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Turbulence in superfluid helium is unusual and presents a chal-
lenge to fluid dynamicists because it consists of two coupled, in-
ter penetrating turbulent fluids: the first is inviscid with quantised
vorticity, the second is viscous with continuous vorticity. Despite
this double nature, the observed spectra of the superfluid turbu-
lent velocity at sufficiently large length scales are similar to those
of ordinary turbulence. We present experimental, numerical and
theoretical results which explain these similarities, and illustrate
the limits of our present understanding of superfluid turbulence
at smaller scales.

superfluid helium | turbulence | vortex

1. Introduction: motivations.
If cooled below a critical temperature (Tλ ≈ 2.18 K in 4He and
Tc ≈ 10−3K in at 3He 1 at saturated vapour pressure), liquid he-
lium undergoes Bose-Einstein condensation [1], becoming a quan-
tum fluid and demonstrating superfluidity (pure inviscid flow). Be-
sides the lack of viscosity, another major difference from ordinary
(classical) fluids such as water or air is that, in helium, vorticity is
constrained to vortex line singularities of fixed circulation κ = h/M ,
where h is Planck’s constant, and M is the mass of the relevant bo-
son (M = m4, the mass of 4He atom and M = 2m3 the mass
of a Cooper pair in 3He). These vortex lines are essentially one-
dimensional space curves, for example, in 4He the vortex core radius
ξ ≈ 10−10m is comparable to the inter atomic distance. Thus quan-
tisation of circulation results in the appearance of another character-
istic length scale: the mean separation between vortex lines, `. In
typical experiments (both in 4He and 3He) ` is orders of magnitude
smaller than the scale D of the largest eddies but is also orders of
magnitudes larger than ξ.

There is a growing consensus [2] that superfluid turbulence at
large scales R � ` is similar to classical turbulence if excited sim-
ilarly, for example by a moving grid. The idea is that motions at
scales R� ` should involve at least a partial polarization [3, 4, 5] of
vortex lines and their organisation into vortex bundles which, at such
large scales, should mimic continuous hydrodynamic eddies. There-
fore one expects a classical Richardson-Kolmogorov energy cascade,
with larger “eddies” breaking into smaller ones. The spectral sig-
nature of this classical cascade is indeed observed experimentally in
superfluid helium. In the absence of viscosity, in superfluid turbu-
lence the kinetic energy should cascade downscale without loss, until
it reaches scales R ∼ ` where the discreteness becomes important.
It is also believed that the energy is further transferred downscales
by the interacting Kelvin waves (helical perturbation of the individ-
ual vortex lines) where it is radiated away by thermal quasi particles
(phonons and rotons in 4He).

Although this scenario seems reasonable, crucial details are yet
to be established. Our understanding of superfluid turbulence at
scales of the order of ` is still at infancy stage, and what happens
at scales below ` is a question of intensive debates. The “quasi-
classical" region of scales, R � `, is better understood, but still less
than classical hydrodynamic turbulence. The main reason is that at
nonzero temperatures (but still below the critical temperature), super-
fluid helium is a two-fluid system. According to the theory of Landau
and Tisza [6], it consists of two inter–penetrating components: the

inviscid superfluid, of density ρs and velocity us (associated to the
quantum ground state), and the viscous normal fluid, of density ρn
and velocity un (associated to thermal excitations). The normal fluid
carries the entropy and the viscosity of the entire liquid. In the pres-
ence of superfluid vortices these two components interact via a mu-
tual friction force[7]. The total helium density ρ = ρs + ρn is practi-
cally temperature independent, while the superfluid fraction ρs/ρ is
zero at T = Tλ, but rapidly increases if T is lowered. The normal
fluid is essentially negligible below 1K. One would therefore ex-
pect classical behaviour only in the high temperature limit T → Tλ,
where the normal fluid must energetically dominate the dynamics.
Experiments show that this is not the case, thus raising the interest-
ing problem of “double-fluid" turbulence which we review here.

The aim of this article is to present the current state of the art
in this intriguing problem, clarify common features of turbulence
in classical and quantum fluids, and highlight their differences. To
achieve our aim we shall overview and combine experimental, theo-
retical and numerical results in the simplest possible (and, probably,
the most fundamental) case of homogeneous, isotropic turbulence,
away from boundaries and maintained in a statistical steady state by
continuous mechanical forcing. The natural tools to study homoge-
neous isotropic turbulence are spectral, thus we shall consider the
velocity spectrum (also known as the energy spectrum) and attempt
to give a physical explanation for the observed phenomena.

2. Classical vs superfluid turbulence: the background.
We recall [8] that ordinary incompressible (∇ ·u = 0) viscous flows
are described by the Navier-Stokes Eq. for the velocity field u(r, t)

ρ [∂ u/∂t+ (u · ∇)u] = −∇p+ µ∇2u, [1]

where p is pressure, ρ density, µ and ν = µ/ρ dynamic and kine-
matic viscosities. The dimensionless Reynolds number Re = V D/ν
(where V is the root mean square turbulent velocity fluctuation) es-
timates the ratio of nonlinear and viscous terms in Eq. [1] at the
outer length scale D. In fully developed turbulence (Re � 1),
D-scale eddies are unstable and give birth to smaller scale eddies,
which, being unstable, generate further smaller eddies, and so on.
This Richardson-Kolmogorov cascade transfers energy toward vis-
cous scale η, at which the nonlinear and viscous forces in Eq. [1]
approximately balance each other; the energy of η-scale eddies is
dissipated into heat by viscosity. The hallmark feature of fully devel-
oped turbulence is thus the coexistence of eddies of all scales from
D to η ' DRe−3/4 � D with universal statistics; the range of
length scales η � R� D where both external energy pumping and
dissipation can be ignored is called the inertial range.

In isotropic homogeneous turbulence, the energy distribution
between scales R is characterized by the one–dimensional energy
spectrum E(k, t) with wavenumber k = 2π/R, normalized such
that the energy density (per unit mass) is E(t) = 1

V

∫
1
2
u2dV =∫∞

0
E(k, t)dk, where V is volume. In the inviscid limit E(t) is con-

stant, and E(k, t) satisfies the continuity equation

∂E(k, t)/∂t+ ∂ε(k, t)/∂k = 0 , [2]

1Hereafter by 3He we mean the B-phase of 3He
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where ε(k, t) is the energy flux in spectral space. In the stationary
case, E(k, t) and ε(k, t) are t–independent, thus Eq. [2] dictates
that the energy flux ε is k-independent. Assuming that this con-
stant ε is the only relevant characteristics of turbulence in the iner-
tial interval and using dimensional reasoning, in 1941 Kolmogorov
and Obukhov (KO–41) suggested that the energy spectrum in incom-
pressible, steady, homogeneous, isotropic turbulence in the inertial
range is

EK41(ε, k) = CK41ε
2/3k−5/3 , CK41 ≈ 1 . [3]

This KO–41 5/3 law was verified in experiments and numerical sim-
ulations of Eq. [1] (up to intermittency corrections discussed below).

In the inviscid limit the energy flux goes to smaller and smaller
scales, reaching finally the interatomic scale and accumulating there.
To describe this effect, Leith [10] suggested to replace the algebraic
relation [3] between ε(k) and E(k) by the differential form:

ε(k) = −
√
k11E(k) d [E(k)/8k2]/dk . [4]

This approximation dimensionally coincides with Eq. [3], but the
derivative d[E(k)/k2]/dk guarantees that ε(k) = 0 if E(k) ∝ k2.
The numerical factor 1/8, suggested in [11], fits the experimentally
observed value of CK41 = (24/11)2/3 ≈ 1.7 in Eq. [3].

A generic energy spectrum with a constant energy flux was found
in [11] as a solution to the equation ε(k) = ε constant:

E(ε, k) = CK41ε
2/3k−5/3[1 + (k/keq)

11/2]2/3 . [5]

Notice that at low k, Eq. [5] coincides with KO–41, while for
k � keq it describes a thermalized part of the spectrum, E(k) ∝ k2,
with equipartition of energy (shown by the solid black line at the
right of in Fig. 2A, and, underneath in the same figure, by the solid
red line, although the latter occurs in slightly different contexts) 2.

Although Eq. [3] is the cornerstone of classical turbulence the-
ory, it is only the beginning of the story: in the inertial range the
turbulent velocity field is not self–similar, but shows intermittency
effects ([8, 9] and references within) which modify the KO–41 sce-
nario.

In this paper we apply these ideas to superfluid helium, explain
how to overcome technical difficulties to measure the energy spec-
trum near absolute zero, and draw the attention to three conceptual
differences between classical hydrodynamic turbulence and turbu-
lence in superfluid 4He.

The first difference is that the quantity which is most easily and
frequently detected in helium is not the superfluid velocity but rather
the vortex line density L, defined as the superfluid vortex length per
unit volume; in most experiments (and numerical simulations) this
volume is the entire cell (or computational box) which contains the
helium. This scalar quantity L has no analogy in classical fluid me-
chanics and should not be confused with the vorticity, whose spec-
trum, in the classical KO–41 scenario, scales as k1/3 correspondingly
to the k−5/3 scaling of the velocity. Notice that in a superfluid the
vorticity is zero everywhere except on quantized vortex lines. In or-
der to use as much as possible the toolkit of ideas and methods of
classical hydrodynamics, we shall define in the next sections an "ef-
fective" superfluid vorticity field ωs. This definition (which indeed
[12] yields the classical k1/3 vorticity scaling) is possible on scales
R � `, provided that the vortex lines contained in a fluid parcel are
sufficiently polarized. This procedure opens the way for a possible
identification of "local" values of L(r, t) with the magnitude |ωs| of
the vector field ωs.

The second difference is that liquid helium below Tλ is a two
fluid system, and (in 4He) we expect both superfluid and normal fluid
to be turbulent. This makes superfluid turbulence much richer than
classical turbulence, but the analysis becomes more involved, as mu-
tual friction between normal and superfluid components leads to (dis-
sipative) energy exchange between them in either direction.

The third difference is the existence of the intermediate scale `
which makes it impossible to apply arguments of scale invariance to
the entire inertial interval and calls for its separation into three ranges.
The first is a “hydrodynamic” region of scales ` � R � D (corre-
sponding to kD � k � k` in k-space where kD = 2π/D and
k` = 2π/`), which is similar (but not equal) to the classical inertial
range; the second is a “Kelvin wave region” ξ � R � ` where
energy is transferred further to smaller scales 3 by interacting Kelvin
waves. In the third, less understood intermediate region R ≈ `, the
energy flux is caused probably by vortex reconnections.

3. Experiments: flows, probes and spectra.
In this section we shall limit 4 our discussion to experimental tech-
niques for 4He. Possibly the simplest way to generate turbulence in
4He is the application of a temperature gradient which creates a flow
of the normal component carrying heat from the hot to the cold plate;
this flow is compensated by the counterflow of the superfluid compo-
nent in the opposite direction which maintains a zero mass flux. This
form of heat conduction, called thermal counterflow, is unlike what
happens in ordinary fluids. Moreover, under thermal drive, the energy
pumping is dominated by the intervortex length scale ` and accord-
ing to numerical simulations there is no inertial interval in which the
energy flux scales over the wavenumbers as in the KO–41 scenario
[15]. This “quantum" superfluid turbulence [16] is thus very different
from classical developed turbulence and will not be discussed here.

From the experimental viewpoint, mechanical generation of tur-
bulence (more similar to what is done in the study of ordinary turbu-
lence) is not as straightforward. Nevertheless, there is a number of
successful approaches, which can be classified into three categories:
(i) flows driven by vibrating objects, (ii) one-shot-flows driven by
single-stroke-bellows, towed grids or spin-up/down of the container,
and (iii) flows continuously driven by propellers. Most efforts in
characterising turbulent fluctuations have focused on the third cat-
egory – which allows to produce flows with better homogeneity and
isotropy that those generated by vibrating objects, and allows bet-
ter statistical convergence (and improved stationarity) than measure-
ments in non-stationary flows.

10−4 10−3 10−2

10−6

10−5

10−4

k−5/ 3

k  z / 2πl

E
(k

z
)

[m
2 s

−
1 ] pump

probe

wake
generator

Fig. 1: Color online. Energy spectrum measured in the TOUPIE
wind-tunnel (inset) below the superfluid transition (solid blue line,
1.56 K< Tλ) and above Tλ (dashed red line) [20].

2 In the simulations shown in Fig. 2A, the energy flux ε(k) is not preserved along the cascade,
but continuously decreases due to dissipation and ultimately vanishes at the maximum k.
3 Actually phonon emission will terminate the Kelvin cascade at scalesR ∼ 100ξ in 4He[13].
4The methods used in 3He, at temperatures one thousand times smaller, are rather different
[14], and we shall only cite the results in 3He which are directly relevant to our aim
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The quantum phase of 4He (called He–II) is created by cooling
the classical phase (called He–I) below Tλ, thus in most cases the
same apparatus or technique can be used to probe classical and quan-
tum turbulence, which helps making comparisons. Three flow con-
figurations have been explored (see also Fig. 3 in the Appendix). Von
Karman flows driven by counter–rotating propellers using cryogenic
[17] or room temperature [18, 19] motors. Wind-tunnels (see inset
in Fig. 1) [21, 20] pressurised hydrostatically by a column of liquid
4He to allow cavitation-free operation in He-I (in He–II, cavitation
is prevented by the fluid high thermal conductivity). Without pres-
surisation, bubbles would form in He–I preventing the comparison
of turbulence above and below Tλ in the same apparatus. The third
configuration – the TSF circulator – consists of a pressurised helium
loop cooled by a heat exchanger [22]. All these flows are driven by
the centrifugal force generated by propellers; not depending on vis-
cous or thermal effects, this forcing is well fitted to liquid helium,
irrespectively of its superfluid density fraction.

Probing cryogenic flows is often more challenging than produc-
ing the flow themselves: dedicated probes often have to be designed
and manufactured for each experiment, and good space and time res-
olutions are needed to resolve the fluctuating scales of superfluid tur-
bulence ([17, 22, 20, 91], see also Fig. 4 in the Appendix). Below
Tλ, the most commonly-used local velocity probe is based on the
principle of the “Pitot” (or “Prandtl" or “total head pressure”) tube.
One end of a tube is inserted parallel to the mean flow, while the
other end is blocked by a pressure gauge. The stagnation point which
forms at the open end of the tube is associated with an overpressure
P probed by the gauge, which is related to the incoming flow veloc-
ity V via Bernoulli relation P ' ρV 2/2 (hence fluctuations δP of P
are proportional to fluctuations δV of V up to terms of the order of
(δV/V )2). The operation and limitations of such stagnation-pressure
probes Tλ are discussed in Ref. [22] (in particular excessive angles
of attack lead to measurement bias). Pitot tubes achieving nearly 0.5-
mm spatial resolution, and others with DC-4 kHz bandwidth have
been operated successfully. At such scales and in the turbulent flows
of interest, helium’s two components are expected to be locked to-
gether – as discussed later – and described by a single fluid of total
density ρ, thus stagnation pressure probes determine their the com-
mon velocity.

The first experimental turbulent energy spectra below Tλ were
reported in 1998 [17] (using the set-up illustrated at the left of Fig. 3
in the Appendix). Energy spectra at 2.08 K and 1.4 K were found
very similar to the spectrum measured in He–I at 2.3 K. In the range
of frequencies corresponding to the length scale of the forcing and the
smallest resolved length scale, the measured spectrum was compat-
ible with KO–41. The next published confirmation of KO–41 came
in 2010 [22] from two independent experiments (of the two types de-
picted at the centre and at the right of Fig. 3). Measurements obtained
with the first type of wind-tunnel are reproduced in Fig. 5, which
shows energy spectra at 1.6 K for various mean velocities of the flow.
We note that four decades separate the integral scale of the flow (D '
10 mm) and the intervortex scale ` ' 1µm, to be compared with
the 1 mm effective resolution of the anemometer. Measurements
obtained with the second type of wind-tunnel explored grid turbu-
lence. Although the signal-to-noise ratio was not as good (see [22]
for compensated energy spectra), the choice of a well-defined homo-
geneous isotropic flow allowed to measure the dissipation rate ε from
the spatial decay of kinetic energy behind the grid. The Kolmogorov
constant CK41 derived from Eq. [3] was found similar above the
superfluid transition and below it in He-II at T = 2.0K. The en-
ergy spectrum shown in Fig. 1 has been recently obtained in the
TOUPIE wind-tunnel both above and below Tλ in the far wake of a
disc 5. A one-to-one comparison of both datasets allowed to check
the validity of the −4/5 Karman-Howarth law [20] below Tλ; this
law, sometimes described as the only exact relation known in turbu-
lence, confirms that energy cascades from large to small scales with-

out dissipation within the inertial range where the KO–41 scaling is
observed.

4. Equations of motion: three levels of description.
In the absence of superfluid vortices, Landau’s two-fluid equations[6]
for the superfluid and normal fluid velocities us and un account
for all phenomena observed in He-II at low velocities, for example
second sound and thermal counterflow. In the incompressible limit
(∇ · us = 0,∇ · un = 0) Landau’s equations are:

ρs
[
(∂ us/∂t) + (us · ∇)us

]
= −∇ps, [6a]

ρn
[
(∂ un/∂t) + (un · ∇)un

]
= −∇pn + µ∇2un , [6b]

where the efficient pressures ps and pn are defined by ∇ps =
(ρs/ρ)∇p−ρsS∇T and∇pn = (ρn/ρ)∇p+ρsS∇T (T and S are
temperature and entropy). On physical ground, Laudau argued that
the superfluid is irrotational.

The main difficulty in developing a theory of superfluid turbu-
lence is the lack of an established set of equations of motion for He-
II in the presence of superfluid vortices. We have only models at
different levels of description.

4A. First level. At the most microscopic level of description, we must
account for phenomena at the length scale of the superfluid vortex
core, R ≈ ξ. Monte Carlo models of the vortex core [23], although
realistic, are not suitable for the study of the dynamics and turbulent
motion. A practical model of a pure superfluid is the Gross-Pitaevskii
Equation (GPE) for a weakly-interacting Bose gas [1]:

i~∂Ψ

∂t
= − ~2

2M
∇2Ψ + V0|Ψ|2Ψ− E0Ψ , [7]

where Ψ(r, t) is the condensate’s complex wave function, V0 the
strength of the interaction between bosons, E0 the chemical poten-
tial andM the boson mass. The condensate’s density ρ̃s and velocity
ṽs are related to Ψ = |Ψ| exp(iΘ) via the Madelung transformation
ρ̃s = M |Ψ|2 , ũs = ~∇Θ/M , which confirms Landau’s intuition
that the superfluid is irrotational. It can be shown that, at length scales
R � ξ = ~/

√
2ME0, the GPE reduces to the classical continuity

equation and the (compressible) Euler equation. It must be stressed
that, although the GPE accounts for quantum vortices, finite vortex
core size (of the order of ξ), vortex nucleation, vortex reconnections,
sound emission by accelerating vortices and Kelvin waves, it is only
a qualitative model of the superfluid component. He-II is a liquid, not
a weakly-interacting gas, and the condensate is only a fraction of the
superfluid density ρs. No adjustment of V0 and E0 can fit both the
sound speed and the vortex core radius, and the dispersion relation of
the uniform solution of Eq. [7] lacks the roton’s minimum which is
characteristic of He-II [6, 24]. Strictly speaking, we cannot identify
ρ̃s with ρs and ũs with us. Nevertheless, when solved numerically,
the GPE is a useful model of superfluid turbulence at low T where
the normal fluid fraction vanishes, and yields results which can be
compared to experiments, as we shall see.

4B. Second level. Far away from the vortex core at length scales
R � ξ, and in the zero Mach number limit, the GPE describes in-
compressible Euler dynamics. This is the level of description of the
Vortex Filament Model (VFM) of Schwarz [25]. The nature of the
vortex core is ignored and individual vortex lines are described as
oriented space curves s(ζ, t) of infinitesimal thickness and circula-

5 To normalise the x-axis of this plot, the mean intervortex distance ` in He-II was estimated

using the relation 2`/D =Re−3/4
κ [56] where Reκ = DV/κ is a Reynolds number defined

using the root mean square velocity from the anemometer, and the prefactor 2 was fitted to
experimental and numerical data in the range T ' 1.4− 1.6K.
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Fig. 2: Color online. Numerical energy spectra Es(k`) (resp. En(k`)) of the superfluid (resp. normal) component for three levels of descrip-
tions by Eqs. [9], [8] and [7]: Panel A: Es(k`) (solid line) and En(k`) (dashed line) spectra from DNS of the HVBK Eqs. [9] at T ' 1.15K
(red) and '2.157 K (blue) with truncation of phase space beyond the intervortex scale [20]. Panel B: Es(k`) from VFM simulations [8] at
T = 2.164K (solid green line) [83] with synthetic turbulence prescribed for the normal component. Es(k`) (red/blue solid line) and En(k`)
(red/blue dashed line) spectra from shell model simulation of the HVBK equations at 1.44 K (red) and 2.157 K (blue) [58]. Panel C: Es(k`)
from GPE simulations [7] [40]. The numerical resolution is 20483 (red line), 10243 (dashed blue line) and 5123 (green dots). The intervortex
distance ` results from a fit of the data (see original publication). In all panels, the normalisation of the x-axis (wavevector k) highlights
the mean intervortex distance `. Black dashed lines show analytical predictions of the bottleneck [92] discussed in Sec. 6C with different
Λ = ln(`/ξ). The black solid line with Λ = 2 corresponds to the simulation in Ref. [40]. The dashed cyan lines show (from the left) the
KO–41 (-5/3) scaling, the energy equipartition scaling (+2) and, at the right, the (-5/3) Kelvin wave LN spectrum.

tion κ, where ζ is the arc length, which evolve according to

ds

dt
= usi + w , usi(s) =

κ

4π

∮
L

(s1 − s)× ds1
|s1 − s|3 , [8a]

w = αs′ × uns − α′s′ × [s′ × uns] , uns = un − usi . [8b]

Here the self-induced velocity usi is given by the Biot-Savart law
[26], and the line integral extends over the vortex configuration. At
nonzero temperatures the term w accounts for the friction between
the vortex lines and the normal fluid[7]. The unit tangent at s is
s′ = ds/dζ, and α, α′ are known temperature-dependent friction co-
efficients. In the T → 0 limit , α and α′ are negligible [27], and we
recover the classical result that each point of the vortex line is swept
by the velocity field produced by the entire vortex configuration.

Numerical simulations require the discretization of vortex lines
in a Lagrangian fashion and the desingularization of Biot-Savart in-
tegrals; reconnections are additional algorithmic ad-hoc procedures
that change the way pairs of discretization points are connected. Re-
connection criteria are described and discussed in Ref. [28, 29];
Ref. [30] compares GPE and VFM reconnections with each other
and with experiments. Simulations at large values of vortex line den-
sity are performed using a tree algorithm[28] which speeds up the
evaluations of Biot-Savart integrals from N2 to N logN where N
is the number of discretization points. The major drawback of the
VFM is that the normal fluid un is imposed (either laminar or tur-
bulent), therefore the back-reaction of the vortex lines on un is not
taken into account. The reason is the computational difficulty: a self-
consistent simulation would require the simultaneous integration in
time of Eq. [8] for the superfluid, and of Eq. [1] for the nor-
mal fluid, complemented with suitable friction forcing at vortex lines
singularities and restoring the momemtum balance associated with
mutual friction. Such self-consistent simulations were carried out
only for a single vortex ring [31] and for the initial growth of a vortex
cloud [32]. This limitation is likely to be particularly important at low
and intermediate temperatures (at high temperatures the normal fluid
contains most of the kinetic energy, so it is less likely to be affected
by the vortices).

4C. Third level. At the third level of description we do not distinguish
individual vortex lines any longer, but rather consider fluid parcels

which contain a continuum of vortices. At these length scalesR� `
we seek to generalise Landau’s equations [6] to the presence of vor-
tices. In laminar flows, the vortex lines (although curved) remain lo-
cally parallel to each other, so it is possible to define the components
of a macroscopic vorticity field ωs by taking a small volume larger
than ` and considering the superfluid circulation in the planes paral-
lel to the Cartesian directions (alternatively, the sum of the oriented
vortex lengths in each Cartesian direction). We obtain the so-called
Hall-Vinen (or HVBK) “coarse-grained" equations [33, 34]:

ρs
[
∂ us/∂t+ (us · ∇)us

]
= −∇ps − ρsfns , [9a]

ρn
[
∂ un/∂t+ (un · ∇)un

]
= −∇pn + µ∇2un + ρsfns , [9b]

fns = αω̂s × (ωs × uns) + α′ω̂s × uns, [9c]

where ωs = ∇ × us, ω̂s = ωs/|ωs|, and fns is the mutual friction
force 6. The difficulty with applying the HVBK equations to turbu-
lence is that in turbulent flows the vortex lines tend to be randomly
oriented with respect to each other, so the components of s′ partially
or totally cancel out to zero, resulting in local vortex length (hence
energy dissipation) without any effective superfluid vorticity. In this
case, the HVBK equations may become a poor approximation and
underestimate the mutual friction coupling. Nevertheless, they are
a useful model of large scale superfluid motion with characteristic
scale R� `, particularly because (unlike the VFM) they are dynam-
ically self-consistent (normal fluid and superfluid affect each other).
We must keep in mind that Eq. [9] do not have physical meaning at
length scales smaller than `. In the literature the mutual friction force
is often simplified to fns = −ακLuns where L = 1/`2.

6Strictly speaking, the right hand side of the superfluid equation contains also the vortex ten-
sion force νsωs × (∇× ω̂s) where νs = κ/(4π) ln (`/ξ). This term is essential when
describing fully polarized flows, such as Taylor–Couette flow [35, 36] and helical vortex fronts
[37]: In these flows, the vortex lines are fully polarised and aligned in the same direction, and
their density and orientation may change locally and vary as a function of position (on length
scales R � `). However, the vortex tension force is small at high velocity and conserves
energy, so it is ignored in the study of turbulence.
7De Waele and collaborators used solid boundary conditions [46] and investigated flat and a
parabolic normal fluid profiles, an issue which is still open.
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5. Numerical experiments: GPE, VFM and HVBK.
Since the pioneering work of Schwarz [25], numerical experiments
have played an important role, allowing the exploration of the conse-
quences of limited sets of physical assumptions in a controlled way,
and providing some flow visualization.

5A. The GPE.Numerical simulations of the GPE in a three-
dimensional periodic box have been performed for decaying turbu-
lence [38] following an imposed arbitrary initial condition, and for
forced turbulence [39, 40]. Since the GPE allows sound waves, in or-
der to analyse turbulent vortex lines, it is necessary to extract from the
total energy of the system (which is conserved during the evolution)
the incompressible kinetic energy part whose spectrum is relevant to
our discussion. To reach a steady state, large-scale external forcing
and small-scale damping was added to the GPE [40]. The resulting
turbulent energy spectrum agrees with KO–41 scaling in homoge-
neous (see Fig. 2, cyan dot-dashed line) and demonstrates bottleneck
energy accumulation near the intervortex scale at zero temperature
predicted earlier in [92] and discussed in the Sect. 6C. The KO–41
scaling observed in GPE simulations was found to be consistent with
the VFM at zero temperature [51, 12] and has also been observed
when modelling a trapped atomic Bose–Einstein condensate [41].

The GPE can be extended to finite temperatures [42, 43, 44] ac-
counting for mutual friction [45].

5B. The VFM. Most VFM calculations have been performed in a cu-
bic box of size D with periodic boundary conditions7. At T 6= 0 we
expect that the normal fluid is turbulent because its Reynolds number
Re = DVn/νn is large (where Vn the root mean square normal fluid
velocity). Recent VFM studies thus assumed the form [15, 47, 5]

. un(s, t) =

M∑
m=1

(Am × km cosφm + Bm × km sinφm),

where φm = km · s + fmt, km and fm =
√
k3mE(km) are

wave vectors and angular frequencies. The random parameters Am,
Bm and km are chosen so that the normal fluid’s energy spec-
trum obeys KO–41 scaling E(km) ∝ k

−5/3
m in the inertial range

kD ' k1 < k < kM ' k`. This synthetic turbulent flow [48]
is solenoidal, time-dependent, and compares well with Lagrangian
statistics obtained in experiments and direct numerical simulations
of the Navier-Stokes equation. Other VFM models included normal-
fluid turbulence generated by the Navier–Stokes equation [49] and a
vortex-tube model [50], but, due to limited computational resources,
only a snapshot of the normal fluid, frozen in time, was used to drive
the superfluid vortices.

In all numerical experiments, after a transient from some ini-
tial condition, a statistical steady state of superfluid turbulence is
achieved, in the form of a vortex tangle in which L(t) fluctuates
about an average value independent of the initial condition. It is
found [15, 47, 5] that the resulting superfluid energy spectrum Es(k)
is consistent with KO–41 scaling in the hydrodynamic range kD <
k < k` (see the green line of Fig. 2B). This result hold true at zero
temperature, where ρn = 0 [51, 12], in agreement with the GPE.

Recent analytical [4] and numerical studies[15, 5] of the geom-
etry of the vortex tangle reveal that the vortices are not randomly
distributed, but there is a tendency to locally form bundles of co-
rotating vortices, which keep forming, vanish and reform somewhere
else. These bundles associate with the Kolmogorov spectrum: if tur-
bulence is driven by a uniform normal fluid (as in the original work of
Schwarz[25] 8), there are nor Kolmogorov scaling nor bundles. Bag-
galey et al.[5] decomposed the vortex tangle in a polarised part (of
density L‖) and a random part (of density L×), as argued by Roche
& Barenghi [53], and discovered that L‖ is responsible for the k−5/3

scaling of the energy spectrum, and L× for the f−5/3 scaling of the
vortex line density fluctuations, as suggested in Ref.[21].

5C. The HVBK equations.From a computational viewpoint, the
HVBK equations are similar to the Navier-Stokes equation [1]. Not
surprisingly, standard methods of classical turbulence have been
adapted to the HVBK equations, e.g. Large Eddy Simulations [54],
Direct Numerical Simulations [55, 56] and Eddy Damped QuasiNor-
mal Markovian simulations [57].

The HVBK equations are ideal to study the coupled dynamics of
superfluid and normal fluid in the limit of intense turbulence at finite
temperature. Indeed, by ignoring the details of individual vortices
and their fast dynamics, HVBK simulations do not suffer as much
as VFM and GPE simulations from the wide separation of space and
time scales which characterize superfluid turbulence. Moreover, well
optimized numerical solvers have been developed for Navier-Stokes
turbulence and they can be easily adapted to the HVBK model. Sim-
ulations over a wide temperature range (1.44 < T < 2.157 K cor-
responding to 0.1 ≤ ρn/ρs ≤ 10) show evidence of strong locking
of superfluid and normal fluid (us ≈ un) at large scales, over one
decade of inertial range ([55]). In particular, it was found that even
if one single fluid is forced at large scale (the dominant one), both
fluids still get locked very efficiently. Fig. 2A illustrates velocity
spectra generated by direct numerical simulation of the HVBK equa-
tions. A clear k−5/3 spectrum is found for both fluid components, at
all temperature and large scales.

We have said that the HVBK equations are valid only forR� `.
In order to tackle the difficult intermediate regime R ≈ `, a quantum
constraint can be re-introduced in this model by truncating superfluid
phase space for |k| ≤ `−1, causing an upward trend of the low tem-
perature velocity spectrum of Fig. 2A which can be interpreted as
partial thermalization of superfluid excitations. This procedure also
leads to the prediction LD2 = 4Re3/2 [56] which is consistent with
experiments and allows to identify the spectrum of L(r)/κ with the
spectrum of the scalar field |ωs(r)|.

Essential simplification of the HVBK Eqs. [9] can be achieved
with the shell-model approximation[58, 59, 60]. The complex shell
velocities us

m(km) and un
m(km) mimic the statistical behaviour of

the Fourier components of the turbulent superfluid and normal fluid
velocities at wavenumber k. The resulting ordinary differential Eqs.
for un,s

m capture important aspects of the HVBK Eqs. [9], includ-
ing the relation between Re and L. The red and blue solid lines of
Fig. 2B show spectra obtained using a shell model. Because of the
geometrical spacing of the shells (km = 2mk0), this approach allows
more decades of k-space than Eqns. [9] (eight decades in k-space in
Ref. [60]). This extended inertial range allows detailed comparison
of intermittency effects in superfluid turbulence and classical turbu-
lence.

6. Theory
In this section we discuss our theoretical understanding of superfluid
turbulence, moving from the better understood to the less understood
case.

6A. Hydrodynamic regime. Large scale (R � `) motions in 4He at
k � k` are understood on the ground of the HVBK Eqs. [9]. The
simpler, pedagogical case of 3He (in which the normal fluid is essen-
tially clamped to the walls due to its large viscosity) is discussed in
the Appendix [61, 60]. In the case of two coupled fluids, the HVBK
Eqs. [9] result in a system of energy balance equations for superfluid
and normal fluid energy spectra Es(k) and En(k) [62]:

dεs(k)

dk
+ Γ

[
Es(k)− Ens(k)] = 0 , [10a]

dεn(k)

dk
+
ρs

ρn
Γ
[
En(k)− Ens(k)] = −2νnk

2En(k) . [10b]

8recently tested in Ref. [52].
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Here we approximate Eq. [9c] as fns − Γuns, with Γ = ακωT,
ωT ≡

√
〈|ωs|2〉 is the characteristic “turbulent" superfluid vortic-

ity, estimated by 〈|ωs|2〉 ≈ 2
∫ 1/`

k0
k2E(k)dk. Superfluid and nor-

mal fluid energy fluxes εs(k) and εn(k) can be expressed via Es(k)
and En(k) by differential closure [4]. The cross-correlation function
Ens(k) is normalized such that

∫
Ens(k)dk = 〈us ·un〉. If, at given k,

superfluid and normal fluid eddies are fully correlated (locked), then
Ens(k) = Es(k) = En(k). If they are statistically independent (un-
locked), thenEns(k) = 0. The following closure equation for Ens(k)
has been proposed [62]:

Esn(k) =
ρsEs(k) + ρnEn(k)

ρ [1 +K(k)]
, K(k) ≡ ρn[νnk

2 + γn(k) + γs(k)]

ραωT
.

[10c]
Here γn(k) ' k

√
kEn(k) and γs(k) ' k

√
kEs(k) are characteris-

tic turnover frequencies of eddies in the normal and superfluid com-
ponents. They are related to the effective turbulent viscosity νT by
νTk

2 = γ(k).
For large mutual friction or/and small k of interest in this sec-

tion, K(k) � 1, and Eq. [10c] has the physically motivated so-
lution Esn(k) = Es(k) = En(k) corresponding to full locking
un(r, t) = us(r, t). In this case the sum of Eq. [9a] (multiplied by
ρs) and Eq. [9b] (multiplied by ρn) yields the Navier-Stokes equation
with effective viscosity ν̃ = µ/ρ. Thus, in this region of k-space, one
expects classical behaviour of hydrodynamic turbulence with KO–41
scaling [3] (up to intermittency corrections discussed in Sec. 6C).

6B. Kelvin wave regime. The range R � ` acquires great impor-
tance only at low temperatures, typically below 1 K in 4He, and is
relevant to turbulence decay experiments. At higher temperatures
friction damps Kelvin waves, smoothing vortex lines and dissipat-
ing superfluid energy. Here we shall describe only the basic ideas,
avoiding the most debated details.

Neglecting the interaction between separate vortex lines (besides
the small regions around vortex reconnection events, which will be
discussed later), at k` � 1 superfluid turbulence can be considered
as a system of Kelvin waves with different wavevectors interacting
with each other on the same vortex. The prediction that this inter-
action results in turbulent energy transfer toward large k [63] was
confirmed by numerical simulations in which energy was pumped
into Kelvin waves at intervortex scales by vortex reconnections [64]
or simply by exciting the vortex lines [65]. The first analytical the-
ory of Kelvin wave turbulence (propagating along a straight vortex
line and in the limit of small amplitude compared to wavelength) was
proposed by Kozik and Svistunov [66] (KS), who showed that the
leading interaction is a six-wave scattering process (three incoming
waves and three outgoing waves). Under the additional assumption
of locality of the interaction (that only compatible wave-vectors con-
tribute to most of the energy transfer) KS found that (using the same
normalisation of other hydrodynamic spectra such as Eqs. [3]) the
energy spectrum of Kelvin waves is
E

KS

KW(k) = CKSΛ ε
1/5
KWκ

7/5 `−8/5k−7/5 , CKS ∼ 1, (KS spectrum).
Here Λ ≡ ln(`/ξ) ' 12 or 15 in typical 4He and 3He experiments,
and εKW is the energy flux in three dimensional k-space.

Later L’vov-Nazarenko (LN) [67] criticised the KS assumption
of locality and concluded that the leading contribution to the energy
transfer comes from a six waves scattering in which two wave vec-
tors (from the same side) have wavenumbers of the order of 1/`. LN
concluded that the spectrum is

. E
LN

KW(k) = CLN

Λκ ε
1/3
KW

Ψ3/2k5/3
, Ψ =

4πEKW

Λκ2
, (LN spectrum),

where analytically found CLN ≈ 0.304 [93].
This KS vs LN controversy triggered an intensive debate (see e.g.

Refs [68, 69, 70, 71, 72, 73]), which is outside the scope of this ar-
ticle. We only mention that the three–dimensional energy spectrum
EKW (k) can be related to the one–dimensional amplitude spectrum

AKW (k) by EKW (k) ∼ ~ω(k)n(k) where ω(k) ∝ k2 is the angu-
lar frequency of a Kelvin wave of wavenumber k, ~ω(k) the energy
of one quantum, and n(k) ∼ AKW(k) the number of quanta; there-
fore, in terms of the Kelvin waves amplitude spectrum (which is often
reported in the literature and can be numerically computed), the two
predictions are respectively AKSKW ∼ k−17/5 = k−3.40 (KS) and
ALNKW ∼ k−11/3 = k−3.67 (LN).

The two predicted exponents (−3.40 and −3.67) are very
close to each other; indeed VFM simulations [74] could not dis-
tinguish them (probably because the numerics were not in the suf-
ficiently weak regime of the theory in terms of ratio of ampli-
tude to wavelength). Nevertheless, more recent GPE simulations
by Krstulovic [75] based on long time integration of Eq. [7] and
averaged over initial conditions (slightly deviating from a straight
line) support the LN spectrum. The most recent VFM simulations
by Baggaley and Laurie [76] observe a remarkable agreement with
the LN spectrum with Cnum

LN ≈ 0.308 close to Canal
LN ≈ 0.304 while

Cnum
KS ≈ 0.009 differs from the KS-estimate CKS ∼ 1.

At finite temperature, it was shown in Ref. [77] that the Kelvin
wave spectrum is suppressed by mutual friction for k > k∗, reaching
core scale (k∗ξ ≈ 1) at T ' 0.07 K and fully disappears at T ' 1 K,
when k∗` ≈ 1.

6C. Intermediate regimes. The regions of the spectrum just below
and above the intervortex scale k` ' 1 is difficult, because both
eddy-type motions and Kelvin waves are important, and the discrete-
ness of the superfluid vorticity prevents direct application of the tools
of classical hydrodynamics. Nevertheless, some attempts have been
made to understand the physics of these spectral regions.

At T > 0, direct numerical simulations of the truncated HVBK
model for 1K < T < Tλ confirmed the KO–41 scaling of the
two locked fluids at large scales (see Fig. 2A). At smaller scales
k > kmeso, an intermediate (meso) regime appeared that expands as
T is lowered [56]. Apparently, superfluid energy, cascading from
larger length scales, accumulates beyond kmeso. At the lowest tem-
peratures, this energy appears to thermalize, approaching equiparti-
tion with Es(k) ∝ k2, as shown by the red curve of Fig. 2A. The
process saturates when the friction coupling with the normal fluid be-
comes strong enough to balance the incoming energy flux ε(kmeso).
In physical space, this mesoscale thermalization should manifest it-
self as a randomisation of the vortex tangle. The effect is found to
be strongly temperature dependent[81]: kmeso ∝ k`

√
ρn/ρ. Such ac-

cumulation of thermalized superfluid excitations at small scales and
finite temperature was predicted by an earlier model developed to in-
terpret vortex line density spectra [53].

At T = 0, comparison [4] of the hydrodynamic spectrum [3]
with the LN Kelvin wave spectrum at T = 0 suggests that the
one dimensional nonlinear transfer mechanisms among weakly non-
linear Kelvin waves on individual vortex lines is less efficient than
the three–dimensional, strongly nonlinear eddy-eddy energy transfer.
The consequence is an energy cascade stagnation at the crossover
between the collective eddy-dominated scales and the single vortex
wave-dominated scales. The total energy flux, ε(k) arising from hy-
drodynamic and Kelvin-wave contributions, was modelled [92] by
dimensional reasoning in the differential approximation, similar to
Eq. [4]: for k → 0 the energy flux is purely hydrodynamic and
E(k) is given by Eq. [5], while for k → ∞ it is purely supported
by Kelvin waves and E(k) is the LN Kelvin wave spectrum. This
approach leads to the ordinary differential equation ε(k) = constant,
which was solved numerically. The predicted energy spectra E(k)
for different values of Λ, shown in Fig. 2C, exhibit a bottleneck en-
ergy accumulation E(k) ∝ k2 in agreement with Eq. [5].

Finally, there have been attempts to go beyond KO–41 and ad-
dress the problem of intermittency. The first numerical study of in-
termittent exponents [90] did not find any intermittent effect pecu-
liar to superfluid turbulence neither at low temperature (T ' 0.5Tλ,
ρs/ρn = 40) nor at and high temperature (T ' 0.99Tλ, ρs/ρn =
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0.1), in agreement with experiments[17, 90], all performed on the
low temperature side (T . 0.7Tλ, ρs/ρn > 5.7).

Recently, the intermediate temperature corresponding to ρs ≈ ρn
has been explored with shell model simulations [60] with eight
decades of k-space, which allowed detailed comparison of classical
and superfluid turbulent statistics. It was found that for T slightly
below Tλ, when ρs/ρn � 1, the statistics of turbulent superfluid
4He appeared similar to that of classical fluids, because the superfluid
component can be neglected (green lines in Fig. 6 in the Appendix).
The same result applies to T � Tλ (ρn � ρs), as expected due to
the inconsequential role played by the normal component (blue lines
in Fig. 6). A difference between classical and superfluid intermittent
behaviour in a wide (up to three decades) interval of scales appeared
in the range 0.8Tλ < T < 0.9Tλ (ρs ≈ ρn) – red lines in Fig. 6. The
exponents of higher order correlation functions also deviate further
from the KO–41 values.

7. Outlook.
We conclude that, at large hydrodynamic scales kD � k � k`,
the evidence for the KO–41 k−5/3 scaling of the superfluid energy
spectrum which arises from experiments, numerical simulations and
theory (across all models used) is strong and consistent, and appears
to be independent of temperature (including the limit of zero tem-
perature in the absence of the normal fluid [38, 39, 51, 12]). This
direct spectral evidence is also fully consistent with an indirect body
of evidence arising from measurements of the kinetic energy dissi-
pation ([84, 85, 86, 87, 22]) and vortex line density decay [88, 89]
in turbulent helium flows. The main open issue is the existence of
vortex bundles [12, 15] predicted by the VFM, for which there is no
direct experimental observation yet. Intermittency effects, predicted
by shell models [60], also await experimental evidence.

At the quantum length scales (k � k`) the situation is less clear.
This regime is very important at the lowest temperatures, where, in
the absence of friction, the Kelvin waves are not damped, and energy
is transferred downscale until the waves are short and fast that it is
radiated away. In the weak regime (small Kelvin wave amplitudes
compared to wavelength) the proposed KS and LN Kelvin wave en-
ergy spectra differ on principles, but their actual numerical difference
is small; this has encouraged the development of better numerics, and
the most recent GPE and VFM simulations favour the LN scenario.
Unfortunately there is not yet any direct experimental observation of
the energy spectrum at such length scales.

What happens at intermediate length scales (k` ≈ 1) is even
less understood. The truncated HVBK model (at finite T ), predicts
a temperature–dependent upturning of the spectrum in this region of
k-space. If confirmed by the experiments and the VFM model, this
would signify the striking appearance of quantum effects at scales
larger than `. Further insight could arise from better understanding
of fluctuations of the vortex line density. It is worth noticing that
similar macroscopic manifestation of the singular nature of the su-
perfluid vorticity was also predicted for the pressure spectrum [82].
In the T → 0 limit, the eddy–dominated, three–dimensional Kol-
mogorov cascade at R � ` should merge into the one–dimensional
Kelvin wave cascade at R � ` on individual vortex lines. The dif-
ferential model [92] predicts bottleneck accumulation of energy in
the cross–over region at k` ≈ 1 between the two cascades, that ex-
plains experimentally observed [94] drop in about 30 times in the ef-
fective (Vinen’s) viscosity ν′. However the bottleneck has not been
directly observed in the experiments yet and lacks the confirmation
of the VFM. A related open issue is the role of vortex reconnections
in the strong regime of the cascade (large Kelvin wave amplitudes
compared to wavelength).

Experimentally, the limited resolution of the anemometer is re-
sponsible for the cut-off at high frequency/small scale. Thus, the
observed spectra reveal only the integral scales and the upper half of
the inertial scales. To circumvent this limitation, a first approach is
to scale up the experiment (at given Reynolds number Reκ) so that
all characteristic flow scales are magnified and better resolved with
existing probes. This approach has been undertaken with the con-
struction of a 78-cm diameter He-II Von Karman flow in Grenoble
[19] that is one order of magnitude larger than the 1998’s reference
cell. Another approach is to scale down the probes. For practical
reasons it is difficult to miniaturise much further stagnation pressure
probes without a significant decrease of their sensibility or time re-
sponse. New types of anemometers need to be invented. One pos-
sibility arises from the recent development of fully micro-machined
anemometers based on the deflection of a silicon cantilever (see the
bottom left sketch of Fig. 4). Preliminary spectral measurements
with a resolution of 100µm have been recently reported in a He-II
test facility [91].
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77. L. Boué, V. L’vov, and I. Procaccia (2012). Temperature suppression of Kelvin-wave
turbulence in superfluids, Europhys. Lett. (99): 46003.

78. Y. Mineda, M. Tsubota, and W. Vinen (2012). Decay of counterflow quantum turbu-
lence in superfluid 4He, J. Low Temp. Phys. 1 10.1007/s10909-012-0800-7

79. D. C. Samuels and D. Kivotides (1999), A damping length scale for superfluid tur-
bulence Phys. Rev. Lett. (83): 5306.

80. W. F. Vinen and J. J. Niemela (2002), Quantum turbulence, J. Low Temp. Phys. (128):
167.

81. P.-E. Roche (2013), Energy spectra and characteristic scales of quantum turbulence
investigated by numerical simulations of the two-fluid model, To appear in the Proc.
of the 14th EUROMECH European Turbulence Conference, Sept 1-4, 2013, Lyon.

82. D. Kivotides, J.C. Vassilicos, C.F. Barenghi, M.A.I. Khan, and D.C. Samuels (2001),
Quantum signature of superfluid turbulence Phys. Rev. Lett. (87): 275302.

83. LK Sherwin, AW Baggaley and CF Barenghi, in preparation
84. P. Walstrom, J. Weisend, J. Maddocks, and S. Van Sciver (1988) Turbulent flow

pressure drop in various He II transfer system components. Cryogenics (28):101
85. B. Rousset, G. Claudet, A. Gauthier, P. Seyfert, A. Martinez, P. Lebrun, M. Marquet,

and R. van Weelderen (1994) Pressure drop and transient heat transport in forced
flow single phase helium II at high Reynolds numbers. Cryogenics (34):317

86. M. Abid, M. E. Brachet, J. Maurer, C. Nore, and P. Tabeling (1998) Experimental and
numerical investigations of low-temperature superfluid turbulence Eur. J. Mech B-
Fluid (17):665

87. S. Fuzier, B. Baudouy, and S. W. Van Sciver (2001) Steady-state pressure drop and
heat transfer in He II forced flow at high Reynolds number Cryogenics (41):453

88. L. Skrbek, J. J. Niemela, and K. R. Sreenivasan (2001) Energy spectrum of grid-
generated HeII turbulence Phys. Rev. E, (64):067301

89. J. Niemela, K. Sreenivasan, and R. Donnelly (2005) Grid generated turbulence in
helium II J. Low Temp. Phys. (138):537
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Fig. 3: From left to right: Von Karman flows ([17, 18, 19]), wind-tunnels ([20, 21]) and pressurised circulator cooled through a heat exchanger
([22]).
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Fig. 4: Stagnation pressure velocity probes without static pressure reference (top-left) ([17, 22] , stagnation pressure velocity probe with a
static pressure reference (right) ([22, 20]), and cantilever-based velocity probe (bottom left) [91]. In the arrangement depicted at the right, the
use of a differential pressure probe allows to remove the “static” pressure variation of the flow associated with turbulent pressure fluctuations
and acoustical background noise.
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Fig. 5: Energy spectra for different mean flow velocities for T = 1.55K in the superfluid wind-tunnel presented in [20]. An arbitrary vertical
offset had been introduced for clarity (see legend). For a compensated plot, see [21]
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Appendix section : Superfluid turbulence in 3He
In Sec. 6A we discuss large scale R � ` turbulent motions of nor-
mal and superfluid components in 4He on the ground of the HVBK
Eqs. [9]. Noticing that the kinematic viscosity of normal-fluid com-
ponent in 3He is so large that, in all 3He turbulence experiments, we
expect the normal fluid to be at rest (un = 0) with respect to the walls
of the container. Liquid 3He thus provides us with a simpler turbu-
lence problem (superfluid turbulence in the presence of linear friction
against a stationary normal fluid) than 4He (superfluid turbulence in
the presence of normal fluid turbulence).

With un = 0 we have to skip Eq. [10b] in our paper and to put
Ens = 0 in Eq. [10a]. Using the differential approximation Eq. [4] for
the energy spectrum, the continuity Eq. [10a] in the stationary case
becomes

1

8

d

dk

[√
k11Es(k)

d

dk

Es(k)

k2

]
+ ΓEs(k) = 0.

Analytical solutions of this equation found and analyzed in [59, 61]
are in good agreement with the results of numerical simulation of the
shell model to the HVBK Eqs. [9], providing us with quasi-qualitative
description of turbulent energy spectra in 3He over a wide region of
temperatures and wave vectors.

11


