern of the periodic phases. We consider
particle and hole excitations accompanied by single site JT
defects. We consider both types of defects, one where we add
a distortion on a site that was previously undistorted, and the
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other where we remove the distortion of a site that was dis-
torted. Without the lattice distortion defect, the lowest ener-
gies of the particle or hole excitations accessible are the ap-
propriate gaps determined by the band-structures discussed
in Sec. II C (Fig. 6). The defect modifies locally the JT en-
ergy level, and hence constitutes a scattering potential for the
particle and hole excitations. The problem lacks lattice trans-
lation invariance, and we have solved it by exact numerical
diagonalization of Hamiltonian (1) represented in real-space.
We consider a problem of N sites (up to N=1728) with one
special site, and we calculate all the eigenvalues and the total
energy. A key question is whether bound states with energies
lower than that allowed by band structure can appear near the
defect. We find that they do in several cases, and when their
binding energy exceeds the gap, it signals an instability of
the periodic phase.

A. Instability of the ferromagnetic insulating phase when g/t
is decreased

We consider first the FI-CO phase at half-doping (pictured
in Fig. 3). It is stable for very small J,r and large g/t (see
the phase diagram in Fig. 2). Out of the two sites in the
unit-cell, one site is distorted with a distortion orientation
that favors the dxz_yz orbital.

We now consider the problem when one introduces a
single site JT defect: the amplitude of the distortion Q of the
FI-CO phase is maintained at N/2—1 sites except at one site
where the distortion is now reduced to Q—-Q,. Q, takes all
values from 0 (no defect) to Q (the lattice distortion has been
completely removed on this site). The excess energy of such
a state is given by

E - Ey=Ey(Np.0.0,) — Eq(Ny.0.0) + 3K(Q - Q,)* - 5KQ°.
(6)

Here E; and E (N,,Q,0) (Ny=N/2 is the number of elec-
trons) are the total and electronic ground state energies of the
optimal FI distorted phase, obtained as a function of g/t by
minimizing with respect to Q as discussed in the previous
section. E4(Ny,Q,Q,) is the electronic ground state energy
of the defective state. One expects a gain in lattice energy
and a loss in electronic energy, because one energy level has
been raised at one site. To evaluate the latter, we first solve
numerically the problem of the one electron eigenvalues in
the presence of the extra single site potential for a finite-size
system. Then we calculate E.(Ny,Q,Q,) by filling the N/2
lowest one-electron levels. We have so far considered 3D
systems with up to N=1728 sites.

Figure 8 shows the energy E—E plotted vs Q, for differ-
ent values of g/t. We have checked that finite size effects are
negligible (the curves corresponding to N=216,1000,1728
are given for g/¢r=6.7 in Fig. 8). For large g/, the energy is
positive but there is a local minimum at large O, which can
be described as a particle-hole excitation with reduced dis-
tortion on one site. When g/t decreases, this excitation soft-
ens and vanishes at g./t~6.8. We believe that this signals
the onset of a new phase where such defects are energetically
favorable and thus proliferate in the system.
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FIG. 8. Energy change when a single JT defect is introduced in
the FI-CO phase, vs Q;. Q—Q, is the JT distortion on a defect site;
all the other occupied sites having the same distortion Q. We see
that there is an excitation with Q,~ Q that softens when g/t de-
creases. The excitation corresponds to a band particle-hole excita-
tion with the removal of a lattice distortion of one site, while the
0,=0 minimum is the polaron. The softening for g./7~ 6.8 signals
a phase transition with proliferation of mobile electrons and defects.
Finite-size effects are small and shown for g/r=6.7 (N
=216,1000,1728).

From the calculation of the energy levels in the presence
of the defect, we find that there is no bound state within the
gap for the O, that minimizes the energy. The electron occu-
pies a higher-energy bandlike state and is mobile. The insta-
bility therefore corresponds to the energy of this mobile elec-
tron crossing the chemical potential (i.e., —FEjr). This
suggests that the proliferation of the defects leads to the con-
version of some small fraction of the localized electrons into
mobile electrons moving on weakly distorted sites, resulting
in a metallic phase. Such a state would not be accessible in
the minimization procedure of Sec. II (which has a maximal
unit cell of 8§ sites) even if the defect sites were to arrange
themselves in a superlattice.

The situation is rather similar to that described by Ra-
makrishnan er al. at the metal-insulator transition in hole
doped manganites in the orbital-liquid regime;*} except that
we have here a calculation in the context of a microscopic
model that explicitly suggests such a picture even when g/t
is not very large. Thus we can identify the high-energy mo-
bile electrons as the broadband b-like electrons of Ref. 33,
and the low-energy localized states as the € polarons. In the
present context, at half-doping and above the transition (g
>g,), all the electrons occupy the € states, which form a
regular checker-board array (Fig. 3). The sites are singly oc-
cupied and U does not play a crucial role. This is no longer
the case below the transition when we start to transfer some
electrons from the € states to the b states. The b states are
delocalized over the empty sites but also visit the sites occu-
pied with € electrons. Double occupancies become inevitable
and U has to be taken into account in order to determine
accurately the properties of the metallic state. The question
of what kind of new metallic state arises for JT couplings
just below the instability is clearly interesting. The mobile
electrons, for instance, may be able to destroy the orbital and
charge order. While a study of such issues is beyond the
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scope of the present article, the above results suggest than
one should add mobile electrons to the strong-coupling
Hamiltonian (1), in order to describe metallic phases with
possible partial orbital/charge order,

H=—EpnX ng+ 2 JaeS;. S;
i [
J

=2 (i 85+ (1= m)Cly + (i = )]
()
= 2 byt 2 Ui (7)
L] i

where the orbital index a of the mobile b electrons takes
both values on the undistorted sites, but is constrained to be
orthogonal to the ¢ orbital on the occupied sites, and the
other quantities have the same meanings as in Eq. (5). For
infinite U the mobile electrons cannot hop to the € sites at
all, and the last pair of terms can simply be replaced by
—E<i’j>tl?';ﬂblbjﬁ(l —ng;)(1-ng;). This Hamiltonian needs to be
studied in a framework that can handle the strong interaction
effects, such as the dynamical mean-field theory, in a similar
way as was done before for the orbital-liquid state.>* Note
furthermore that the above Hamiltonian does not include ¢
-b hybridization effects, which must be included in order to
describe properties sensitive to €-b coherence which can de-
velop at sufficiently low temperatures in the metallic
phases.®? It is straightforward to generalize the Hamiltonian
to include these effects, as well as cooperative JT effects.

B. Instability of the CE phase upon doping

In the band picture of the CE phase,?®? doping with elec-
trons, corresponding to x<<1/2 (resp. holes, corresponding
to x> 1/2) provides mobile carriers in the conduction (resp.
valence) band. In either case, the system will be metallic.
This is contrary to experiment, where, in most cases, the
system remains insulating for x> 1/2, but typically becomes
metallic quickly for x<<1/2. The transition to the ferromag-
netic metal for x<<1/2 has been described as being due to
the crossing of the energies of the CE and ferromagnetic
metallic states.?® The transition is then naturally first order.
However, as discussed in Ref. 33 even for x<<1/2 a simple
band picture of the ferromagnetic metallic state is severely
limited. Apart from that, the band picture fails to describe the
insulating character of the regime x>1/2 and the particle-
hole asymmetry around x=1/2. We discuss this issue next.

It was pointed out a long time ago by de Gennes,? in the
context of slightly doped LaMnOs, that adding carriers to the
antiferromagnetic phase of LaMnO; may favor canted struc-
tures. The qualitative argument is that at small concentration
the carriers gain kinetic energy which is linear in the canting
angle whereas the loss of magnetic energy is quadratic in the
canting angle. By the same token, adding carriers to the CE
phase should lead to canting of the core-spins. As such
phases interpolate between the CE and FM phases, the tran-
sition to ferromagnetism should be naively second order.

In view of this, we have calculated the energy of homo-
geneous CE canted phases (defined in Fig. 9) for different
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FIG. 9. (Color online) Canted CE phase with canting angle ¢
(CE-M-C). The electrons can now hop from chain to chain. The
original 1D zig-zag chains are marked with thicker lines.

carrier concentrations on either side of x=1/2 (i.e., retaining
the 8-sublattice periodic structure even when x# 1/2). We
find that canting is favorable for adding electrons to the half-
doped system but not for adding holes, as de Gennes’s gen-
eral argument is valid only for very small carrier concentra-
tion and breaks down quickly on the hole side, due to special
features of the CE state. We have calculated, in addition, the
energy in the presence of a single-site defect in the JT dis-
tortion as in the previous subsection. We find that, when g/¢
is sizable, canting is in competition with self-trapping of the
carriers in JT defects. We find that the energy gain due to
trapping is linear in the carrier concentration (and thus domi-
nates at low concentration) whereas it is quadratic for the
canting. For intermediate values of g/t, this results in a first-
order transition to a canted metallic phase when electrons are
added to the half-doped system (i.e., for x<<1/2), and the
persistence of a CE-type phase with self-trapped carriers
when holes are added (i.e., for x>1/2).

1. Canted phases

We first consider the total energy of a homogeneous
canted CE phase as a function of the canting angle ¢ (see
Fig. 9 for definition) for different values of doping (Fig. 10,
top). We take the JT distortions that optimize the energy (as
discussed in Sec. II), except that we neglect the small distor-
tions on the corner sites for simplicity.’> When adding elec-
trons (x<0.5), the energy of the system is lowered by a finite
canting angle (Fig. 10, top). The higher the concentration the
higher the canting angle. When adding holes (x>0.5), how-
ever, it turns out that the system prefers ¢=0.

We can understand these results by considering in more
detail the band structure of the CE phase.?$%°* As discussed
earlier for x=1/2 (Sec. II), the bridge sites are orbitally or-
dered in the (3x>—=7%)/(3y>=7r?) pattern.?® If the Jahn-Teller
distortions occur in such a way as to favor precisely the
alternation of (3x%>—72)/(3y>—r?) orbitals, the energy of the
system is further lowered. The band structure has four dis-
persive bands and four nondispersive bands (two at zero and
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FIG. 10. (a) Energies of the canted phases as function of the
canting angle, for different concentrations (g/t=5 and Q=Qy
=0.35). For x<0.5, there is a finite angle that minimizes the energy.
For x>0.5, the angle is zero and the CE state is stable. (b) Com-
parison of the energies of the different phases. The canting angle is
chosen such as to minimize the energy as in the top figure.

two at finite energy), as shown in Fig. 11 (see Refs. 28, 52,
and 54) and described by

&= Ent B PCrcosg), ()
T T '
5| Epp/t=0.875 €56 -
1E q, 1,2
A £ (q,,m)
e sesiTTImoto
0 12
< | 1603 (g, 0 "4
s 1| 160/ A ’
2+ €q,12]
= T
4 . : l
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9,

FIG. 11. Band structure of the 1D zig-zag chains (solid lines)
with Jahn-Teller distortions (E;p/t=0.875), given by Egs. (8)-(10)
(Refs. 28, 52, and 54). At x=1/2, only the lowest band is filled.
Also shown is the splitting of the zero-energy states (dashed lines)
when the core spins are tilted away by an angle ¢ (where their
dispersion becomes two-dimensional).
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€2=—Em= \/EJZT +7(2-cos q,), 9)

€4=0, 6&¢=2E, (10)

where 7=41/3 and Eyr=9g(Q/2, and the wave vector q,, which
takes values in the reduced Brillouin zone [—m/2,m/2], is
parallel to the chain direction. The band structure is analo-
gous to that of Refs. 28 and 52 with a charge ordering com-
ing from the Jahn-Teller distortions, as in Ref. 54, but deter-
mined self-consistently. At x=1/2, the lowest band is
completely filled.

The zero energy band is made up entirely of the states
from the corner sites (see Appendix). The charge gap, from
the top of the filled valence bands to the zero energy states, is

given by
A=EJT+ \/E?T'i';?. (11)

When the core spins are canted away from ¢=0, the degen-
eracy of the zero energy states of the zig-zag chains is lifted,
and they form bands which disperse. To first order in the
canting angle, the dispersion arises from the coupling of the
(3z2—r?) orbitals at the corner sites along the z direction, and
is given by

1+cos g,

Eo(qa’qZ) == 4t¢2 +cos g

COS ¢. (12)

Added electrons (with respect to the reference state x
=1/2) occupy the bottom of this new band (properly folded
in the reduced Brillouin zone, Fig. 11) at ¢, g, ~ 0. Each elec-
tron therefore gains an energy —f,¢t with 8,=8/3, which is
completely independent of g. On the other hand, there is an
energy loss k¢’ per site, where « is the effective spin stiff-
ness towards canting. There are two contributions to x. One
comes from the direct superexchange. In the CE phase with
¢=0, two of the neighbor spins are parallel and the other
four neighbor spins are antiparallel. This gives a contribution
4J \pS? ¢’ to the energy. There is also a contribution from the
double exchange, which we calculate numerically by calcu-
lating the change in the total kinetic energy as function of ¢.
From this we extract a stiffness in the limit of small ¢,
—k,=f(g/t,bc) where Sc=1/2—x is the filling fraction in
excess of that at half-doping, so that k=4J,pS?— k..

The canting angle is then given by minimizing the excess
energy per site, E—Ey=k¢’—f,t5cp, and is given by ¢
=f,toc/2k. Note that the linear dependence in dc is valid
only for sufficiently small c whence the additional electrons
occupy states near the bottom of the band. There are in fact
N/8 states with energy smaller than 0 and N/8 states with
energy greater. So the linear dependence is expected to be
reasonable for dc<<1/8. The total minimized excess energy
is then

2.0
E-Ey=- 2 (50 (13)

4k
quadratic in the electron concentration (E| is the energy of
the CE phase at x=1/2). The canted CE phase thus has a
lower energy than that of the CE phase by this amount,
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FIG. 12. Energy gained by canting of the CE phase for a fixed
canting angle of ¢=0.05 as a function of doping away from half
doping, showing the particle-hole asymmetry.

whenever dc>0. This explains the quadratic behavior in ¢
found numerically in the previous paragraph [Fig. 10(b)].
When dc increases further, the canting angle increases until
eventually the system becomes fully ferromagnetic via a
second-order phase transition. Within the above picture, as
soon as ¢ >0, the system is metallic because the additional
electrons occupy the dispersing conduction band. But note
that, since the dispersion is mainly along the z and the chain
directions to leading order in the canting angle, the metalic-
ity generated by such a mechanism would be highly aniso-
tropic.

Surprisingly, the situation turns out very differently when
excess holes are added to the half-doped system. Naively,
one might have thought that canting the spins will push up
the states at the top of the lower band and that the added
holes will thus gain energy, similarly to the case of electrons.
But according to the numerical results of Fig. 10, this is not
what happens. The energy is minimal at ¢=0, i.e., when the
spins are not canted. The reason is that the energy gain for
the whole system is not linear in the number of additional
holes, except for extremely small dc. This is even more em-
phatically and dramatically evident from Fig. 12, which
shows that the energy gained by canting for a small fixed
canting angle (¢=0.05) as a function of doping, is extremely
particle-hole asymmetric. While the gain is indeed linear in
the deviation from half doping on either side for the smallest
values of |dc|, it drops quickly and substantially below this,
and stays small for x>1/2, i.e., for added holes. In contrast,
when electrons are added, the energy gain from canting re-
mains large for large |&x|. (We emphasize that the above
results are only for the canted CE state for any x; hence they
are most meaningful near x=1/2.)

The reason for this asymmetry is the difference in the
dispersion of the electron and hole bands in the canted CE
phase. As discussed in detail above, the conduction band in
the canted CE phase (into which electrons get added) dis-
perses only in two directions, and hence the corresponding
density of states is constant, over a bandwidth of order z¢.
Hence the energy gain from canting remains substantial up to
half-occupancy of the conduction band, corresponding to
6c=0.25, beyond which the energy gain starts reducing be-
cause of cancellations, as is clear from Fig. 12 (dashed line).
In contrast, the valence band in the canted CE phase which
accommodates the holes (and which we have not discussed
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in detail), disperses in all three directions, resulting in a den-
sity of states which starts from zero at the top of the band.
Typically when the change in the chemical potential is
smaller than #¢, the additional holes occupy the higher en-
ergy states of the new band and the energy gain is linear in
the number of additional carriers. On the other hand, when
the chemical potential is of order 7¢, both sides of the new
band are occupied and there is no energy gain. The condition
is expressed as Sc<t¢pp(€ep) where p(eg) is the density of
states at the Fermi energy for the system with the concentra-
tion c+dc. When the density of states is small, the range
within which the energy gain is linear in the number of car-
riers is small. In this range and out of it, the canting angle is
then very small because it does not scale with the number of
carriers anymore, as is confirmed by Fig. 12.

2. Trapping of added carriers in the CE phase

a. Trapping of added electrons. We next explore the com-
petition between the above process and the possible trapping
of the added electrons in lattice distortions by allowing for
an additional lattice distortion on one special site and N,
+1 electrons (Ny=N/2). In other words we look at the cost
or gain of energy involved in trapping one additional elec-
tron in the CE state. Since the added electron goes into a
band made up from states belonging to the corner sites which
is originally undistorted, we choose the special site with the
added distortion to be one of the corner sites, and of such an
orientation as to lower the energy of the (3z>-r?) orbital
[Fig. 13(a)]. As in Sec. IIT A, translation invariance is now
broken, and we find the one-electron energy eigenvalues by
diagonalizing exactly the problem on large lattices, as a func-
tion of the strength of the additional distortion, Q,. We show
the energy levels in Fig. 13(b). In addition to the band states
(black areas), we also find a couple of bound-states within
the gap [Fig. 13(b)].

The total excess energy including the cost of elastic en-
ergy to create such a defect in the lattice is calculated by
filling up the energy levels with Ny+1 electrons,

E-Ey=Ey(Ny+1,0,) — Eq(Ny+1,0) + 3;K05. (14)

The energy can be viewed as the sum of three different con-
tributions, each of which is separately shown in Fig. 13;
there is the electronic energy gain for the electron bound to
the defect, the scattering energy for the electrons that are
scattered by the defect [both of which are contained in
E4(Ny+1,0,)] and the elastic energy cost for creating such a
distortion. When all are put together, it turns out that it is
favorable to create a defect with an energy gain, EfT For
instance, in Fig. 13, when g/t=5, the energy gain is EfT
=0.75t~ 0.86E)r, slightly smaller than Ejr due to band struc-
ture effects. The problem cannot, indeed, be reduced to po-
laron formation purely with the states of the conduction band
by ignoring the valence band (that would give E§T=E 1)- The
scattering of electrons by the defect and the level repulsion
between the two bands (Fig. 13) accounts for the reduced

value of E%, found above.
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FIG. 13. (Color online) Definition of the defect (a), that is an
additional distortion of strength Q, on a single corner site [(3z?
—r?) orbital]. Energy levels vs Q, (b). At Q,=0, there is no defect
and the band structure is that of Fig. 11. At Q,>0, bound states
appear within the gap. Total excess energy of the system with N,
+1 electrons (c). This can be seen as the sum of the energy of the
bound state Ey, the elastic energy E,,,, and defines the scattering
energy Eg,. 9/t=5, 0=0,y=0.35 (E;r=0.875).

For a small concentration of additional electrons, Jc, the
energy gain with respect to the CE phase, given by

E-Ey=-Eéc, (15)

is linear with the concentration of additional electrons. Here
E, is the energy of the perfect CE phase with additional
electrons occupying the (undistorted) zero-energy band
states.
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When we compare Eq. (15) and Eq. (13), it is clear that
the linear dependence (15) gains over the quadratic depen-
dence (13) of the canted phases at small doping. At small
doping then, the system is insulating and the additional car-
riers are trapped in inhomogeneous lattice distortions. The
resulting phase is interesting in that it possesses some self-
induced disorder. Random self-trapping of additional carriers
has also been reported in the adiabatic spinless Holstein
model, with a concentration of carriers close to one electron
for two sites,” that is similar to the present case. By includ-
ing the double exchange, we have shown that such doping-
induced inhomogeneous states are in fact quite general and
more stable than the canted states because of the linear en-
ergy gain we have found at small concentration. It has some
similarities with the inhomogeneous states with metallic
droplets found in a simple model with charge-ordering near
half-filling.’® We note that we have considered here the sim-
plest polaronic state with fully localized electrons on the
defect sites. It would be interesting to study whether more
complex defects, involving for instance distortions of the
magnetic structure on the neighboring sites (magnetic po-
laron) could arise near x~ 1/2, as suggested for x~0 (Ref.
2) or x~1 (Ref. 57).

b. Trapping of added holes. Similarly, it is also favorable
to trap added holes in lattice distortions. We consider the
analog of the previous problem with one-less distortion and
Ny—1 electrons. The removal of the distortion on one site
creates again a defect. The energy levels and the excess en-
ergy calculated numerically by filling the energy levels with
Ny—1 electrons,

E-Ey=E (Ny-1,0,0,) — E4(Ny—1,0,0)
+3K(Q - 0,)* - 3KQ? (16)

are given in Fig. 14. We find that it is favorable to trap the
additional hole onto the bound state that appears within the
gap just above the lowest band (Fig. 14, left) as soon as

g/t=4. The energy gain, E?T is smaller than Ejp and is
0.311~0.35E); for g/t=5 (Fig. 14). For the whole system

the energy gain is —E?Tﬁc. It is then favorable to trap the
holes and the system is insulating.

3. Competition between the two phases and phase diagram

By comparing the energies of the canted state and the
defective state, (for instance, as shown for g/¢=5 in Fig. 10)
we can arrive at a phase diagram in g/f-x plane near half-
doping. As discussed above, when electrons are added to the
CE phase, they are trapped on corner sites with newly gen-
erated Jahn-Teller distortions if their concentration is within
[1/2= 8¢y, 1/2] (Fig. 15). These JT distortions are oriented
in the z direction, so as to favor the occupancy of the (372
—r?) orbital. The magnetic structure remains of the CE type.
For x=1/2- dc;, there is a transition to a metallic state with
canted spins. In the present approach there is a finite canting
angle at the transition, so that the transition is first-order.
When the concentration increases further the canting angle
becomes larger and larger. At small g/t we find that there is
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FIG. 14. (Color online) Definition of the defect on a single
bridge site with distortion decreased to Q—Q, (Q,4=0 corresponds
to a fully distorted site as in the original structure). Energy levels vs
0, (b) and energies for Ny—1 electrons (c). g/r=5.

a first-order transition line between a canted state with small
canting angle and a highly canted state that ends by a critical
point (Fig. 15). The system eventually becomes fully ferro-
magnetic.

On the other hand, when holes are added to the CE phase,
the holes get trapped on bridge sites with lattice distortions
removed when g/t=4 (and the system remains insulating,
CE-T) or move freely in the lowest band for g/r<4 (and the
system is metallic, CE-M) (Fig. 15). There is no competition
with canted states in this case because, as discussed in Sec.
III B 1, the density of states near the top of the valence band
is not large enough to provide sizable energy gains.
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FIG. 15. Phase diagram as a function of the model parameter
g/t for hole doping concentration x close to 1/2 (J,pS?/t=0.15).
CE-M-C denotes a metallic and canted CE phase. CE-T refers to the
CE phase with added carriers self-trapped in JT defects (Ref. 58).
CE-M is the CE phase with added holes that is metallic (no canting
nor trapping of the holes). C is a critical point ending a first-order
transition line between two CE-M-C states with differing canting
angles that arise for small g/t.

We emphasize that this phase diagram is based on an
instability calculation, and can be expected to be accurate
only when x is sufficiently close to x=1/2. Away from it, the
defects start to interact and other phases may appear.!>20:2!

We note that in all our discussions so far we have ne-
glected the disorder that is present in the real systems. In
fact, even at half-doping the arrangement of the A site ions
(La or Ca) is disordered. This disorder causes the localization
of the one electron states (near the band-edges in 3D) leading
to increased stabilization of the insulating properties near
half-doping, and may also have consequences on the local
magnetic structure as emphasized by the idea of ferrons.?

C. Instability of the CE phase in a magnetic field

Finally, in this subsection we discuss the instabilities of
the CE phase in a magnetic field due to the combined effects
of canting of spins towards the direction of the field by a
canting angle ¢ (as pictured in Fig. 9) and modification of
the JT distortions.

Since a band opens out of the zero energy states upon
canting (dashed lines in Fig. 11), the system will “melt” into
a metallic phase when the corresponding charge gap closes.
Since this can happen for a canting angle less than 7/2, the
transition will typically not be to the fully polarized ferro-
magnetic state.

In Fig. 16, we show the energy versus the canting angle
for different fields at g/#=0. There is a small optimal canting
angle that minimizes the energy for small fields, but the sys-
tem continues to be insulating. When the field increases fur-
ther there is a first-order transition to a state with a finite (and
large) canting angle, which is metallic. This is reminiscent of
the first-order transition line between two canted states when
additional electrons are added (Sec. Il B and Fig. 15). We
note that the first-order transition field is very small,
gupH.=0.010¢, not only because, with J,S?=0.15¢ the sys-
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FIG. 16. First-order transition of the CE phase to a canted state
when an external magnetic-field is applied to the system at g=0.
The threshold field that induces the first-order transition is given by
gupH.=0.010z. The system is metallic beyond H.,.

tem is close to the phase boundary, but also because the
canted phases reduce the critical field considerably. Previous
works that have assumed that the insulator-metal transitions
involve the fully ferromagnetic state’®?”32 would predict a
transition field gugH,=0.14t for the same J,r we have used
above. We discuss in detail next how these features change
with respect to turning on g (and keeping the same Jap).

1. g/t=5

To start with we take the CE phase with the optimal lattice
distortions found in Sec. II for different values of g/t. First,
we freeze the distortions for all magnetic-fields and find the
optimal canting angle that minimizes the energy as a func-
tion of the magnetic field, for nonzero values of g/t (Fig.
17). The jumps in the canting angle correspond to first-order
transitions between states with small and large canting
angles. When g/t is increased, the transition fields and the
fields at which the fully ferromagnetic state is reached shift
rather quickly to larger values. The transition field becomes
larger simply because, with increasing g/t (and for the same

1.6
1.4
1.2

1
0.8
0.6
047
0.2

0

1

¢opt(H)

ot

9/t=0-5 -
J,pS?=0.15¢

1 1
0 01 02 03 04 05
gugh/t

FIG. 17. Optimal canting angle vs external magnetic-field for
different values of g/t (from 0 up to 5) keeping the same distortions
as at H=0 (CE phase) for all magnetic fields. There are first-order
transitions between canted states. As we will show, there are other
transitions, involving modified JT distortions, that preempt those
shown in this figure (see Fig. 19).
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FIG. 18. Crossing of the energies of the distorted canted CE
phases (solid lines, with g/r=2,3,4,5) with that of the undistorted
highly-canted phase (solid line corresponding to g/¢=0), or the
fully ferromagnetic phase (dashed line) to which it merges for large
fields. The cusps visible in the g/r=2,3 curves at higher fields
correspond to the first-order transitions described in Fig. 17. But
these are preempted by the transitions to the undistorted phase.

Jap), the system moves further and further away from the
phase boundary with the ferromagnetic phase (see the phase
boundary in Fig. 2).

We next show that the threshold fields for the “melting”
of the CE phase are reduced by taking into account the effect
of the magnetic-field on the lattice distortions themselves.
One should expect this, since in Sec. II it was shown that the
ferromagnetic phases remains undistorted up to g/¢=5. It is
made explicit in Fig. 18, where the energy of the undistorted
highly-canted state (solid line), which merge into the fully
ferromagnetic state (dashed line) at higher fields, crosses that
of the distorted canted CE states. These transitions occur at
smaller transition fields (see Fig. 18) compared with the tran-
sition fields we considered in the previous paragraph (the
latter correspond to the cusps, visible in the curves g/t
=2,3 in Fig. 18). The new magnetization curves are shown
in Fig. 19(a). We then calculate the band structure as a func-
tion of the magnetic field and extract the gap [Fig. 19(b)].
The jumps in the magnetization and in the gaps turn out to be
simultaneous, thus indicating that the transitions correspond
to insulator-metal transitions. The transition fields gugH.,
vary in the range 0.017—0.2¢ for J,pS?=0.15¢. The smaller
the g/t the smaller the transition field at fixed J 4.

The first-order transitions discussed above were obtained
by considering the crossing of two solutions, namely the dis-
torted canted CE phase (with the distortions frozen at their
H=0 values) and the undistorted FM phase. It is possible, in
principle, that intermediate phases with intermediate distor-
tions appear. To rule out this possibility, we have performed
the full optimization in the presence of the external
magnetic-field for g/t=4,5 and found that the decrease in
the distortions is less than 6% up to the transition to the
undistorted ferromagnetic phase. This validates our approxi-
mation of using frozen distortions in the canted CE phase up
to the first-order transition.

We can roughly understand some of the above results in
terms of an expansion of the physical quantities in the cant-
ing angle, before the first-order transition takes place. For
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FIG. 19. Magnetization or canting angle (a) and charge gap (b)
vs external magnetic field for different values of g/r=1-5
(JopS?/t=0.15). There are clear first-order transitions to an undis-
torted canted metallic or fully ferromagnetic metallic phase.

simplicity we neglect the distortions on the corner sites of
the CE state, so that the zero-energy states are degenerate to
start with. The degeneracy is then lifted by the canting and
the reduced charge gap is given at first order in the canting
angle by

A(¢)=A- B, (17)

where A is the gap of the uncanted CE phase, given by Eq.
(I11), and B,=8/3 a numerical coefficient [from Eq. (12)].
The canting angle itself is determined by minimizing the
magnetic energy per spin due to canting, given for small ¢
by

E= ¢’ —gupSH, (18)

where k=4J,pS>~ K, is the spin stiffness we have referred to
before (Sec. IIIB). The energy is minimal for ¢,y (H)
=gupSH/2k, which describes the linear regime of the curves
in Fig. 19, before the first-order transitions to the highly
canted states take place. The corresponding charge gap,
given by
Bet

AminE A(¢0pt)=A— (Z)gMBSH’ (19)
also decreases linearly with field, but is not a very good
approximation to the results of Fig. 19(b). The difference
comes from the small distortions on the corner sites which
we neglected in deriving (17) by assuming degenerate zero-
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energy states. With small distortions on the corner sites, the
zero-energy states are no longer degenerate, and that would
modify the expression for the gap (17).

In any case, one can give an upper bound for the critical
magnetic-field by extrapolating the linear expression (19) to
zero. This is an upper bound because the actual transition
occurs before the gap get completely closed as is clear from
Fig. 19. We have

2kA g 2, A 20
gupSH,. = Bt = (8JApS" - Ke),Bel‘. (20)
It is clear from this expression that in order to close a gap A
of order Ejp or t, we do not need a magnetic-field of order A
thanks to the reducing factor «/t. x/t is small, first because
the spins are easy to polarize on energy scales that have
nothing to do with the charge scales, as in the standard field-
induced insulator-metal transition of a spin-density wave. It
is interesting to note that the large field gupSH o= 8J,pS? is
the critical field to align antiferromagnetic spins coupled
only by Jar. The real transition fields are substantially re-
duced compared to this by the double exchange included in
k, and the factor A/B,t which describes how fast the gap
closes with the canting angle. For example, the strength of
the transitions fields of Fig. 19 is in the range gugH,
~0.1r-0.25t.  With r~0.2eV, we have guzH.
~20-50 meV, or H.~140-350 T, which is still much too
large. We discuss this discrepancy below. We now consider
the other situation with g/t=5.0.

2. Transition to an inhomogeneous state

For g/t>6.8 we have seen that even the ferromagnetic
phases are insulating. Hence it is to be expected that no
insulator-metal transition can take place in this regime. In-
stead, the CE phase makes a transition to the ferromagnetic
insulating phase for sufficiently large fields, as is clear from
the large g/t limit phase diagram discussed in Sec. II D. For
g/t<6.8, however, we have shown earlier that it is favorable
to create defects and mobile electrons out of the FI-CO phase
(Sec. IIT A). We expect therefore that similar kinds of phases
will be favored by a magnetic field as well. We explore this
issue further below, taking g/¢r=6 as an example.

We first compare the energy of the canted distorted CE
phase [with the usual (3x”—r%)/(3y?>~r?) orbital ordering]
with that of a canted phase with alternate sites distorted in
such a way as to favor the (x>-~y?) orbital ordering. The
latter is indeed a lower energy state for large g/t when the
spins are fully aligned, compared with the undistorted phase.
We see in the inset of Fig. 20 that the two energies cross for
gupH/t~0.43. As shown in Fig. 20, at this field the canting
angle that minimizes the energy jumps from ~0.8 to 7/2
corresponding to a transition to the fully ferromagnetic state
(which is metallic at g/t=6.0, see Fig. 6) with (x>~y?) or-
bital ordering.

We now consider the possibility of creating a defect in the
lattice distortion pattern, similarly to what we discussed in
Sec. III A, which might lead to a lower energy according to
what we found there. We start with the (x>—y?) phase with
canting angle ¢, and reduce the distortion of one of the dis-
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FIG. 20. Magnetization or canting angle (a) vs external
magnetic-field for g/1=6 (J5pS?/t=0.15). In the inset the energies
of the undistorted canted phase (dotted line), the canted phase with
distortions so as to favor (x?—y?) orbital ordering (dashed line) and
the CE canted phase (solid line) are given. The latter two cross for
gupH/t around 0.43, where the first-order transition takes place.
Above this field the phase is fully ferromagnetic. (b): The resulting
charge gap is shown as a function of gugH/1.

torted sites to Q—Q, instead of Q, so that when Q,=0, the
distortion is completely removed. In Fig. 21, we show the
total energy E—E, (where E, is the energy of the homoge-
neous phase, corresponding to Q,=0) as function of Q, for
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FIG. 21. Energy for creating a single-site defect in the JT dis-
tortions with amplitude Q, for various canting angles in the FI
phase. Such an excitation becomes soft at ¢=0.95 and the defects
proliferate. The transition corresponds to an instability towards a
metallic phase with defects.
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different canting angles near the transition. Clearly, there is a
minimum at Q,=Q (0=0.39 at g/t=6.0) that corresponds to
an excitation where we remove a distortion and create a
particle-hole excitation. This minimum becomes soft at ¢
~0.9, thus signaling the onset of a transition to a phase
where such defects are energetically favorable. Note that this
phase cannot correspond to the undistorted phase (i.e., to
removing the distortions on all the sites) because the undis-
torted canted phase is higher in energy as is clear from Fig.
20 (short-dashed lines).

To sum up the discussion above, when a magnetic field is
switched on, the core spins cant towards the direction of the
field. A band opens out of the zero-energy states of the corner
sites of the CE phase and the gap gets reduced. At a thresh-
old value of the magnetic-field, there is an instability toward
transferring electrons from the localized states (or lower en-
ergy band) to the mobile states. For field values close to this
threshold, further energy gain is possible when some Jahn-
Teller distortions are removed and defects are created. When
the density increases, the missing distortions start to play a
more important role and the one-defect approach we have
developed here breaks down. This scenario for the magnetic-
field induced metallic phase is very close to the description
of the metallic phase in the (x<<0.5) regime as discussed in
Ref. 33.

Clearly, for all the values of g/t we have considered, there
are rich transitions from the CE phase to the ferromagnetic
phases as a function of the magnetic field. The lattice distor-
tions play a crucial role in converting a transition that would
be naturally second-order because of the progressive canting
of the spins into a first-order transition.

The strength of the magnetic field at which the transition
occurs, although much reduced compared to naive estimates
as discussed above, is still much too large compared to ex-
periment, especially if we consider large values of g/7. How-
ever, the large distortions observed experimentally are con-
sistent with relatively large values of g/t. How does one
reconcile these two? As we have seen, a crucial ingredient
that determines the strength of the transition field is the
charge gap. We can reasonably argue that the gap is overes-
timated in the present approach. On the experimental side,
the gap is not of the order of # but much smaller, typically 5
times smaller for Nd,,,Ca,,Mn05.%° This is also clear from
the temperature at which the charge-order transition takes
place. If we use the estimates of the gap from experiments in
expression (20), the transition field comes out to be much
smaller, of order 30 T, much closer to the transition fields of
that compound.

It is clearly important, therefore, to improve the theory
presented above to generate a more accurate estimate for the
charge gap in the CE phase. For this we need to include at
least three sources of correction to the gap estimate above.
Namely the finiteness of the Hund’s coupling J, the coop-
erative nature of the JT distortions, and small second neigh-
bour hoppings. When Jy is finite, the electrons can hop even
between sites which have anti-aligned core spins. This opens
a band out of the zero energy states and reduces the gap.
Second, because distortions of neighboring sites are coupled,
a distortion on a site imposes a distortion on the neighboring
site that lowers the energy level, thereby reducing the gap.
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Finally, second neighbor hopping allows the corner site elec-
trons to become mobile (even in the case of infinite Jy), and
overall increases the bandwidths of all the bands, hence re-
ducing the charge gap (see, for example, Ref. 54). We be-
lieve that, while the theory presented above clarifies how the
smallness of the transition field arises, a more elaborate
theory including these three effects which reduce the gap is
required to obtain a precise estimate of the transition field.

IV. CONCLUDING REMARKS

In conclusion, we have first confirmed various periodic
phases of the phase diagram of half-doped manganites (Fig.
2), by optimizing the lattice and magnetic energies in the
thermodynamic limit. We have thus provided explicit calcu-
lations for the Jahn-Teller distortions, charge and orbital
order-parameters in the various stable phases by exploring
the phase space in an unbiased way, albeit limited by the
8-site unit cell.

It is interesting to discuss, in the context of the phase
diagram of Fig. 2, the strengths of the couplings of real man-
ganites materials. Obviously, the absence of 3D ferromag-
netic phases at half-doping suggests that J is substantial in
these materials (J,S?/t=0.05). The observation of the
A-type phase in Pr;,Sr;,MnO; with distortions that favor
the (x?—y?) orbital,® is only compatible with g/¢=5.0 (Fig.
2), a large value that is generally corroborated by large
distortions.'3 In addition, the fact that many half-doped man-
ganites show a (CE) insulator to (ferro) metal transition as a
function of magnetic-field confirms that g/¢ cannot be much
larger (since for g/t=6.3, the ferromagnetic phase is also
insulating). Adopting such values g/t~5 (or Eyp~1), the
charge disproportionation in the CE phase is §~0.2 (Fig. 5),
which is much smaller than Goodenough’s ionic picture
value of 0.5. The inclusion of cooperative JT effects is likely
to reduce the charge contrast. In addition, the specific distri-
bution of the charge contrast amongst the Mn and O orbitals
depends upon band-structure details which we have not con-
sidered in this paper.*!

Secondly, and more importantly, we have studied the in-
stabilities of these phases with respect to canting of spins
and single site defects in their JT distortion pattern, caused
by doping away from x=0.5 or by the application of a mag-
netic field. The consideration of canted CE phases allowed us
to study how the magnetization changes with applied field.
We have found that the distortions do not change much in the
linear regime of the magnetization up to a threshold field at
which there is an abrupt change. This seems to be consistent
with recent experiments.?3° A more detailed comparison
would be interesting in order to extract the strength of the JT
coupling. Regarding the effect of the doping, we have found
that when electrons are added (with respect to half-doping,
i.e., for x<<0.5) the transition from an insulating CE phase
with self-trapped carriers to the ferromagnetic metallic phase
of the colossal magnetoresistance materials proceeds via a
first-order transition to canted states. In contrast, added holes
(corresponding to x>0.5), do not favor canted states because
of a lack of density of states near the top of the valence band.
The holes prefer to be self-trapped, at least above a threshold
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g/t. This, we believe, is the underlying cause of why the
most manganites tend to remain insulating and favor incom-
mensurate charge order?®?! for x> 0.5, but quickly become
metallic for x<<0.5. This striking particle-hole asymmetry
has been recently explored within a Ginzburg-Landau
framework:;3” we believe that our work clarifies the micro-
scopic basis for this asymmetry.°!

We emphasize that the actual numbers we have obtained,
such as the threshold g/r and magnetic-field values for the
various transitions may not correspond to experimental data
because the model we have studied neglects several impor-
tant effects such as the cooperative nature of the JT distor-
tions, the finiteness of the Hund’s coupling, the presence of
second neighbor hopping, etc. As pointed out in the previous
section, for example, the size of the charge gap in the CE
phase, which in turn determines the threshold field for its
transition to the ferromagnetic metallic phase, will be re-
duced when these effects are taken into account.

Finally, and most importantly, in the intermediate JT cou-
pling regime which we have argued is the most appropriate
for manganites, we have shown that there is an instability of
the ferromagnetic phase to formation of defects in the JT
distortion pattern. We did this by calculating the energy cost
for creating a single site defect in the lattice distortion; i.e.
reducing (and eventually removing) the distortion at that site
and promoting a quasilocalized electron onto a mobile band.
We have shown that there are parameter regimes where this
appears spontaneously. A proliferation of such defects leads
to a scenario for the ferromagnetic metallic state that is com-
pletely consistent with, and provides a new justification for,
the effective two-fluid (one light and extended, the other po-
laronic and localized) picture proposed recently to explain
the insulator-metal transition in the colossal magnetoresis-
tance materials.?3

On the basis of this identification we have suggested a
new effective Hamiltonian given by Eq. (7) which goes be-
yond that of Ref. 33 in that it allows for possible orbital and
charge ordering effects. We believe that a treatment of this
Hamiltonian using more sophisticated methods, such as the
dynamical mean field theory,®> will eventually lead to a more
complete theory of the manganites, including orbital and
charge ordering effects. We hope to discuss such work else-
where.

Nevertheless, our work suggests that the ferromagnetic
metallic phase obtained at large magnetic fields in half-doped
manganites is similar to the ferrometallic phases found upon
hole doping, i.e., for x<<0.5, except, perhaps for some rem-
anent orbital and charge order. It is an obvious and interest-
ing question as to whether any vestige of the orbital and
charge order present in the CE phase survives metallization.
If it does, the metallic phase would also be rather aniso-
tropic, with larger mobility along the z-axis of the CE phase.
But irrespective of this, it should have a large fraction of
sites which continue to be JT distorted accounting for the
majority of the eg electrons, which remain localized, and
only a small number of mobile carriers. Interestingly, this
resembles the phenomenological picture of Ref. 36. Our re-
sults provide a microscopic justification for this picture and
can be further tested experimentally in a variety of other
ways, such as measurement of Drude weights in optical con-
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ductivity, EXAFS, and neutron diffraction experiments, for
instance.
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APPENDIX: WAVE FUNCTIONS OF THE CE STATE
WITH LATTICE DISTORTIONS

The unit-cell of the 1D zig-zag chains has four inequiva-
lent sites and there are two orbitals per site (see Fig. 1). We
list below the eight states, which extends Refs. 28, 29, and
52 to the presence of lattice distortions on the bridge sites.
The corresponding energies are given in Fig. 11 and in Egs.
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€6=2E),

where the notations are 7=4¢/3, Eyp=gQ/2 and the states are
defined by

. .
a,a), = \TVE e'laRili, a, a)
1

with a=1,...,4 the four inequivalent sites of the zig-zag
chain and « can be any of the orbital states defined in Eq.
(4). g, is the component of the wave vector along the chain
direction. It takes values in the first Brillouin zone
[-7/2,m/2]. As for g=0, the degeneracies at £7/2 come
from the translation symmetry combined with a mirror plane
symmetry. Similarly, the properties \I’"q‘ka’ 1=\If§a +mp and

W, 3=W, in4 are consequences of the same symmetry.

*Permanent address: Laboratoire de Physique Théorique de la Mat-
iere Condensée, Université Pierre et Marie Curie, UMR 7600 of
CNRS, 4 Place Jussieu, 75252 Paris cedex 5.

ISee, e.g., A. P. Ramirez, J. Phys.: Condens. Matter 9, 8171
(1997); Colossal Magnetoresistance, Charge Ordering and Re-
lated Properties of Manganese Oxides, edited by C. N. R. Rao
and B. Raveau (World Scientific, Singapore, 1998); Colossal
Magnetoresistance Oxides, edited by Y. Tokura (Gordon and
Breach, New York, 2000); C. N. R. Rao, A. Arulraj, A. K.
Cheetham, and B. Raveau, J. Phys.: Condens. Matter 12, R83
(2000); M. B. Salamon and M. Jaime, Rev. Mod. Phys. 73, 583
(2001); E. Dagotto, T. Hotta, and A. Moreo, Phys. Rep. 344, 1
(2001).

2See also the review by V. N. Loktev and Yu. G. Pogorelov, Low
Temp. Phys. 26, 171 (2000), which discusses the extension to
doped manganites of early ideas on the motion of holes in (an-
tiferro) magnetic lattices, and the idea of “ferrons” developed by
Nagaev and collaborators mostly in the context of diluted mag-
netic semiconductors [see e.g., E. L. Nagaev, Physics of Mag-
netic Semiconductors (Mir, Moscow, 1983);and E. L. Nagaev,
Usp. Fiz. Nauk 166, 833 (1996)] including the notions of “mi-
croferrons.”

3C. Martin, A. Maignan, M. Hervieu, and B. Raveau, Phys. Rev. B
60, 12191 (1999).

4E. O. Wollan and W. C. Koehler, Phys. Rev. 100, 545 (1955).

5]. B. Goodenough, Phys. Rev. 100, 564 (1955).

SH. Kawano, R. Kajimoto, H. Yoshizawa, Y. Tomioka, H. Kuwa-
hara, and Y. Tokura, Phys. Rev. Lett. 78, 4253 (1997).

7TH. Kawano-Furukawa, R. Kajimoto, H. Yoshizawa, Y. Tomioka,
H. Kuwahara, and Y. Tokura, Phys. Rev. B 67, 174422 (2003).

8E. Millange, S. de Brion, and G. Chouteau, Phys. Rev. B 62, 5619
(2000).

°J. Garcia, M. C. Sanchez, G. Subias, and J. Blasco, J. Phys.:
Condens. Matter 13, 3229 (2001); 13, 3243 (2001).

10 A Daoud-Aladine, J. Rodriguez-Carvajal, L. Pinsard-Gaudart, M.
T. Fernandez-Diaz, and A. Revcolevschi, Phys. Rev. Lett. 89,
097205 (2002).

ITM. Coey, Nature (London) 430, 155 (2004).

12D V. Efremov, J. vandenBrink, and D. I. Khomskii, Nat. Mater.
3, 853 (2004).

3P G. Radaelli, D. E. Cox, M. Marezio, and S. W. Cheong, Phys.
Rev. B 55, 3015 (1997).

14See, e.g., in Ref. 12, it is shown that a similar phase, although not
identical as far as the magnetic structure is concerned, has a
lower energy when electrons are added to the CE phase. The CE
phase is, however, still preferred at half-doping.

I5A. Daoud-Aladine, J. Rodriguez-Carvajal, L. Pinsard-Gaudart,
and A. Revcolevschi, J. Magn. Magn. Mater. 272, e1387 (2004).

I6R. I. Goff and J. P. Attfield, Phys. Rev. B 70, 140404(R) (2004).

7G. Zheng and C. H. Patterson, Phys. Rev. B 67, 220404(R)
(2003); V. Ferrari, M. Towler, and P. B. Littlewood, Phys. Rev.
Lett. 91, 227202 (2003); see also Ref. 12.

18K J. Thomas, J. P. Hill, S. Grenier, Y-J. Kim, P. Abbamonte, L.
Venema, A. Rusydi, Y. Tomioka, Y. Tokura, D. F. McMorrow,
and M. van Veenendaal, Phys. Rev. Lett. 92, 237204 (2004).

19C. S. Nelson, J. P. Hill, Doon Gibbs, F. Yakhou, F. Livet, Y.
Tomioka, T. Kimura, and Y. Tokura, Phys. Rev. B 66, 134412
(2002).

208, Mori, C. H. Chen, and S.-W. Cheong, Nature (London) 392,
473 (1998); J. C. Loudon, S. Cox, A. J. Williams, J. P. Attfield,
P. B. Littlewood, P. A. Midgley and N. D. Mathur, Phys. Rev.
Lett. 94, 097202 (2005).

2IL. Brey, Phys. Rev. Lett. 92, 127202 (2004).

22See N. Furukawa and Y. Motome, cond-mat/0501738 (unpub-
lished) and the experimental Refs. 23-26 therein.

23Y. Tokura, H. Kuwahara, Y. Moritomo, Y. Tomioka, and A.
Asamitsu, Phys. Rev. Lett. 76, 3184 (1996).

24Y. Tokura and Y. Tomioka, J. Magn. Magn. Mater. 200, 1 (1999).

25 A. Biswas, A. Arulraj, A. K. Raychaudhuri, and C. N. R. Rao, J.
Phys.: Condens. Matter 12, L101 (2000).

268, K. Mishra, R. Pandit, and S. Satpathy, Phys. Rev. B 56, 2316
(1997).

278, Fratini, D. Feinberg, and M. Grilli, Eur. Phys. J. B 22, 157
(2001).

287, vandenBrink, G. Khaliullin, and D. Khomskii, Phys. Rev. Lett.
83, 5118 (1999).

2G. Jackeli, N. B. Perkins, and N. M. Plakida, Phys. Rev. B 62,
372 (2000).

307. Shu, J. Dong, D. Y. Xing, Phys. Rev. B 63, 224409 (2001).

31T Hotta, A.-L. Malvezzi, and E. Dagotto, Phys. Rev. B 62, 9432

035218-19



CEPAS, KRISHNAMURTHY, AND RAMAKRISHNAN

(2000); S. Yunoki, T. Hotta, and E. Dagotto, Phys. Rev. Lett. 84,
3714 (2000); for an extensive discussion of related numerical
work, see also the review by E. Dagotto ef al. in Ref. 1.

32y, Aliaga, D. Magnoux, A. Moreo, D. Poilblanc, S. Yunoki, and
E. Dagotto, Phys. Rev. B 68, 104405 (2003).

3T. V. Ramakrishnan, H. R. Krishnamurthy, S. R. Hassan, and G.
Venketeswara Pai, Phys. Rev. Lett. 92, 157203 (2004); for a
more detailed discussion, see T. V. Ramakrishnan, H. R. Krish-
namurthy, S. R. Hassan, and G. Venketeswera Pai, in Colossal
Magnetoresistive Manganites, edited by T. Chatterji (Kluwer
Academic, Dordrecht, 2004), cond-mat/0308396.

3#The CE phase, in particular, breaks the translation invariance of
the reference cubic Mn lattice so as to generate a unit cell with
eight inequivalent sites.

3P-G. de Gennes, Phys. Rev. 118, 141 (1960).

36M. Roy, J. F. Mitchell, A. P. Ramirez, and P. Schiffer, Phys. Rev.
B 58, 5185 (1998).

37G. C. Milward, M. J. Calderon, and P. B. Littlewood, Nature
(London) 433, 607 (2005).

3T A Tyson, M. Deleon, M. Croft, V. G. Harris, C.-C. Kao, J.
Kirkland and S-W. Cheong, Phys. Rev. B 70, 024410 (2004).

3H. Nojiri (private communication).

400, Cépas, H. R. Krishnamurthy, and T. V. Ramakrishnan, Phys.
Rev. Lett. 94, 247207 (2005).

41'The eg atomic orbitals of Mn and the appropriate p,,; atomic or-
bitals of O are known to hybridize very strongly. We assume that
the bonding bands made up of Wannier orbitals predominantly
of O-p, character are fully occupied, and are “projected out” so
that the projected “effective Hamiltonian” can be written using
Wannier orbitals with e, symmetry as we have done. We empha-
size that these orbitals are not to be regarded as pure Mn orbit-
als, but include components that are the appropriate, symmetry
determined combinations of the surrounding O orbitals as well.
But their specific composition involves band structure details
that we have not included in our considerations. However, issues
of considerable current interest, such as the distribution of the
charge on the Mn and O ions in the CE and other phases (Refs.
9-11 and 17) would be governed by the precise composition of
the Wannier orbital, and could interpolate between the various
conflicting pictures of the charge and orbital order depending on
the band-structure details.

42P. W. Anderson and H. Hasegawa, Phys. Rev. 100, 675 (1955).

“While this projection for the Jy,;— % limit obtained by approxi-
mating the 7,4 spins as classical is widely used, an approach
valid for quantum 7,4 spins using a representation in which the
total spin (s;+$;) is diagonal is discussed in the review article by
Loktev and Pogorelov (Ref. 2).

4 A compact way of writing the hopping matrix elements is in the
form of an outer product of orbital pseudo-spinor wave func-
tions,

t;ﬁj = (4t/3)§zbij§fbij'
The pseudospinors corresponding to hopping in the 3 cubic di-
rections are
4=(Br-112); §=(=\312,-12); £=(0,1).
4See, e.g., A. J. Millis, Phys. Rev. B 55, 6405 (1997).

PHYSICAL REVIEW B 73, 035218 (2006)

46 A. J. Millis, Phys. Rev. B 53, 8434 (1996).

4TN. Furukawa, cond-mat/9812066; see also the extensive numeri-
cal work by E. Dagotto et al. discussed in their review cited in
Ref. 1, and references therein, and the recent work of S. Kumar
and P. Majumdar, Phys. Rev. Lett. 91, 246602 (2003).

48Note that the difference between the critical values of J,pS?/f at
g=0 with that of Refs. 28 and 29 with V=0 comes from a
different definition of ¢ by a factor 4/3 but the results perfectly
agree otherwise.

#In writing this, we have neglected terms proportional to nn;
since, as we have seen, for the half-doped case and for large g/¢
there is nearly complete charge disproportionation, whence they
are smaller by a factor of #/E;r compared to the term retained
above even when U is zero, and are completely suppressed for
large U.

508, Ishihara, J. Inoue, and S. Maekawa, Phys. Rev. B 55, 8280
(1997).

31S.-Q. Shen, Phys. Rev. Lett. 86, 5842 (2001).

321. V. Solovyev and K. Terakura, Phys. Rev. Lett. 83, 2825 (1999).

33We note that it would be important to take into account the co-
operative nature of the distortions if one wants to give a quan-
titative account of the energies. This would in particular modify
the distortions of the corner sites. Since we are using the simpler
framework of noncooperative JT phonons, we therefore neglect
the small distortions of the corner sites also at this stage.

347. Popovic and S. Satpathy, Phys. Rev. Lett. 88, 197201 (2002).

5B, P. Sekhar, S. Kumar, and P. Majumdar, Europhys. Lett. 68,
564 (2004).

M. Yu. Kagan, D. I. Khomskii, and M. V. Mostovoy, Eur. Phys. J.
B 12, 217 (1999).

5TH. Meskine, T. Saha-Dasgupta, and S. Satpathy, Phys. Rev. Lett.
92, 056401 (2004).

3 The transition line between the CE-M-C and the CE-T phases
vanishes at x=1/2, as seen in the figure, because the conduction
band in the CE phase is dispersionless in the nearest neighbor
model we have considered. With a more realistic model, the
transition would occur at a finite g/t at x=1/2.

39We can fit the resistivity-temperature curve to get an estimation of
the gap. We find a gap of the order of 500 K from Ref. 8, which
is much smaller than ¢.

%0Finite temperature results for the phase diagram at zero field and
half-doping have been recently reported in L. Brey, Phys. Rev. B
71, 174426 (2005). As far as zero temperature results are con-
cerned, they agree with that of Ref. 40 and the present work.

61Recently, Brey and Littlewood have proposed that “orbital soli-
tons” occur upon doping the CE phase, and that the particle-hole
asymmetry is due to the energy difference between positive and
negative energy solitons [L. Brey and P. B., Littlewood, Phys.
Rev. Lett. 95, 117205 (2005)]. These defects are different from
the ones considered by us in that their appearance involves a
complete and large-scale rearrangement of the magnetic order of
the CE phase.

62 A, Georges, G. Kotliar, W. Krauth, and M. Rozenberg, Rev. Mod.
Phys. 68, 13 (1996).

035218-20



