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Abstract – The concept of “effective viscosity” νeff of superfluid helium, widely used to interpret
decaying turbulence, is tested in the steady-state case. We deduce νeff from measurements of
the vortex line density, L, in a grid flow. The scaling of L with velocity confirms the validity of
the heuristic relation defining νeff , ϵ = νeff (κL)2, where ϵ is the energy dissipation rate and κ the
circulation quantum. Within 1.17–2.16 K, νeff is consistent with that from decays, allowing for
uncertainties in flow parameters. Numerical simulations of the two-fluid equations yield a second
estimation of νeff within an order of magnitude with all experiments. Its temperature dependence,
more pronounced in numerics than experiments, shows a crossover from a viscous-dominated to a
mutual-friction–based dissipation as temperature decreases, supporting the idea that the effective
viscosity of a quantum turbulent flow is an indicator of the dissipative mechanisms at play.

Copyright c⃝ EPLA, 2014

Introduction. – Quantum turbulence (QT) is the
turbulent state of a superfluid [1–3], a fluid with quantum-
mechanical effects at a macroscopic scale. Here we focus
on He-II, the superfluid phase of liquid 4He occurring be-
low a transition temperature Tλ ≈ 2.18 K. According to
Landau and Tisza’s two-fluid-model, He-II can be viewed
as a mixture of a normal component which is viscous and
entropic and a superfluid component which is inviscid and
entropy free. When He-II is stirred, the normal component
supports a vorticity field as in a classical fluid while the
situation for the superfluid is unique. Since the superfluid
velocity is proportional to the phase gradient of a macro-
scopic wave function, all its vorticity is concentrated along
Å-thick vortex filaments with quantized velocity circula-
tion. The classical limit of macroscopic superfluid rota-
tion can be recovered thanks to the partial polarisation of
a large number of such quantized vortices. Their presence
allows the exchange of momentum between the normal and

superfluid components. In co-flow turbulent He-II (when
both components are forced simultaneously by mechanical
means), this coupling is so efficient that both superfluid
and normal fluid are locked at large scales of the flow [1,2],
but what happens at intermediate and microscopic scales
is an active field of research.

Over the last decades, the experimental exploration
of 4He QT followed two independent approaches, based
either on steady-state or on temporal decay. In the steady-
state approach, the measured quantities are often com-
pared to their well-established counterparts in classical
turbulence: examples are the pressure drop along pipes [4]
and velocity spectra [5]. In the decay approach, a model
has been widely used to analyse measurements and de-
termine an “effective (kinematic) viscosity” νeff of He-II
from ≃ 100 mK up to nearly Tλ [6–9]1. To the best of our
knowledge this concept of “effective viscosity” has never

1For an alternative model of decay, see [3,10].
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been transposed to steady-state QT. The motivation of
this work is to revisit and test this concept for such flows,
by experimental and numerical means.

It is useful to recall here the definition of νeff . To inter-
pret the time dependence of the mean vortex line density
L(t) ∼ t−3/2 observed in decaying QT experiments [11],
a proportionality relation has been assumed between L2

and the decay rate ϵ ≡ −dE/dt of the kinetic energy per
unit mass [11–14]:

ϵ = νeff (κL)2 , (1)

where κ ≃ 10−7 m2/s is the quantum of circulation of
superfluid 4He. Equation (1) lacks a rigorous theoreti-
cal justification and was motivated by analogy with the
classical turbulence equation, ϵ = ν⟨ω2⟩, linking dissipa-
tion with viscosity, ν, and vorticity, ω. When comple-
mented with additional hypothesis discussed later, eq. (1)
has proven operational reliability in various flows under-
going turbulence decay [9]. Continuing this analogy with
classical turbulence, it is interesting to recast eq. (1) by
defining the superfluid Reynolds number:

Reκ ≡
ϵ1/3H4/3

κ
≡

vH

κ
, (2)

where v and H are characteristic velocity and length scales
of the flow: v is defined as the root mean square (rms)
of velocity fluctuations2, and H , representing the typical
large scale of the flow, is defined as

H ≡ v3/ϵ. (3)

In classical homogeneous isotropic turbulence, H ≃
2L11 ≃ 4L22, where L11 and L22 are the longitudinal
and transverse integral scales of the flow defined
from the autocorrelation function of longitudinal or
transverse velocity fluctuations [15]. Introducing the mean
inter-vortex spacing δ ≡ L−1/2, eq. (1) becomes

δ

H
=

(νeff

κ

)1/4

Re−3/4
κ . (4)

This equation is equivalent to the heuristic relation (1),
but turns out to be more convenient to analyze steady-
state QT. As pointed out in ref. [16], eq. (4) is reminiscent
of the equation in classical turbulence relating Kol-
mogorov’s viscous scale η to the integral scale: η/H ≃
Re−3/4, where Re is defined as Reκ after substitution of
the kinematic viscosity for κ. Interestingly, the prefac-
tor νeff/κ can be seen as the effective “Schmidt number”
of He-II, accounting for the ratio of a viscous dissipative
process and vortex diffusivity process.

We next present a systematic experimental test of
eq. (1) over 8 orders of magnitude. The explored tem-
perature range 1.17 K ≤ T ≤ 2.16 K generalizes the only

2In co-flow He-II QT, as in classical turbulence, most kinetic
energy resides at large scales where both components are locked,
thus v is defined as the common velocity fluctuation of the two com-
ponents, v = vn = vs along an arbitrary direction.

Fig. 1: (Colour on-line) Second-sound resonances for flows of
different mean velocities, past the grid, at T = 1.65 K. The
amplitude reduction relative to the V = 0 case enters the cal-
culation of the vortex line density, L. Inset: flow channel (units
are mm). The flow is driven at constant velocity by a bellows.

previous experimental determination restricted around
1.55 K [16]. We then present and discuss our numerical
simulations over the same temperature range.

The experiment. – The steady flow is a mechani-
cally forced turbulent He-II co-flow through a square cross-
section channel, illustrated with dimensions in the insert
of fig. 1. It is installed vertically next to a stainless steel
bellows (shown in ref. [17]) in a liquid-4He bath. The bel-
lows is operated by a computer-controlled motor and can
produce flow velocities constant to within 3%. According
to the thermometers in the bath and inside the bellows,
the helium temperature is maintained constant to within
0.1 mK. The lower entry of the channel has a flow condi-
tioner made by 10 mm long capillaries of 1 mm diameter,
cutting larger scale turbulent eddies. In one experiment a
grid has been added to the channel, with square openings
0.5 mm wide and tine size 0.1 mm.

QT is detected by the second-sound attenuation
technique [17]. Quantized vortex lines scatter thermal
excitations composing the normal component of He-II,
thereby attenuating the second sound —here its standing-
wave resonance perpendicular to the mean flow direction
is modified compared to quiescent helium (see fig. 1),
allowing to deduce the density of the quantized vortex
lines, L. Assuming a homogeneous and isotropic tangle
with L ! 107 cm−2, then L can be estimated as [17]

L(V ) =
6π∆f0

Bκ

(

A0

A(V )
− 1

)

, (5)

where ∆f0 and A0 are the width and the amplitude of the
resonant second-sound curve for quiescent helium, whilst
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Fig. 2: (Colour on-line) The measured vortex line density as
a function of the mean flow velocity for the experiments with
and without grid. Four decades of L exhibit a V 3/2 scaling,
without appreciable temperature dependence, despite varying
ρs/ρn from 45 to 0.1.

A(V ) is the attenuated amplitude for flow velocity V ; B is
the mutual-friction coefficient.

Experimental results. – Figure 2 represents the pri-
mary experimental result of this paper, showing the vortex
line density L as a function of mean flow velocity V . The
data display a robust power law of the form L ∝ V 3/2,
over about 4 orders of magnitude in L, holding true upon
changing ρs/ρn from 45 to 0.1. The presence of the grid
does not change the scaling but produces about twice L
at all velocities.

The data in fig. 2 are replotted in fig. 3 with coordi-
nates δ/H vs. Reκ = τV H/κ, as suggested by eq. (4),
with τ =

√

⟨v2⟩/V being the turbulence intensity. In this
experiment H and τ cannot be measured directly, and
are therefore treated as adjustable parameters. We make
a choice of H and τ to collapse the data in fig. 3, with
the additional assumption that these parameters do not
depend on Reκ and temperature. This is generally ad-
mitted in classical turbulence (e.g. behind a grid [18] or
behind a honeycomb flow conditioner [19]), and has been
verified in superfluid grid turbulence down to ∼ 1.6 K [5].
The fit yields H and τ consistent with typical values from
classical and QT grid turbulence (see below). We stress,
however, that we cannot independently and directly ver-
ify either the independence from Reκ and temperature,
or the exact nature of the turbulence in the probed re-
gion, which, in general, could be partly altered by the
boundary layer of the channel [20]. In the case of flow
without grid, we obtain H = 1 mm/2 = 0.5 mm (1 mm is
the flow conditioner capillary diameter, 2 ∼

√

sin/sout is
the channel contraction estimated from the cross-sections
ratio [21]) and τ = 5%, a typical value for grid turbu-
lence. In the case with grid, we obtain H = 0.6 mm (mesh
size) and τ = 9%, a reasonable value for turbulence in the
probed region which spans from 16 to 31 mesh sizes behind

Fig. 3: (Colour on-line) Data from fig. 2 presented as dimen-
sionless inter-vortex spacing vs. superfluid Reynolds number.
The small scale of QT scales with large-scale Reynolds number
in analogy with viscous dissipation scale in classical turbulence.
Fourteen grid and no-grid datasets collapse with an appropri-
ate choice of the large scale of the flow, H , and turbulence
intensity, τ .

the grid. At 31 meshes, τ ≃ 4% is expected [21] while τ is
expected to be more typical of jet turbulence (τ = 25%) a
few mesh sizes behind the grid3. With this choice of τ and
H we obtain a collapse of our fourteen grid and no-grid
datasets in fig. 3 and eq. (4) suggests that, in the explored
temperature range, νeff/κ is roughly constant.

Numerical simulations. – To estimate the effective
viscosity from simulations, the numerical model should ac-
count consistently for the dominant dissipative processes
in our steady turbulent flow: the viscosity of the normal
component and the dissipative energy exchange between
the normal and superfluid components. At present, only
the so-called continuous model (where the details of indi-
vidual vortices are smoothed out) has demonstrated such
capacity [22]. We solve those equations in a cubic do-
main with periodic boundary conditions in the three di-
rections. Accounting for this periodicity, the equations
are integrated in the Fourier domain up to a truncating
wave number kmax ≡ π/δmin, where the resolution δmin is
of the order of the mean vortex line spacing δ. In order to
avoid arbitrariness, the ratio r = δmin/δ is kept as a free
parameter (close to unity). The inter-vortex spacing δ is

κ · δ−2 = κ · L =
√

⟨|ωs|2⟩, (6)

where brackets denote a space average and ωs is
the (macroscopic) superfluid vorticity. Let us notice that

3Alternative estimations of H consistent in magnitude are
from (a) the downstream growth of the classical integral length scale
in grid turbulence [21]; (b) analogy with the towed grid He-II experi-
ment [12] which yielded the time at which H is assumed to reach the
channel width. In steady flow, this time translates into a ≈ 20 cm
downstream distance (120 mesh units), suggesting that H is still
significantly smaller than the channel width at our probe location.
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the second equality in eq. (6) does not account for a pos-
sible fraction of excitations along individual vortices at
scales smaller than δ, which would contribute to L but not
to ωs. Such excitations, continuously generated by vortex
reconnections, are efficiently damped above 1 K compared
to random excitations larger that δ [23] and are therefore
expected to represent a small correction absorbed into the
free parameter r. The mutual-friction force per unit vol-
ume between the superfluid and the normal fluid is ap-
proximated at first order by F = ±B

2

ρnρs

ρ |ωs| (vs − vn).
Further details about this model, and a physical justifica-
tion of its relevance above 1 K, are provided in ref. [16].

Present simulations extend [16] by accounting for possi-
ble variations of the scale ratio r, the temperature depen-
dence of the mutual-friction parameter B and the normal
fluid viscosity µ. The effective viscosity, defined by eq. (1),
is directly computed from the rate of energy injection by
νeff = ϵ/⟨|ωs|2⟩, without the need to compute τ and H .

A random forcing is applied at low wave numbers on
both fluid components (in proportion to their relative
densities) in such a way that the total rate of en-
ergy injection ϵ remains constant over time. A pseudo-
spectral method [24] is used for spatial discretization
with resolution 5123 (10243 at the lowest temperature).
The solution is advanced in time using the second-order
Adams-Bashforth scheme. Validation tests have been per-
formed to check that νeff is not significantly affected by a
threefold change of Reκ. Calculations are performed at
eight temperatures between 1.19 and 2.16 K, for values of
the scale ratio r ≃ 0.6, 1.2 and 2.4 ±20% (for each tem-
perature) and within 533 ! Reκ ! 1719.

The calculated effective viscosities are shown in fig. 4.
At high temperature, νeff approaches the kinematic vis-
cosity µ/ρ (orange line) irrespectively of r. In particular,
we note a sharp increase of νeff between 2 and 2.16 K.
This is consistent with the expectation that at high tem-
perature the two-fluid dynamics becomes governed by the
normal component, which itself follows the classical re-
sult ϵ = µ/ρ⟨|ωn|2⟩. Indeed, the strong mutual friction
between the two components then entails

νeff =
ϵ

⟨|ωs|2⟩
≃

ϵ

⟨|ωn|2⟩
≃ µ/ρ. (7)

At lower temperature, νeff is found to depart from the
kinematic viscosity µ/ρ and some dependence with the ad-
justable parameter r appears. For r ≃ 2.4 and T ≃ 1.19 K,
where ρs/ρn = 40, νeff is typically one decade smaller than
in the high temperature limit. To interpret this we con-
sider that in the limiting case of a random vortex tangle
moving in a quiescent normal component: it is straight-
forward4 to derive the energy dissipation rate (per unit
mass) from the friction of a vortex against the normal
component: ϵ = (ρsρn/ρ2)(B/2)κ (κL)2. This asymptotic

4E.g. from eq. (62) in [1] where 2αρ = Bρn and taking vL ≃ κ/δ.

Fig. 4: (Colour on-line) Top: dimensionless effective kinematic
viscosity vs. temperature. Experimental data from decay and
present steady-state experiments are shown, as well as the
present simulations and analytic models. The Prague decay
data was measured in the same grid experiment which yielded
the steady-state values of νeff . The numerical simulations are
for three values of the scale ratio r. The solid lines represent the
analytic models of viscosity discussed in the text. Bottom: the
data from the top panel are shown here with an offset along
the y-axis so that νeff/κ = 0.1 at T ≃ 1.96 K for all datasets.
Since the absolute value of νeff is subject to the uncertain-
ties discussed in the text, this plot focuses on the temperature
dependence.

model of pure mutual-friction dissipation leads to:

νeff =
ϵ

(κL)2
=

ρsρn

ρ2

B

2
κ, (8)

shown in fig. 4 as a solid magenta line. The tempera-
ture dependence of eq. (8) on the low temperature side is
found in good agreement with the numerical simulation
data, suggesting that mutual friction, contributes signif-
icantly to dissipation below ≈ 1.5 K. The simple ana-
lytical model shows that the temperature dependence of
νeff found in numerical simulations can therefore be in-
terpreted calling in a viscous dissipation process at high
temperature, gradually supplemented by a mutual-friction
dissipation process at lower temperature5.

5Below 1K, alternative dissipation mechanisms are expected to
become relevant (e.g., see the review in [10]).
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Discussion on the validity of the heuristic

equation ϵ = νeff (κL)2. – As mentioned above, eq. (1) is
often assumed in order to interpret the temporal decay of
L(t) in QT experiments; however, the interpretation also
relies on additional hypotheses, the key one being that
H grows in the early stages of the decay, till it saturates
due to finite container size and remains constant at later
times [9]. Assuming that the saturation of H is verified, it
is straightforward to derive a late decay law from eqs. (1)
and (3):

κL(t) =
H

√
νeff

· t−3/2. (9)

Proportionality between L(t) and t−3/2 has been reported
in a number of experiments. This tends to support the va-
lidity of eq. (1), but it cannot be considered as a direct ev-
idence, due to the additional hypothesis on the saturation
of H . For instance, another decay scenario has been pro-
posed to interpret the L(t) dependence without resorting
to eq. (1), and simply assuming that the decrease of L(t)
results from a diffusion process of the vortex tangle [3,10]
(note, however, arguments against it in ref. [2]).

Steady-state studies are able to provide a direct test of
proportionality between ϵ and L2. Indeed, eq. (4), which
is equivalent to the heuristic eq. (1), can be written in a
form analogous to eq. (9):

κL =

√

τ3

νeffH
· V 3/2. (10)

Proportionality between L and V 3/2 has been reported
in a narrow temperature range around 1.55 K [16]. We
note also, however, that a study [25] with bellows-driven
He-II and second-sound pulse probe yielded L ∼ V p, with
p displaying a significant temperature dependence from 1.3
at 1.5 K to 0.9 at 2.0 K. In the present work instead, pro-
portionality between L and V 3/2 is found from 1.17 K up
to 2.16 K in runs with and without grid (see fig. 2). This
result can therefore be interpreted as a strong direct evi-
dence of the validity of eq. (1). Noteworthily, proportion-
ality is verified down to Reκ of order 1; this observation is
consistent with the surprising capability, of eq. (9) to ac-
count for the decay of turbulence down to very low Reκ.

On the accuracy in the determination of νeff . –
Accuracy in the determination of νeff from decay and

steady-state experiments is limited by uncertainties in H
and τ in eqs. (9) and (10). In decay experiments, the sat-
urated value of H has to be estimated from the container
size D, i.e. the channel width, which implies some mod-
eling of flow at large scales. This is often done using the
model proposed in [12] which assumes that, in the late de-
cay, a Kolmogorov energy spectrum E(k) = Ckϵ2/3k−5/3

extends up to the scale k = 2π/D where it is truncated
abruptly, which leads to eq. (9) with H = D(3Ck)3/2/2π ≃
1.5D (where Ck ≃ 1.5 is the Kolmogorov constant). This
model does not account for second-order effects, such as

the anisotropy resulting from the saturation on the con-
tainer walls, the geometrical shape of the container, the
triadic interactions around k = 2π/D, etc. If we assume
uncertainty on H/D of a factor 2, the resulting uncer-
tainty on νeff is a factor 4. In the steady-state approach,
both H and τ have to be estimated to determine νeff from
eq. (10). In the present experiment, the uncertainty is
typically a factor of 2.5 for H and a factor of 1.5 for τ , so
the resulting uncertainty on νeff can wind up to a factor
of about 8. Moreover, both for the decay and steady-
state approaches when the second-sound attenuation tech-
nique is used, L suffers intrinsic uncertainties of order 30%
due to unknown vortex tangle distribution [17], and for our
steady-state experiment an additional underestimation of
L of order 30% is due to a denser distribution of vortex
lines near the walls where the fundamental second-sound
resonant mode used here is less sensitive. Cumulatively,
uncertainties on L, τ and H can lead to an uncertainty on
νeff up to a factor of 10. These estimations illustrate the
challenge of obtaining accurate experimental values of νeff .
At any rate, a favourable constraint for the tuning of H
and τ is that νeff is expected to join the known value of
viscosity of He-I ν ∼= 0.167κ across the λ-point, assuming
that κL → ⟨|ωn|2⟩1/2 for T → Tλ. The accuracy could be
improved by directly measuring velocity statistics at large
scales for more direct inference of H and τ .

In fig. 4 (top), νeff/κ is obtained by fitting eq. (10) to
the data in fig. 2 using H and τ as for fig. 3. Here er-
ror bars only reflect uncertainty on relative temperature
dependence. We also show values of νeff deduced from
the Oregon [26] and recent Prague decay experiments [27].
The latter are significant because these are decay measure-
ments of the flow which yielded the steady-state grid data:
they are performed in the same channel, and during the
same run. Given the difficulty in obtaining accurate val-
ues of νeff , the experiments can be considered in relatively
good agreement with each other, and in the light of the al-
most factor 10 uncertainty, the agreement can be regarded
as rough but real with the simulation, too, in particular
for the adjustable parameter r ≃ 2.4.

On the temperature dependence of νeff . – A
comparison of the temperature dependences is delicate
because: i) we lack experimental proof that H and τ are
truly temperature independent; ii) the experimentally
observed temperature dependence of the vortex tangle po-
larization [28] may affect νeff via eq. (1) in ways unac-
countable by the models; iii) the pronounced frequency
dependence of the mutual-friction parameter B(T ), known
to exhibit a twofold variation from 1 Hz to 10 kHz for
1.2 K < T < 2 K [29], is ignored in the numerics and
models where we chose intermediate values of B. Bearing
this in mind, we shall now discuss fig. 4 (bottom), where
an arbitrary vertical offset is applied to the data in the
top panel, to focus on the temperature dependence.

In the range 1.35 K ≤ T ≤ 2.05 K the temperature de-
pendence from all results exhibits no significant difference
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within the scatter of points. For T " 2 K, the sharp in-
crease of νeff(T ) seen in the simulations is not found in
experiments. This discrepancy is not understood. At low
temperature, some datasets experience a drop of νeff

compatible with the mutual-friction dissipation model
(see simulations and Oregon decay experiment) while the
Prague experiments found no significant temperature de-
pendence, in particular in the steady-state case. We have
no explanation for this disagreement, but we note that it
almost vanishes if the steady-state grid datapoint at 1.17 K
is ignored, although we found no sufficient reason to exper-
imentally distrust it. Further pressure on this datapoint
comes from the fact that as the temperature is lowered
below 1 K, νeff is known to drop further, as deduced from
the Manchester turbulence decay experiments [30], which
yielded νeff/κ ≈ 3 × 10−3 in the T → 0 limit.

Conclusions. – We have explored the concept of ef-
fective kinematic viscosity in steady-state turbulent He-II
by experimental and numerical means, within 1.17 K ≤
T ≤ 2.16 K. Our channel flow experiments revealed a
robust scaling of vortex line density with mean flow veloc-
ity of the form L ∝ V 3/2, holding upon changing ρs/ρn

by a factor 450. From this we inferred the validity of the
heuristic definition of the effective viscosity, ϵ = νeff (κL)2.
The new values of νeff deduced from our steady-state ap-
proach are consistent with known values deduced from
decaying turbulence if we consider that an accurate de-
termination of νeff is in fact very difficult, both in de-
caying and steady-state turbulence, due to uncertainties
in flow properties at large scales. This could be over-
come in the future by exploring steady-state flows with
well-known velocity statistics at large scales. Numeri-
cal simulations yield νeff consistent with measurements
in the range 1.35 K ! T ! 2.05 K. Outside this range
the temperature dependence of simulations is steeper, re-
quiring dedicated studies at these temperature extremes.
The temperature dependence produced by the simula-
tions can be usefully interpreted as a dissipative crossover
from a high-temperature regime, where normal viscosity is
the main dissipative process, to a low-temperature regime
where mutual friction becomes a significant one. This sug-
gests that the temperature dependence νeff(T ) of turbu-
lent He-II is an indicator of dissipation mechanisms. One
contribution of this paper is to open the way for the de-
termination of νeff from a steady-state approach, making
use and further validating governing equations already em-
ployed in the analysis of QT decay.
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