A unified phase diagram of domain walls in 1D systems, ranging from strips to cylindrical wires

S. Jamet, N. Rougemaille, C. Thirion, J. C. Toussaint, O. Fruchart

The research leading to these results has received funding from the European Union's 7th Framework Programme under grant agreement n°309589 (M3d)
Motivation (general): magnetism towards 3D

Concepts for devices

- Domain walls in continuous wires
 - Scientific American, June, 76 (2009)
 - + patents (IBM)

- Solitons in stacks of elements

3D magnetic objects and textures

- Magnetic meron
 - S. Wintz et al., PRL 110, 177201 (2013)

- 3D objects
 - C. Donnelly et al., PRL 114, 115501 (2015)

Interest in examining and classifying 3D magnetic textures
Motivation (focused): domain walls in strips and wires

Flat strips

- Transverse wall (TW)
- Vortex wall (VW)

Transition for: \(tW \approx 61 \Delta^2_d\)

Cylindrical (or square) wires

- Transverse wall
- Bloch-point wall (BPW)

Transition for: \(d \approx 7 \Delta_d\)

S. Da-Col et al., PRB 89, 180405 (2014)
H. Forster et al., JAP 91, 6914 (2002)

Open questions

- What about VWs in wires?
- Do BPWs exist in rectangular wires?
- Difficulty to visualize a 3D vector field
- How to classify simply domain walls?

Example of confusing vocabulary for wires

- Bloch-point wall = Vortex wall, pseudo-vortex wall...
- Transverse wall = pseudo TW, asymmetric TW, vortex/antivortex wall, corkscrew...
Table of contents

1. Motivation

2. Transverse and vortex walls

3. Bloch-point walls

4. Prospects

The known phase diagram for transverse and vortex walls in strips

Y. Nakatani et al., JMMM290, 750 (2005)

First order transition

- Abrupt transformation between two separated energy wells
- Metastability of the two states

Second order transition

- Continuous transition with an order parameter
- No metastability: only one state exists at a time
- Breaking of symmetry

See phase transitions in micromagnetism:

First-order transitions between transverse and vortex walls

- It is possible to transform continuously a transverse wall into a vortex wall.
- They share the same topology.
- They should be degenerate on the diagonal.
- The equilibrium line is symmetric with the diagonal.
Curling in transverse walls

Different views of transverse walls

Square side : 30nm

- At large diameter walls have both vortex and transverse features
- May be shortened to 'vortex' or 'transverse' if dominating feature
- Do not use 'vortex' for 'Bloch-point' to avoid confusion

Vorticity = Curling = Rotational

Square side : 44nm

$D \lesssim 7 \Delta_d$

$D \gtrsim 7 \Delta_d$
Quantify curling in the Transverse/Vortex wall

Circulation of magnetization \rightarrow Quantify curling

\[
\text{div} \, \mathbf{M} \approx -\frac{d M_z}{dz}
\]

- Vortex feature = transverse curling
- Second-order transition for $D \approx 7 \Delta_d$
- Longitudinal curling arises to decrease dipolar energy
Phase second-order transition in strips: asymmetric transverse walls (Guess)

- Analogy between the asymmetric transverse wall and the Néel / Bloch wall transition
- What about asymmetry versus vorticity?

1: TW
2, 6: Asymmetric TW
3: Néel walls
4: Bloch walls
5: TVW
Second-order transition: simulation tells about asymmetry versus curling

Both instabilities arise in order to decrease magnetostatic energy (split charges apart)

- Curling takes over asymmetric walls for a thickness larger than \(7 \Delta_d\)
- Curling can be viewed as built with opposite asymmetries on either side
Table of contents

1. Motivation

2. Transverse and vortex walls

3. Bloch-point walls

4. Prospects

The known transition for domain walls in wires (disks or squares)

Transverse wall \(D \lesssim 7 \Delta_d \)

Bloch-point wall \(D \gtrsim 7 \Delta_d \)

- Sometimes improperly named vortex walls

What is a Bloch-point?

A magnetic texture with local cancellation of the magnetization vector

- R. Feldkeller, Z. Angew. Physik 19, 530 (1965)
First-order transitions between transverse-vortex walls and Bloch-point walls

1: TW < VW < BPW
2: TW < BPW < VW
3: VW < TW < BPW
4: VW < BPW < TW
5: BPW < TW < VW
6: BPW < VW < TW

- Two equilibrium lines exist: BPW/x-TVW, and BPW/y-TVW
- The equilibrium lines are symmetric with each other around the diagonal
- If $D_{BP} < D_{TW}$ there must exist three triple points

1: TW < VW < BPW
2: TW < BPW < VW
3: VW < TW < BPW
4: VW < BPW < TW
5: BPW < TW < VW
6: BPW < VW < TW
Quantify domain wall length

Experiments
- **Wire Diameter**: 95nm
- **Wire Diameter**: 70nm
- **Shadow**

Analytics
- **Physics**: balance exchange and dipolar energies
- **Energy**: $\mathcal{E} \sim AR^2/\Delta d$
- **Wall length**: $L \sim R^2/\Delta d$

Simulations
- **Graph**: Confirmation of scaling law for wall length $L \sim R^2/\Delta d$

- **Notes**:
 - Sharp increase of length with diameter
 - Longitudinal curling is shared by the TVW and BPW
Formal identification of domain walls

Bloch-Point Wall (BPW)

- Wire diameter: 95 nm
- Orthoradial curling
- Symmetry with respect to plane perpendicular to axis

Transverse Wall (TW)

- Wire diameter: 70 nm
- Loss of symmetry with respect to plane perpendicular to axis

N. Bizière et al., Nanolett. 13, 2053 (2013)

Phase diagram confirmed by simulation
Domain-walls in one-dimensional systems

- Transverse (TW)
- Vortex
- Bloch
- Néel

Transverse and vortex walls share the same topology

Bloch-point domain walls are of a different class

Topological protection

Strips and transverse walls

- Theory and experiments
- Domain-wall transformation
- Walker limit, low speed (~100m/s)

BPW in wires (similar physics for tubes)

- Theory predictions; no experiments
- No domain-wall transformation
- High speed expected (>1 km/s)

<table>
<thead>
<tr>
<th>Section</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Motivation</td>
<td>![Motivation Image]</td>
</tr>
<tr>
<td>2. Transverse and vortex walls</td>
<td>![Transverse and Vortex Walls Image]</td>
</tr>
<tr>
<td>3. Bloch-point walls</td>
<td>![Bloch-point Walls Image]</td>
</tr>
<tr>
<td>4. Prospects</td>
<td>![Prospects Image]</td>
</tr>
</tbody>
</table>

Domain-wall motion in wires (here: under field)

LLG equation

\[
\frac{d\mathbf{m}}{dt} = \gamma_0 \mathbf{m} \times \mathbf{H} + \alpha \mathbf{m} \times \frac{d\mathbf{m}}{dt}
\]

\(\gamma_0 < 0\)

Once-only 'Walker' field for switching the orthoradial circulation

- Dynamically locked
- Once-only 'Walker' process for the circulation
- Right-hand rule: DW direction of motion vs circulation
- Same physics predicted (later) for nanotubes

Propogation and selection of circulation: preliminary data

Structure

Focus on wire

Focus on shadow

Motion and circulation

Initialize
Field pulse
Final state

- Bloch-Point walls with same circulation

confirmation: selection of circulation with once-only Walker switch (preliminary)
Conclusions and VIPs

S. Jamet
N. Rougemaille
C. Thirion
J. C. Toussaint

- Only two topologies: transverse/vortex and Bloch-point walls
- Full phase diagram width / thickness derived
- Curling and asymmetries described as second-order transitions. They allow to decrease magnetostatic energy for $D \geq 7 \Delta_d$
- No asymmetric TWs in wires (transverse is more efficient to decrease energy)
- Bloch walls exist and is ground state for a large range of geometries

Experimental contrast

Two examples

Beam along wire
⇒ Locate domain walls

Beam across wire
⇒ Inspect domain wall

Several non-trivial patterns

Need for modelling