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Systematic simulations of the two-fluid model of superfluid helium (He-II) encompassing
the Hall-Vinen-Bekharevich-Khalatnikov (HVBK) mutual coupling have been performed
in two-dimensional pipe counterflows between 1.3 and 1.96 K. The numerical scheme
relies on the lattice Boltzmann method. A Boussinesq-like hypothesis is introduced to
omit temperature variations along the pipe. In return, the thermomechanical forcings of the
normal and superfuid components are fueled by a pressure term related to their mass-density
variations under an approximation of weak compressibility. This modeling framework
reproduces the essential features of a thermally driven counterflow. A generalized definition
of the entrance length is introduced to suitably compare entry effects (of different nature)
at opposite ends of the pipe. This definition is related to the excess of pressure loss with
respect to the developed Poiseuille-flow solution. At the heated end of the pipe, it is found
that the entrance length for the normal fluid follows a classical law and increases linearly
with the Reynolds number. At the cooled end, the entrance length for the superfluid is
enhanced as compared to the normal fluid by up to one order of magnitude. At this end,
the normal fluid flows into the cooling bath of He-II and produces large-scale superfluid
vortical motions in the bath that partly re-enter the pipe along its sidewalls before being
damped by mutual friction. In the superfluid entry region, the resulting frictional coupling
in the superfluid boundary layer distorts the velocity profiles toward tail flattening for the
normal fluid and tail raising for the superfluid. Eventually, a simple analytical model of
entry effects allows us to re-examine the long-debated thresholds of T 1 and T 2 instabilities
in superfluid counterflows. Inconsistencies in the T 1 thresholds reported since the 1960s
disappear if an aspect-ratio criterion based on our modeling is used to discard data sets
with the strongest entry effects. Furthermore, it is observed that entry effects can spuriously
reproduce the signature of a T 2 transition with a normal flow remaining laminar.
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I. INTRODUCTION

Viscosity plays a key role in determining the velocity profile of laminar flows in pipes. As the
fluid enters the pipe, its loses memory of its entry velocity profile within a so-called entrance length
that is inversely proportional to its kinematic viscosity. What happens when an inviscid fluid such
as superfluid helium enters a pipe? This paper explores the concept of entrance length in superfluids
and proposes an explanation of a decades-old controversy in superfluid hydrodynamics, namely,
the inconsistencies in critical velocities associated with T 1 and T 2 instabilities of thermally driven
superfluid counterflows in pipes and channels.
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FIG. 1. Left-side and center sketches: Typical superfluid thermal counterflow experimental setups. For the
sake of visibility, the pipe diameter has been exaggerated. Right-side sketch: Two-dimensional geometry of our
numerical simulations.

A. Critical velocities in superfluid counterflows

The tricky instabilities of superfluid flows have stimulated research for more than 50 years.
Probably the simplest and most studied flow involves a pipe filled with liquid 4He in its superfluid
state, usually referred to as He-II, with a closed end equipped with a heater and opened to a cooled
bath of He-II at the other end. When a current is supplied to the heater, a flow—called “thermal
counterflow” for reasons recalled later—naturally establishes in the pipe (see Ref. [1] for a seminal
paper). In this flow, two dynamical instabilities called T 1 and T 2 have been observed [2,3].

According to Tisza and Landau’s two-fluid model of He-II, a counterflow may be viewed as two
mutually interpenetrating fluids flowing in opposite directions in the duct [4,5]. The so-called normal
fluid is viscous and carries all the entropy of 4He along one direction, whereas the superfluid moves
in the opposite direction. The superfluid behaves like a fluid with zero viscosity and has no vorticity
except along quantized vortex lines. The presence of these vortex lines is responsible for a mutual
friction between the two fluids. We shall see later that this friction force is a key ingredient in the
dynamics of counterflows.

When heat is supplied at the closed end of the pipe, the superfluid flows toward it to gain the heat
content and transform itself into normal fluid. The normal fluid then flows away from the heater
to evacuate heat (or entropy) toward the bath of He-II where the reverse conversion takes place, as
sketched in Fig. 1. A stationary regime establishes itself, in which the averaged flux of normal fluid
Vn is determined by the heat flux (across a unit area) W transferred throughout the pipe from the
heater to the bath: W = ST × Vn, where S denotes the entropy per unit volume of 4He and T is
the temperature of the thermostat. On the other hand, the averaged superfluid flux results from the
conservation of mass, i.e., ρnVn + ρsVs = 0 with obvious notations.

It has been widely accepted since the 1960s [6] that the T 1 instability refers to the appearance
of unsteadiness in the superfluid flow, whereas the normal-fluid flow remains laminar until the T 2
transition. A comprehensive review of the numerous models to describe the threshold of the T 1
instability is clearly beyond the scope of this paper; however, it is worth referring to a few of them
to illustrate the level of controversy and, sometimes, confusion about this transition. For instance,
the critical superfluid velocity Vc of the T 1 instability is predicted to have either no dependence
on the pipe diameter or channel hydraulic diameter d [7–9] or a d−1/4 dependence [10] or a d−1/3

dependence with or without a logarithmic correction [11,12] or a d−1 dependence with a logarithmic
correction [13–19] or, at last, a pure d−1 dependence [20–22]. The models that predict no dependence
on the diameter clearly overestimate the critical velocity but all the others reach reasonable degrees
of agreement with some subsets of experimental data. For instance, the data compiled in Ref. [23]
are found compatible with the three models predicting d−1/4 and d−1/3 dependencies, while the data
reported by Ref. [24] better support a 1/d dependence. Finally, the data in Ref. [4] reasonably agree
with a log d/d dependence.
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FIG. 2. Threshold of T 1 instability measured in various experiments of superfluid thermal counterflows.
Superfluid critical Reynolds number Res = Vcd/κ vs year of publication of datasets (references are given in
the text); d is the hydraulic diameter of the channel or pipe.

To illustrate the scatter of experimental results, let us consider the models consistent with Vc ∼ d−1

suggesting that the transition is simply controlled by a critical superfluid Reynolds number Vcd/φ(T ),
where φ(T ) is a modeled function of the temperature. In Fig. 2, the critical Reynolds Res = Vcd/κ

with κ being the quantum of circulation of 4He is displayed for the datasets reported in ten papers
published over a period of 25 years between 1960 and 1985 [25–34]. The datasets have been
partitioned into three temperature ranges to better evidence a possible temperature dependence. In
rare cases, it cannot be excluded that the transition had been wrongly attributed to T 1 instead of T 2,
as already discussed in Refs. [23,35]. However, this possibility should not affect the overall picture
emerging from Fig. 2. The scatter of critical Reynolds numbers exceeds one and a half decades.
Obviously, the temperature dependence cannot explain such dispersion. The picture is not improved
either if quantities such as the critical velocity or heat flux density are plotted on the vertical axis,
or if the relative velocity between both fluids is used to define a Reynolds number. Therefore, it
may be fairly claimed that the scatter of published experimental datasets does not allow us today
to discriminate between models. It will be shown in this article that the pipe aspect ratio has been
underestimated as an crucial design parameter in many experiments dedicated to the T 1 transition.

Finally, let us mention that such a confused situation is not restricted to the T 1 transition in pipes
and channels but also applies to the T 2 transition, as discussed for instance in Refs. [2,6,22,25,35,36]
and other superfluid transitions reported in pipes, channels, and flows through apertures with various
types of thermomechanical forcing; e.g., see Refs. [37–41] and references therein. In Subsec. V B,
the specific case of the T 3 transition is discussed. The T 3 transition is believed to replace the T 1
and T 2 transitions in channels with an elongated cross section.

B. Entrance effects in pipe flows

In the laminar regime, viscosity plays a central role in imposing itself on the velocity profile of
a (classical) fluid entering a pipe, regardless of the profile at the entry. After a few tens of diameter,
a characteristic parabolic profile establishes itself as the balance between the pressure gradient and
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the viscous shear stress. The no-slip condition is satisfied at the wall. Once this profile is developed,
it no longer varies along the flow direction. The length of pipe required to reach this asymptotic
profile or, equivalently, to lose the memory of the entry profile, is called the “entrance length” or
“entry length.”

To the best of our knowledge, there is no previous study of entrance effects in superfluid flows,
even though the possible importance of this effect had been mentioned as early as 1957 by Vinen
[1]. The possibility of entrance effects associated with boundary layer development has also been
explicitly pointed out in Ref. [42]. Still, few indirect evidence that entrance effects could play
a significant role in superfluid counterflows has been reported in the literature. For instance, an
increase of the critical superfluid velocity by a factor of 1.3 has been observed after modifying the
geometry of the end of the hottest tube [43]. Also, geometrical discontinuities at the superfluid inlet
have been identified as a source of superfluid vorticity that is eventually carried far into the pipe
[44,45]. Some authors noticed that their results could vary when changing the length of the pipe
and, concomitantly, the shape of the entrance orifices. That way, a change of the critical velocity by
almost a factor of 2 has been reported in Ref. [29], whereas “substantial discrepancy between results
obtained with long and short tubes” has been mentioned in Ref. [38].

More generally, the inlet and outlet boundary conditions, e.g., the pipe opening into a bath,
into a bulb, or abruptly closed, are expected to act as a source of vorticity associated with some
recirculation of the flow. Such recirculation motions near the ends of the pipe have already been
evidenced in numerical simulations [46,47]. In our study, we shall see that these vortical motions
can have a strong impact on the development of the flow inside the pipe. At the cooled end of the
pipe, the surrounding superfluid vorticity is eventually swept along into the pipe by the superfluid
current, what results in some entrance effects associated with the presence of superfluid boundary
layers. In that case, the development of the superfluid flow inside the pipe is no longer governed
by the viscosity (since the superfluid is inviscid) but by the mutual friction between the normal
and superfluid currents. The normal-fluid velocity profile is strongly affected in this region and an
enhanced pressure drop is experienced.

C. A preliminary qualitative result

As will be shown later, the entrance length of a superfluid may be significantly larger than that of
a classical fluid. To limit artifacts due to entry effects, the pipe or channel should therefore have an
aspect ratio much larger than what would be expected from classical hydrodynamics. In Fig. 3, the
superfluid critical Reynolds number Res related to the T 1 instability is now displayed as a function
of the pipe (or channel) aspect ratio L/d for the same datasets as in Fig. 2. Interestingly, it is found
that all datasets obtained with aspect ratios larger than 550 are consistent between each other, while
datasets with aspect ratios smaller than 140 exhibit scattered critical Reynolds numbers. This first
important finding strongly supports the idea that superfluid entry effects could explain, at least partly,
the scatter of thresholds of the T 1 instability reported during the past 50 years. It will be argued later
that an aspect ratio of several hundreds is indeed required to safely escape from entry effects.

II. PHYSICAL AND NUMERICAL MODELING

Beyond entrance effects, our study deals more generally with the development of superfluid
boundary layers, where the effect of mutual friction is essential. One must admit that our
understanding of boundary layers in superfluid flows is very limited. For instance, the “frictional
role” played by residual quantized vortices anchored on miscroscopic asperities of the sidewalls
(e.g., see Refs. [39,48,49]) is not fully elucidated. A wall model is therefore a priori needed to carry
out numerical simulations. Another difficulty comes from the lack of a mathematical framework
fully accounting for He-II dynamics, which therefore imposes a certain level of arbitrariness on
the chosen dynamical equations [50]. In this section, an original approach based on the lattice
Boltzmann method is introduced to represent the problem at a mesoscopic level intermediate between
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FIG. 3. The critical superfluid Reynolds number Res = Vcd/κ related to the T 1 transition is displayed as
a function of the pipe aspect ratio L/d for the same datasets as in Fig. 2. The continuous lines separate flow
configurations with overall effective entry lengths contaminating more than 10% of the pipe length (upper left
area) and less than 10% of the pipe length (lower right area). The dash lines mark similar separations with a
1% criterion. The lines arise from a simple analytical model detailed in Sec. III.

the microscopic and the macroscopic. In its continuous limit, this approach is compliant to the
Hall-Vinen-Bekharevich-Khalatnikov (HVBK) model of He-II discussed in Sec. II B.

A. The geometrical setting

The left diagram in Fig. 1 shows the typical setup of a counterflow experiment as used, for
instance, in Ref. [21]. In this experimental apparatus, the cooling is achieved by evaporation at the
liquid-vapor interface, whereas the counterflow is activated by Joule heating in a thermally insulated
bulb at the bottom end of the (insulated) pipe. For the sake of visibility, the diameter of the pipe
has been exaggerated. It is actually much smaller than the dimensions of the He-II bath and of the
heating bulb, so that the velocities reached inside the pipe are much larger than outside. A more
symmetric arrangement is sometimes used by integrating a cooling bulb at the top end, as illustrated
by the middle diagram in Fig. 1; e.g., see Ref. [34].

In our simulations, a simplified two-dimensional geometry for a closed pipe has been chosen (see
Fig. 1). The heating and cooling processes are confined to two symmetric zones, which allows us to
compare directly the entrance effects at opposite ends. The use of a spatially distributed heater and
cooler mimics (to some degree) the real boundary conditions and favors the numerical stability of
the simulations, as already argued in Ref. [51]. Finally, the rectangular geometry of the boundary is
here idealized and does not exhibit any discontinuity or irregularity. These conditions are therefore
much more favorable to the stability of the flow as compared to many experiments. In classical
hydrodynamics, a two-dimensional approach captures the main phenomenology of entrance effects,
at least in the steady regime before turbulence occurs. Accordingly, our simulations have been
performed in two dimensions, which also reduces the computational cost and makes possible a
systematic study. In Subsec. V B, we discuss the relevance of this two-dimensional (2D) model for
the three-dimensional (3D) channels of various cross-sectional aspect ratios.
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B. The governing equations under a Boussinesq-like hypothesis

Our modeling relies on the Hall-Vinen-Bekharevich-Khalatnikov (HVBK) model, in which the
assembly of quantized superfluid vortices is accounted for at a coarse-grained level by a continuous
(nonzero) superfluid vorticity field [52]. This model is no longer justified when superfluid vortices
are very scarce, or when vortices result from intrinsic nucleation rather than from the stretching of
residual vortices attached to the sidewalls, or carried from the reservoirs. Such nucleation-limited
flow regime can appear in highly controlled environments [41,53,54], which are not relevant in
counterflow experiments. In particular, the HVBK model would not have been a priori justified
if our interest was the initiation of the T 1 transition in a quiescent flow. Here, the conditions are
different since our focus is on the persistence of pre-existing superfluid vortices entering the pipe
from the reservoir.

The HVBK model is advantageous in that it allows us to account self-consistently for the mutual
coupling between the superfluid and normal-fluid components. Therefore, it does not require any
empirical assumption on the flow. Let us mention that such requirement is more difficult to fulfill
[55] in vortex line (or vortex point) simulations of counterflows [18,56–62]. Finally, the HVBK
model has already served as a mathematical basis for a number of previous numerical counterflow
studies, e.g., see Refs. [5,36,46,51,63,64] and references therein.

The HVBK model may be viewed as a generalization of the two-fluid model introduced by
Landau and Tisza [7,65]. It encompasses a mutual friction force Fhvbk between the normal-fluid and
the superfluid components. The model also accounts for an energy per unit length associated with
the deformation of the vortex lines, which yields a vortex tension force acting on the superfluid
component. The tension force is essential when considering rotating flows (with fully polarized
quantized vortices) such as Taylor-Couette flows [66] but will be neglected in the present flow
configurations. The resulting equations of motion for the normal fluid and superfluid therefore read

ρn

[
∂vn

∂t
+ (vn · ∇)vn

]
= −∇pn + μn∇2vn + Fhvbk,

ρs

[
∂vs

∂t
+ (vs · ∇)vs

]
= −∇ps − Fhvbk,

where μn is the dynamic viscosity of the normal fluid. The volumic forces −∇pn and −∇ps

refer to generalized pressure (or chemical potential) gradients that encompass thermomechanical
effects for the two components of He-II, respectively. Specifically, ∇pn = (ρn/ρ)∇p + (ρs/ρ)S∇T

and ∇ps = (ρs/ρ)∇p − (ρs/ρ)S∇T with ρ = ρn + ρs , p = pn + ps , and S being the total mass
density, pressure, and entropy (per unit volume) of He-II. In principle, these dynamical equations
must be supplemented by continuity equations for mass

∂ρn

∂t
+ ∇ · (ρnvn) = ρnw

T S
, (1)

∂ρs

∂t
+ ∇ · (ρsvs) = −ρnw

T S
, (2)

where w denotes the algebraic heat power (per unit volume) supplied locally. In addition, continuity
equations for thermal energy (or entropy) and equations of state for both fluids relating ρn, ρs , p, and
T should be considered. In the following, we shall seek for a simplified formulation of counterflow
dynamics, which nevertheless preserves its essential physical features.

In most counterflows, temperature and pressure variations along the pipe remain negligible
compared to the temperature and pressure imposed by the helium bath. Besides, dissipation within the
pipe is significantly smaller than the heating and cooling power at both ends. As a result, the relative
variations of mass densities ρn and ρs along the pipe are also very small. Most often, the velocities vn

and vs remain substantially below the speeds of first and second sounds. Therefore, the kinetics may
be decoupled from the thermodynamics in the spirit of the Boussinesq’s approximation [67]. It may
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be assumed in addition that the algebraic heat supply entering in the mass-conservation equations
refers uniquely to the heating and cooling occurring in the reservoirs; i.e., the “self-heating” of He-II
due to viscous and mutual friction dissipation is obviously neglected. Moreover, it is considered that
these heat supply or removal act as sources and sinks of normal fluid and superfluid that naturally
set the two fluids into opposite motions. This approach allows us to remove consistently all explicit
temperature dependence while preserving the counterflow thermal driving.

To solve this modeled dynamics using the lattice Boltzmann method, the incompressibility
condition is approached in the weak-compressibility limit for both isothermal components of He-II.
This expresses formally for the normal fluid as

δpn(x,t) = c2
s δρn(x,t), (3)

where δρn(x,t) = ρn(x,t) − ρ0
n(T ) with ρ0

n(T ) being the mass density at rest at temperature T and
|δρn|/ρ0

n � 1, and similarly for the superfluid

δps(x,t) = c2
s δρs(x,t) (4)

with δρs(x,t) = ρs(x,t) − ρ0
s (T ) and |δρs |/ρ0

s � 1. The velocity cs appears here as an arbitrary
speed of sound that should be chosen much larger than the fluid velocities, i.e., |vn| and |vs | � cs . In
this low Mach limit, the relative variations of ρn and ρs are expected to be very small [∼O(Ma2)],
consistent with our assumption of weak compressibility. In each reservoir, the conversion of one
fluid into the other will produce opposite density fluctuations. The resulting pressure fluctuations
[given by Eqs. (3) and (4)] will propagate at high velocity cs across the channel and eventually result
in a macroscopic driving of the two fluids in opposite directions.

We shall see in the following that this simplified modeling indeed allows us to reproduce the
main dynamical features of thermally driven counterflows. Furthermore, the particulate nature of the
lattice Boltzmann method will be particularly adequate to model the local conversion rate between
the normal and superfluid particles.

C. The mutual friction

The modeling of the mutual friction in a counterflow is a delicate issue [22,66,68–70]. Here, the
standard HVBK formulation has been adopted without the vortex tension term. Namely,

Fhvbk = B

2

ρnρs

ρ
ω̂s × (ωs × vns) + B ′

2

ρnρs

ρ
(ωs × vns), (5)

where ωs ≡ ∇ × vs is the coarse-grained superfluid vorticity field with ω̂s ≡ ωs/|ωs|. The friction
velocity is defined by vns ≡ vn − vs; B and B ′ are temperature-dependent friction coefficients of
order 1. Let us mention that our interest in the primary instability of the flow, below the T 1 transition
but in the presence of residual superfluid vortices originating from the reservoirs, a priori excludes
the Gorter-Mellink force [5] that is expected to hold only above the T 1 transition with self-sustained
vorticity in the pipe. Even though the HVBK force has been originally derived to deal with rotating
cryostat experiment, its relevance for pipe flow has already been pointed out in Ref. [71].

Our main concern is to investigate entrance effects and, especially, the persistence of superfluid
vorticity entering from the cooled end of the pipe. This superfluid vorticity is expected to influence
the coupled dynamics of the counterflow through the HVBK force.

D. The numerical method

1. The lattice Boltzmann scheme

For the first time, the lattice Boltzmann (LB) method has been used to simulate a flow of superfluid
helium. The LB method offers a computationally efficient particle-based alternative to conventional
continuum-based approaches to simulate fluid dynamics [72]. The fluid is considered at a mesoscopic
level. More precisely, the fluid is viewed as populations of particles that collide, redistribute, and
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FIG. 4. Sketch of the D2Q9 lattice in a cell-centered representation. During one time step, particles move
exactly from a lattice node toward one of its nine neighbours (including the node itself) and collide. By nature,
the lattice spacing is related to the time step by �x/�t = √

3cs , where cs characterizes the speed of particles
on the lattice.

propagate along the different links of a discrete lattice. The complexity of the flow emerges from the
repeated application of simple rules of streaming and collision at each lattice node. The macroscopic
flow variables are recovered locally by averaging over the populations of particles moving with
the different velocities. This approach obviously refers to the kinetic theory of fluids and rigorous
connections can be established with the Boltzmann equation [73].

In the framework of the two-fluid model, the dynamics of He-II can be naturally accounted
for by two interacting sets of populations associated respectively with the normal and superfluid
components. The evolution of these populations is driven by a system of two coupled schemes
encompassing the mutual HVBK force. This latter is considered as an external force in the momentum
budget of each component. In order to circumvent the inappropriateness of the LB approach for
inviscid fluid, an arbitrary small kinematic viscosity has been assigned to the superfluid component. In
practice, a ratio νs/νn = 0.01 has been used in all simulations where νs = μs/ρs and νn = μn/ρn.
This ratio ensures that the resulting viscous force remains subdominant in the dynamics of the
superfluid component (as detailed later).

For simplicity, the LB scheme is now detailed for one component of the fluid only. It applies in the
same manner for the other component with the opposite coupling force. The so-called D2Q9 lattice
with nine different possible velocities has been adopted in two dimensions (see Fig. 4). An iteration
proceeds in two steps: streaming and collision. First, “streaming” carries the collided populations
fcoll
α to neighboring lattice nodes according to their own velocity cα:

fα(x + cα�t,t + �t) = f coll
α (x,t) (6)

with �t being the time step. Second, “collision” redistributes instantaneously the incoming particles
along the different directions of propagation:

f coll
α (x,t) = fα(x,t) − 1

τ

[
fα − feq

α (ρ,v,Fhvbk)
]
(x,t). (7)

In the collision, the so-called Bhatnagar-Gross-Krook (BGK) approximation [74] −(fα − feq
α )/τ is

used. This approximation simply expresses as a relaxation with parameter τ toward an equilibrium
function evaluated at the macroscopic level. The relaxation parameter τ is related to the viscosity
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by ν = (τ − 1/2)c2
s �t . The rationale behind this approximation is that most details hidden in the

collision operator play no role when going on the continuous limit. It is therefore replaced with
a much handier expression retaining only the basic features of fluid dynamics. In this respect, the
collision term also encompasses here an extra momentum exchange related to the mutual force Fhvbk

between the two components of He-II.
It is rather direct to establish through a Chapman-Enskog time-scale expansion [75] that the

equilibrium function in Eq. (7) should develop as

f eq
α (ρ,v,Fhvbk) = wα

[
A + Bicαi

c2
s

+ Cij

(
cαicαj − c2

s δij

)
2c4

s

]
by using Einstein summation convention, with

A = ρ,

Bi = ρvi + ν/c2
s F hvbki ,

Cij = ρvivj + 2ν/c2
s F hvbkivj ,

to be compliant to the HVBK equations in the continuous limit. The derivation of this equilibrium
function may be inspired from Ref. [76]. The weight factors are w0 = 4/9, w1...4 = 1/9, and w5...8 =
1/36 for the D2Q9 lattice. This LB scheme is isothermal and relies on the weak-compressibility
assumption δp = c2

s δρ, which directly echoes the previous physical modeling. The characteristic
velocity cs is identified as the speed of sound introduced before.

The macroscopic flow variables are obtained by integrating over the populations according to

ρ =
∑

α

fα, (8)

ρv =
∑

α

fαcα + �t

2
Fhvbk. (9)

This discrete scheme approximates the HVBK equations in the continuous limit with a third-order
error in Mach number Ma = |v|/cs . As already mentioned, cs has been fixed arbitrarily in our
simulations to keep the Mach number sufficiently small and alleviate this error [77]. In practice,
the maximum Mach number reached in our simulations is Mamax = 0.025 at the highest Reynolds
numbers. Finally, let us mention that the standard BGK collision term has been eventually replaced
by an equivalent central-moment collision operator, as detailed in Refs. [78,79], in order to enhance
the numerical stability of the scheme.

The density can be evaluated directly from the distributions according to Eq. (8). In contrast, the
additional term �t/2Fhvbk in Eq. (9) does not allow us to compute explicitly the velocity since Fhvbk

depends itself on the friction velocity vns = vn − vs and the superfluid vorticity ωs = ∇ × vs.
Instead, a nonlinear system must be solved to get vn, vs , and ωs :

ρnvn =
∑

α

f (n)
α cα + �t

2
Fhvbk(vns,ωs), (10)

ρsvs =
∑

α

f (s)
α cα − �t

2
Fhvbk(vns,ωs). (11)

An iterative predictor-corrector scheme has been designed for this purpose. The superfluid
vorticity is firstly predicted as ω�

s by a linear extrapolation of its values at the two previous time
steps. Therefore, the HVBK force is predicted as Fhvbk(vns,ω

�
s ). By including this expression in

Eqs. (10) and (11), one obtains a linear system in vn and vs that can be easily inverted. Then,
the superfluid vorticity is consistently corrected from second-order finite differences of the newly
computed superfluid velocity: ωs = ∇ × vs . This correction step is eventually repeated until a
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FIG. 5. The free-slip condition (superfluid) is accounted by a specular reflection of the particles hitting the
wall, whereas a bounce back is considered for the no-slip condition (normal fluid). The wall is located half way
between two lattice nodes.

convergence is obtained for the superfluid vorticity with a tolerance smaller than 10−4. As soon as
the velocities and the superfluid vorticity are known, the equilibrium distribution f

eq
α (ρ,v,Fhvbk) can

be evaluated for each component to fulfill the collision step. The application of the streaming step is
straightforward.

2. The boundary conditions

In the flow geometry described in Fig. 1, solid boundaries are straight walls. The no-slip condition
has been taken into account for the normal-fluid component by a standard half-way bounce-back
procedure, which strictly ensures the conservation of mass and preserves the second-order accuracy
of the LB scheme [72]. Consistently, a specular reflection of the particles hitting the wall has been
considered for the superfluid component. For the specular reflection, the momentum transferred to
the wall has only a component normal to the wall thus achieving a free slip (no tangential force).
The specular reflection and the bounce back are sketched in Fig. 5.

3. The forcing of the counterflow

A crucial aspect of our approach is related to the driving of the counterflow at opposite ends of
the channel. In this respect, the particulate nature of the LB approach appears to be adequate to treat
the exchange of particles between the normal and superfluid populations in these zones.

It is physically expected that a local supply of heat induces a transfer of particles from the
superfluid to the normal component. It is therefore natural to introduce an exchange coefficient 0 �
γheat < 1 to quantify the proportion of the superfluid particles being transferred to the normal-fluid
component during one time step in one lattice cell. By convention, there is no heating for γheat = 0.
In the framework of the LB approach, the “heated populations” f̃ (n)

α and f̃ (s)
α are therefore updated

according to

f̃ (s)
α = (1 − γheat)f

(s)
α , (12)

f̃ (n)
α = f (n)

α + γheatf
(s)
α , (13)

at every time step and lattice node in the heating zone. To improve the stability and avoid strong
compressibility disturbances, the heating has been considered only for the particles moving in the
streamwise direction of the superfluid flow, i.e., α = 3. Similarly, the transfer of mass operates from
the normal to the superfluid component with an exchange coefficient γcool in the cooling zone. The
“cooled populations” f̃ (n)

α and f̃ (s)
α are thus updated according to

f̃ (n)
α = (1 − γcool)f

(n)
α , (14)

f̃ (s)
α = f (s)

α + γcoolf
(n)
α , (15)
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TABLE I. Dimension of the geometry sketched in Fig. 1 (in lattice units). At the highest Reynolds number,
L was increased up to 3000 to prevent merging of the entrance lengths (see Fig. 11).

L 2h L/2h lH lC

1800 60 30 200 200
3000 60 50 200 200

with α = 1 corresponding to the streamwise direction of the normal-fluid flow. Here, γcool is not
free but is determined by the requirement to conserve the respective masses of normal fluid and
superfluid inside the pipe. This constraint is imposed by the assumption of constant temperature of
the system. Therefore, the exchange coefficient γcool(t) is determined dynamically as

γcool(t) = γheat

∑
x∈H f

(s)
3 (x,t)∑

x∈C f
(n)
1 (x,t)

, (16)

which ensures that the mass of superfluid lost in the heating zone (H) is exactly recovered in the
cooling zone (C), and vice versa for the normal fluid.

It is important to mention that the heating and cooling processes are here idealized and designed
to mimic the dynamical features of a thermal counterflow; it is not meant to reproduce the real
physical processes. The modeling ensures the conservation of the overall mass of each component
and a balance of mass fluxes consistent with the requirement that there is no net mass flux (in mean)
in a pipe counterflow:

ρnVn + ρsVs = 0, (17)

where Vn and Vs denote the normal-fluid and superfluid velocities averaged over a cross section and
time (or more precisely the averaged mass flux of each fluid normalized by its average density).

4. Numerical settings

From now on, numerical results are given in lattice units, i.e., based on the reference length
scale �x (spacing of the lattice) and time scale �t , with �x/�t = √

3cs being imposed by the
lattice dynamics (see Fig. 4). The geometry of the flow is sketched in Fig. 1. In our simulations, the
aspect ratio of the duct is L/2h = 30 and L/2h = 50. The width 2h = 60 has been kept constant.
The extension of the heating and cooling zones is lH = lC = 200. This setting is summarized for
convenience in Table I. Counterflows are investigated at various temperatures ranging from 1.3 to
1.96K (see Table II). For each temperature, the related physical constants have been set according
to the reference values reported in Ref. [80]. In practice, the relaxation parameters have been kept
constant with τn = 0.5025 and τs = 0.500025 for the normal fluid and the superfluid respectively,
ensuring the stability of the scheme.

In counterflow experiments, the supplied heat flux W (per unit area) is considered as the relevant
control parameter of the flow. It determines the flow rate of the normal fluid inside the pipe according
to Vn = W/ST , where S is the entropy per unit volume and, therefore, the Reynolds number based

TABLE II. Physical parameters of He-II at equilibrium for the investigated temperatures.

T (K) B B ′ ρ (kg/m3) ρn/ρ ρs/ρn μn (10−6 Pa s)

1.3 1.526 0.616 145.12 0.045 21.22 1.528
1.5 1.296 0.317 145.16 0.111 8.009 1.346
1.7 1.100 0.107 145.27 0.229 3.37 1.290
1.96 0.981 0.045 145.55 0.495 1.02 1.409
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FIG. 6. Mean mass fluxes across a section in the center of the pipe for various values of the exchange
coefficient at T = 1.5 K. The net mass flux is null for all values of the exchange coefficient, which is the
signature of a counterflow.

on the normal-fluid flow

Ren = ρnVn2h

μn

. (18)

The (averaged) mass fluxes at T = 1.5 K are displayed for various values of the exchange
coefficient in Fig. 6. An obvious linear dependence is found for the normal-fluid component

Vn ∝ γheat. (19)

This law can be seen as the analogous to Vn ∝ W at a given temperature. Moreover, Vs also exhibits
a linear dependence on the exchange coefficient so that the net mass flux ρnVn + ρsVs vanishes.
Figure 7 generalizes to different temperatures the heat flux analogy, showing that the opposite mass
fluxes and the Reynolds numbers are controlled by the lattice parameter γheat in a given geometry.

Formally, the mass conservation of normal fluid in the heating reservoir (H) allows us to write in
physical units that (

γheat

∑
x∈H

f
(s)
3 (x)

)
�x2/�t = ρnVn2h. (20)

where ρnVn is the mean normal-fluid mass flux in the channel. Since heat (entropy) is carried by the
normal fluid, W = ST Vn and

γheat = ρnW

ST
2h

1∑
x∈H f

(s)
3 (x)

�t/�x2. (21)

This formal equation is exact and stems simply from mass conservation. In order to further
highlight the correspondence between the exchange coefficient γheat and physical quantities, an
assumption on

∑
x∈H f

(s)
3 (x) is required. Therefore, we assume that the superfluid is nearly at

statistical equilibrium in the heating reservoir and that compressibility corrections are negligible.
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FIG. 7. The Reynolds number based on the normal-fluid flow, Ren = ρnVn2h/μn, as a function of the
exchange coefficient at investigated temperatures.

This leads to
∑

x∈H f
(s)
3 (x) 
 (ρs/9)lH2h/�x2 and, eventually, to

γheatcs 
 ρn

ρs

W

ST

3
√

3

lH/�x
with

W

ST
≡ Vn (22)

by considering �x/�t = √
3cs . Equation (22) establishes a formal link between the exchange

parameter γheat entering in the lattice Boltzmann dynamics and the heating flux W in real-world
thermal counterflows. Its validity is now examined.

The zero-net-mass-flux condition ρnV n + ρsV s = 0 allows us to rewrite Eq. (22) as

γheatcs 
 |Vs | 3
√

3

lH/�x
. (23)

Figure 8 shows that this equation is well satisfied for all temperatures. Furthermore, by identifying
|Vs |/cs with the superfluid Mach number, Mas, one obtains that the present modeling is expected to
hold provided that

γheat � 3
√

3

lH/�x
(24)

in order to fulfill the weakly compressibility condition (Mas � 1). In our simulations lH = 200�x,
which yields 3

√
3/(lH/�x) ≈ 0.026. According to Fig. 8, the exchange coefficient γheat < 6 10−4

since cs = 1/
√

3 in lattice units. The condition Eq. (24) is therefore reasonably well satisfied in our
simulations.

5. A simplified test case

At first, our code has been validated on a simplified case allowing us to check the accuracy of the
numerical solution with respect to an analytical prediction. The impact of the artificial superfluid
viscosity on velocity profiles has also been examined.
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FIG. 8. The superfluid velocity within the duct is related to the lattice exchange coefficient according to
|Vs |3

√
3/(lH/�x) 
 γheatcs .

Specifically for this test case, the mutual friction force is simplified as

Fhvbk = −B

2

ρnρs

ρ
�svns (25)

where �s = 10−4 (normalized by the inverse of the time step �t) is here considered constant.
Physical constants are taken at T = 1.50 K. The Reynolds number of the simulated flow is Ren = 65.
The flow is laminar for both components. The two developed velocity profiles (in the center of the
duct) exhibit the same parabolic form with an offset. This is now detailed.

From the dynamical equations and by accounting for the artificial superfluid viscosity, the pressure
gradient is constant in the duct with

∇p = μeff∇2vn, (26)

where the effective dynamical viscosity is given by

μeff = μn

(
1 + ρs

ρn

νs

νn

)
. (27)

The normal fluid therefore follows a parabolic velocity profile given by

vn(y) = h2∇p

2μeff

[
1 −

(
y − h

h

)2
]
, (28)

whereas the superfluid-velocity profile satisfies

vs(y) = vn(y) − 1

�s

ρ

ρnρsB/2

(
∇ps − μs

μeff
∇p

)
. (29)

The numerical results obtained for νs/νn = 0.01 are compared directly with the analytical
predictions Eqs. (28) and (29) in Fig. 9. Let us note that the pressure gradients in these equations
have been evaluated from the numerical solution. The overall agreement is excellent. Nevertheless,
one may point out a small discrepancy at the first off-wall points for the superfluid component.
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FIG. 9. Normal-fluid (red circles), superfluid (blue squares), and relative (blacks diamonds) velocity profiles
in the center of the duct obtained from lattice Boltzmann simulation with the simplified mutual friction Eq. (25)
at 1.5 K. Comparisons are carried out with the analytical solutions (solid lines) given by Eqs. (28) and (29).

This slight deviation results from the physical mismatch between the slip condition, which prevents
any transfer of tangential momentum to the wall and the presence of a small but nonzero viscous
shear stress νs(dvs/dy) at the wall. This effect is obviously an artifact arising from the finiteness
of the superfluid viscosity. The influence of the artificial superfluid viscosity is further examined
by considering the same test case with νs/νn = 0.002 (see Fig. 10). The effect of the superfluid
viscosity on the first off-wall points is reduced as expected from the above-mentioned analysis,
but no notable difference is found for all other points. This indicates that the superfluid viscosity
with νs/νn = 0.01 has already very little influence on velocity profiles. In the next counterflow
simulations, we will assume confidently that the superfluid viscosity has no notable effect on the
observed velocity profiles.

III. NORMAL-FLUID AND SUPERFLUID ENTRANCE LENGTHS

In classical hydrodynamics, the entrance length is usually defined as the distance Lv (or Lτ ) along
which the centerline velocity (respectively, the shear stress at the wall) reaches 99 % (resp., 98 %)
of its asymptotic value in the fully developed regime, assuming a flat entry profile. The wall shear
stress is highest at the pipe entrance and relaxes to a constant value in the fully developed region.
The viscous shear stress at the wall then exactly balances the pressure gradient.

In the case of laminar flows, the entrance length normalized by the hydraulic diameter of the duct
is found proportional to the Reynolds number of the flow ReD = V D/ν with

Lv

D

(
resp.

Lτ

D

)

 0.05ReD. (30)

The previous definitions of entrance length are not suitable for counterflows due to the existence of
two intricate fluids with different phenomenologies (not mentioning the experimental measurement
difficulties in probing the centerline velocity or the shear stress at the wall). We shall rather propose
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FIG. 10. Comparisons between numerical solutions obtained for νs/νn = 0.01 and νs/νn = 0.002 at 1.5 K,
with a simplified mutual friction. There is no notable difference between the profiles except for the first off-wall
point for the superfluid.

a definition of the entrance length related to the excess of pressure drop caused by the resistive forces
(viscosity and mutual friction) at each end of the pipe. Still, for the sake of a comparison with the
classical case, the standard definitions will first be used with the normal component of He-II.

A. Normal-fluid entrance length at the hot end

The entrance length Lv based on the normal-fluid velocity has been estimated at the heating end
of the pipe for our simulations at T = 1.5 K. The Reynolds number of the flow (Ren) varies from
32 to 1035. The flow is laminar at the entrance and in the fully developed region. The dependence
of Lv on Ren is displayed in Fig. 11. The empirical law (30) valid for a flat velocity profile at the
entry is also shown for comparison.

For low and moderate Reynolds numbers, Lv grows linearly with Ren and agrees reasonably well
with the empirical law. In our flow configuration, the normal-fluid velocity profile is not flat at the
entry, as made evident in Fig. 12, which can explain why our estimations of Lv are about 25% lower
than standard values. A discrepancy from the linear growth also appears when Lv reaches about 20D.
In that case, our explanation is that the pipe is not long enough and that entrance effects originating
from both ends eventually contaminate the whole pipe: There is no fully developed region, strictly
speaking, but only a region where the two entrance regions merge. To corroborate this statement, a
simulation in a longer tube with L = 3000 and aspect ratio 50 (instead of 30) has been performed.
The Reynolds number Ren = 770 and the value of Lv is indicated by a filled symbol in Fig. 11. We
observe that the linear law is clearly recovered in that case.

In the fully developed region, the normal fluid follows a parabolic profile whereas the superfluid
velocity is constant. In that case, it can be established from the dynamical equations that the pressure
gradient must relate to the normal-fluid velocity (averaged over a section) according to

p′
∞ ≡

∣∣∣∣dp∞(x)

dx

∣∣∣∣ = 3μnVn

h2
. (31)
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FIG. 11. Dimensionless entrance length of the normal fluid (at the hot end) at T = 1.5 K. Two different
estimations are used: Lv relies on the centerline velocity, whereas LH is based on the excess of pressure drop.
Filled symbols indicate results obtained with a longer pipe of aspect ratio 50 (instead of 30) to avoid the merging
of both entry effects.

This equation may be considered as a test of consistency for the achievement of a fully developed
regime in the central region of the pipe. Its completion (within a relative error smaller than 10%)
has been checked systematically for all simulations at various temperatures and Reynolds numbers.
For the simulations at T = 1.5 K in a pipe of aspect ratio 30, Table III indicates that the fully
developed regime was indeed not reached at the highest Reynolds numbers. These simulations have
been ignored.

The agreement with the classical case may be understood simply. Below the T 1 transition, the
superfluid that exits the pipe at the hot end does not carry a significant amount of vorticity. The
superfluid velocity profile is flat in the entrance region of the normal fluid, as shown in Fig. 12.
Therefore, the mutual coupling with the normal fluid is absent. Thus, the dynamics of the normal
fluid follows Navier-Stokes equations and entrance effects are of classical nature.

We now introduce our alternative definition of the entrance length, inspired from the experimental
method used to detect the transitions T 1 and T 2 from differential measurements across the reservoirs.
This definition is based on the excess of pressure loss resulting from the action of the viscous and
mutual friction forces in entry regions. The evolution of the averaged pressure p(x) along the pipe
is sketched in Fig. 13. In the fully developed region (central region of the pipe) the normal fluid
follows a Poiseuille profile characterized by a linear pressure drop with x referred to as p∞(x) in
Fig. 13. As a result of entrance effects, the pressure does not match the Poiseuille pressure p∞(x) at
x = 0 and x = L but there is an excess of pressure drop at each end. The entrance lengths LH and
LC correspond to the equivalent length of pipe in the fully developed region, which would achieve
the same excess of pressure drop. This is put in picture quite simply in Fig. 13.

By construction, p∞(−LH) = p(0) and p∞(L + LC) = p(L), which can be expressed equiva-
lently as

LH = p(0) − p∞(0)

p′∞
= 1

p′∞

∫ xmid

0
[p′(x) − p′

∞]dx (32)
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FIG. 12. Velocity profiles at the hot entry (x = 0) and in the fully developed regime (x = L/2). The
superfluid profile does not evolve in the normal-fluid entrance region and remains flat.

and

LC = p∞(L) − p(L)

p′∞
= 1

p′∞

∫ L

xmid

[p′
∞ − p′(x)]dx, (33)

where Vn is the mean normal-fluid velocity and xmid is an arbitrary abscissa in the fully developed
region. Let us recall that p′

∞ is the pressure gradient in the fully developed regime (in the center
region of the pipe).

The pressure-drop-based entrance lengths LH estimated for the simulations at T = 1.5 K are
shown in Fig. 11. We found that LH is typically two times shorter than the entrance length defined
from the centerline velocity or the wall shear stress but behaves similarly as a function of the
Reynolds number:

2LH 
 Lv ∝ Ren. (34)

B. Normal-fluid versus superfluid entrance lengths

The entrance lengths LC and LH have been estimated in simulations with temperature 1.3 K �
T � 1.96 K corresponding to density ratio 21.2 � ρs/ρn � 1.02 (see Table II). The Reynolds
numbers of the simulated flows Ren � 800. After a transient stage, a stationary regime (in the
statistical sense) establishes in the pipe. The entrance lengths have been estimated from the pressure

TABLE III. Consistency check of the fully developed regime for the simulations at T = 1.5 K in a pipe of
aspect ratio L/2h = 30.

Ren 32 65 129 259 518 777 1035
3μnVn

h2
/p′

∞ 1.00 1.00 1.00 1.00 1.05 1.16 1.28
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FIG. 13. Sketch of the definition of entrance lengths for the normal fluid, LH, and the superfluid, LC.
The continuous black curve represents the pressure drop along the pipe (except the reservoirs) obtained
from simulations: p(x) for 0 � x � L. The green dashed line represents the (linear) Poiseuille solution p∞(x)
associated with the pressure gradient measured in the fully developed region. The extrapolation of the Poiseuille
solution until p(0) and p(L) allows us to define LH and LC as p∞(−LH) = p(0) and p∞(L + LC) = p(L),
respectively.

field averaged in time according to Eqs. (32) and (33). One shall see later that the flow may experience
local unsteadiness near the cold end at high Reynolds numbers.

The robustness of the results have been checked systematically. In addition to usual test of
convergence and resolution, the fulfillment of Eq. (31) with a tolerance smaller than 10% has been
checked to make sure that the simulated pipe was long enough for the establishment of a fully
developed region in the central region. This is mandatory to ensure that entrance lengths at the hot
and cold ends are independent. We have also verified that the artificial superfluid viscosity with
νs/νn = 0.01 had no significant impact on entry effects.

Figure 14 shows the ratio LC/LH as a function of the Reynolds number for various temperatures.
The superfluid entrance length rapidly exceeds the normal-fluid entrance length as Ren increases. We
shall see later that the superfluid entrance length is related to the presence of a superfluid boundary
layer. This boundary layer becomes unsteady as the Reynolds number increases, what is indicated
by the filled symbols in Fig. 14. The ratio LC/LH rapidly increases at small Reynolds number but
seems to saturate when the superfluid boundary layers becomes unstable. The value of the plateau
increases as the temperature decreases, or equivalently as the relative superfluid density increases. In
this asymptotic regime, the superfluid entrance length exceeds by typically one decade the classical
entrance length (observed for the normal fluid at the opposite end). This is a key result of this paper.
We shall focus in the next section on the nature of the flow near the cooling reservoir to understand
the development of superfluid boundary layers.

It is important to recall here that our entrance lengths are related to the excess of pressure drop
due to entry effects. Namely, they are defined as the length of a developed Poiseuille flow (with the
same flow rate) that would experience exactly this excess of pressure drop. Equivalently, suppose
that one measures the pressure drop between both ends of a duct and evaluates the length of the pipe
according to the Poiseuille solution, therefore disregarding entry effects. Our entrance length then
corresponds to the overestimation of the pipe length that is made by ignoring entry effects. In that
sense, one may consider that our “entrance length” corresponds to a virtual effective extension of
the pipe, as sketched in Fig. 13. Unlike previous definitions, our entrance lengths do not correspond
to lengths measured on profiles inside the pipe. In principle, very intense pressure drop near the
cooling reservoir can lead to an entrance length exceeding the length of the pipe. However, since
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FIG. 14. The ratio of entrance lengths for the superfluid (LC) and normal fluid (LH) as the function of the
Reynolds number Ren of the flow. The open symbols indicate that the superfluid boundary layer in the cold
entrance region is laminar, whereas filled symbols indicate unsteadiness of the superfluid boundary layer.

this effect is very localized in real space near the cool entrance, it does not exclude the achievement
of a fully developed regime in the central region of the pipe.

IV. VELOCITY PROFILES NEAR THE COOLING RESERVOIR

In this section, simulations at different Reynolds numbers and temperatures are used to illustrate
the nature of the flow near the cooling reservoir. Entrance lengths are quantitatively different when
the temperature is changed. However, the nature of the flow as a function of the Reynolds number
remains qualitatively the same for all temperatures, indicating that the same underlying mechanisms
operate. This is now detailed.

At low Reynolds number, the whole counterflow is steady. As a representative configuration, the
flow at T = 1.5 K (ρs/ρn 
 8) and Reynolds number Ren = 65 is considered. The streamlines of
both components of He-II near the cooling reservoir are displayed in Fig. 15. As the normal fluid
flows into the reservoir, its transformation into superfluid is responsible for the development of two

FIG. 15. Streamlines of the normal-fluid (top) and superfluid (bottom) velocities near the cooling reservoir
at T = 1.5 K and Ren = 65. The flow is steady. The superfluid vorticity is represented in the background with
an arbitrary color map from blue (negative values) to red (positive values).
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FIG. 16. Velocity profiles of both components of He-II at the entrance of the cooling reservoir (x = L) and
in the fully developed region (x = xmid) in which superfluid boundary layers have vanished.

large recirculation eddies of superfluid. The resulting current eventually re-enters into the pipe along
the side walls. This results in some production of superfluid vorticity along the walls, which is then
rapidly damped inside the pipe.

The concentration of vorticity near the walls may be viewed as superfluid boundary layers and
interpreted as a signature of superfluid entrance effects. It is observed in Fig. 16 that the fully
developed regime is recovered with a Poiseuille profile for the normal fluid and a flat profile for
the superfluid as soon as the superfluid boundary layers have vanished. On the contrary, the normal
fluid exhibits a tail-flattened profile in the vicinity of the cooling reservoir and the superfluid shows
raising tails. In Fig. 17, one observes that superfluid entrance effects are also associated with a
significant increase of the pressure drop compared to the Poiseuille pressure drop (in the fully
developed regime). This effect extends over about 1.5 × 2h at Ren = 65 in qualitative agreement
with the length of the superfluid boundary layers in Fig. 15.

To evidence the role of the mutual friction in superfluid entrance effects, the same configuration
has been run again without mutual coupling (B = B ′ = 0). In that situation, the superfluid boundary
layers spreads over the whole pipe and eventually become unstable when reaching the opposite end
(see Fig. 18). This comparison clearly evidences the essential role played by mutual friction in the
phenomenology of superfluid entry effect, in the same way as viscosity in the entry effect of classical
laminar flows.

At higher Reynolds number, superfluid boundary layers undergo instabilities. The counterflow at
T = 1.3 K (ρs/ρn 
 21) and Ren = 138 is chosen as a representative situation in Fig. 19. In Fig. 20,
the velocity profiles near the cooling reservoir exhibit the same features as before, in particular the
flat-tailed profile for the normal fluid velocity, but amplified. The pressure loss near the cooling zone
is also greatly enhanced (see Fig. 17). This is fully consistent with the significant increase of the
superfluid entrance length previously reported in Fig. 14.
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FIG. 17. Evolution of the normalized mean pressure gradient along the centerline of the pipe. A significant
pressure drop is experienced by the flow near the cooling zone. The extension and the amplitude of the pressure
drop increase with the Reynolds number.

V. IMPLICATION ON OUR UNDERSTANDING OF THE TRANSITIONS T1 AND T2

A. A correlation for the superfluid entrance length

We now come back to the apparent contradiction between experiments presented in the first
section of this paper. It is clear from Fig. 3 that all experiments performed using pipes of aspect
ratio larger than 550 report consistent thresholds for the T 1 transition, whereas experiments with
aspect ratio smaller than 140 exhibit widely scattered thresholds. In this section, we shall see that
this qualitative finding is supported by our simulations on quantitative grounds.

To confront entrance-length effects with the diversified experimental conditions, an analytical
model is required to account for the temperature and Reynolds number dependencies of LC. One
possibility would be to model the physics of the superfluid entry effect, and validate this physical
model with the present set of simulations. Unfortunately, this approach turns out to be delicate and
beyond the scope of the present study, due to the entanglement of the various contributions to LC.
We rather adopt an empirical approach now detailed.

The experimental data of Fig. 2 and 3 have been obtained for Res < 45, which corresponds here
to Ren < 400. Thus, the high-Reynolds-number saturation reported in Fig. 14 is hardly reached
in these experimental data sets. Therefore, we will focus on the behavior preceding this apparent
saturation, where LC/LH is Reynolds number dependent. The normal fluid entrance length LH was
found inversely proportional to the viscosity coefficient μn, which controls the entry effect at the hot
end. At the cold end, mutual friction was found to play a central role in damping the entry effect, so
one can expect LC to be inversely proportional to the mutual friction coefficient B (the other mutual

FIG. 18. When the mutual friction is turned off, superfluid boundary layers extend along the whole pipe.
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FIG. 19. Streamlines of the normal-fluid (top) and superfluid (bottom) velocities near the cooling reservoir
at T = 1.3 K and Ren = 136. The superfluid vorticity is represented in the background with an arbitrary
colormap from blue (negative values) to red (positive values).

friction term is proportional to B ′ and smaller in magnitude). Thus, to compensate the ratio LC/LH

for the temperature dependence of μn and B, the alternative ratio

� = LC

LH

Bρκ

μn

(35)

appears to be more relevant. In order to keep the ratio dimensionless, we also took advantage of the
limited temperature dependence of ρκ to use this quantity as a prefactor. The dimensionless ratio �

obtained in the simulations are plotted versus s in Fig. 21 by rescaling both abscissa and ordinate by
some arbitrary power of ρs/ρ chosen to obtain the best collapse over a wide region. The collapse

FIG. 20. Time-averaged velocity profiles of both components of He-II at the entrance of the cooling zone
(x = L) and in the fully developed region (x = xmid) for the same flow as in Fig. 19.
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FIG. 21. Rescaled version of Fig. 14. The dashed line is a fit used to discuss the T 1 transition.

suggests the following empirical fit

LC

LH

Bρκ

μ

ρ

ρs


 G

(
Res

(
ρs

ρ

)2
)

, (36)

where G(.) is a monotonic function. Using the crude linear approximation G(x) = 6x for 0 < x < 30
(see the dashed line in Fig. 21), the empirical law for LC/LH becomes

LC

LH

 6μ

ρκB

(
ρs

ρ

)3

Res . (37)

Equations (36) and (37) should just be considered as convenient fits within 1.3 K � T � 1.96 K
without physical significance. For example, there is no reason for the ρs/ρ dependence to be the
same at low Res , where the superfluid boundary layer is stable, and at large Res , where it is unstable.
Together with Eqs. (34) and (30), we are now able to estimate LC over a broad range of experimental
conditions as

LC 
 6μ

Bρκ

(
ρs

ρ

)3

Res × 1

2
0.05Rend, (38)

which eventually yields

LC 
 d

7B

(
ρs

ρ

)4

Re2
s . (39)

B. On the T3 transition

In channels with a high-aspect-ratio rectangular cross section, it has been argued that the T 1
and T 2 transitions are replaced by a unique transition, called T 3 [2]. Experimental evidences for a
unique transition in such geometry are few, and most of them were provided by the group of Tough,
who reports that the “critical region is found to be poorly defined” [32]. Today, this T 3 transition is
not better understood than T 1 and T 2. Still, it is interesting to discuss if our two-dimensional (2D)
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simulations would be more representative of these high-aspect-ratio rectangular channels than of
circular or squared channels, as assumed so far.

In a 2D channel, the flow is sensitive to only one transverse length scale (the channel height 2h,
with our notation) and instabilities may be indexed by a Reynolds number proportional to this length
scale. Physically, such a 2D geometry corresponds to the limit of a 3D channel between two infinitely
close free-slip walls. In a 3D channel of rectangular cross section 2h × w with w  2h, the first flow
instability is expected to develop along the longest dimension, that is when the Reynolds number
based on the length scale w reaches some threshold. However, this threshold inevitably depends
on the other length scale (2h) because the flow feels the confinement along this other direction.
Thus, both length scales 2h and w remain relevant in the determination of the first instability, which
differs from the 2D situation mentioned previously. On the contrary, flows in channels with circular
(resp., squared) cross section are characterized by a single characteristic transverse length scale: the
channel diameter (resp., square side). In this respect, the 2D model is more relevant to these type of
flows than to 3D channel with high-aspect-ratio cross section.

C. On the T1 transition

To determine experimentally the threshold of the T 1 transition without entry effect contamination,
the pipe length L should be much longer than the sum of the entrance lengths, i.e.,

L  LH + LC 
 LC. (40)

Using Eq. (39), we can evaluate the required aspect ratio L/d such that LC/L = 10% and
LC/L = 1% at 1.2 K (B = 1.55 and ρs/ρ = 97%), 1.35 K (B = 1.35 and ρs/ρ = 94%), and
1.7 K (B = 1.1 and ρs/ρ = 76%). The results are plotted in Fig. 3 with continuous and dashed
lines respectively for the 10% and 1% criteria. These lines allow a quantitative interpretation of
the separation between the two groups of experiments. All the consistent determination of the
T 1 threshold are obtained for experiments with an estimated entrance length smaller than typically
∼1% of the pipe length. For all the other experiments, with inconsistent T 1 thresholds, the estimated
entrance lengths extend over more than ∼10% of the pipe or channel. Surely, these 1% and 10%
criteria should be considered as indicative. They would have been different if we had used a different
definition of the entrance lengths. Nevertheless, the results of the present numerical study support
quantitatively our explanation for the contradictory thresholds reported for the T 1 transitions since
the 1960s.

D. On the T2 transition

The T 2 transition is sometimes detected experimentally from the increase of pressure drop
resulting from the transition to turbulence of the normal fluid. It is interesting to observe how the
entry effect could mimic a T 2 transition. Indeed, below the T 1 transition, the pressure drop �p
along the pipe is by definition of LC and LH:

�p = p′
∞(L + LC + LH), (41)

where the pressure gradient p′
∞ was defined by Eq. (31). For Ren > 200, a rough estimate of the

entry lengths ratio is LC/LH 
 10 (see Fig. 14). As long as the normal fluid remains laminar, the
entrance length LH can be estimated by using Eqs. (34) and (30). For a given temperature, simple
algebra based on these estimates leads to the proportionality

�p ∼ Ren

[
1 + d

L

Ren

4

]
. (42)

The quadratic term Ren
2, which is associated to the entry effects, becomes larger than the linear

term for Ren > 4L/d. This could erroneously be interpreted as the pressure-drop increase associated
with the T 2 transition. For example, in a pipe of aspect ratio of L/d = 400, this pressure increase
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FIG. 22. Red curve: False signature of the T 2 transition caused by entrance effects in a pipe of aspect ratio
400. The normal fluid flow is assumed laminar in its entry and developed regions. The dashed blue line is an
eye guide.

becomes noticeable around Ren = 1000, as illustrated in Fig. 22, that is, at a Reynolds number
typical of the laminar to turbulent transition in a pipe.

Therefore, entry effects can mimic the signature of the T 2 transition, or conversely, some pressure
increases may have been misinterpreted as T 2 transitions even with pipes of large (but not sufficiently
large) aspect ratio. Our study shows that using pipe and channel of very large aspect ratio can also
be important when studying the T 2 transition. In this perspective, another analysis of literature
experimental data published on the T 2 transition could help to understand the controversy on this
second transition as well.

VI. CONCLUSION AND PERSPECTIVES

We have introduced a quantitative definition of the entrance length based on an measurable
quantity: the pressure drop along the pipe (or channel). This definition can be applied in a similar
fashion to both entries of a counterflow, and it does not rely on some arbitrary convergence threshold,
unlike classical definitions. Based on this definition and from simulations below the T 1 transition,
it is found that the entrance length on the superfluid entry side can be more than one decade longer
than on the normal entry side. Surely, if we had used other definitions for the entrance lengths LC

and LH and ratio LC/LH would have been different. Different models of reservoir (in particular with
geometrical discontinuities and with surface rather than volume heating and cooling) could also
lead to different values, with possibly much larger LC. Still, the physical processes that have been
identified are expected to be independent of these choices, because the strong superfluid entrance
effects originate from two simple features of counterflow, (1) the absence of superfluid viscosity
and (2) the long persistence of superfluid vorticity continuously fueled into the pipe by the cold
reservoir, which distort both the normal and superfluid flows in the cooling-side entrance zone.

We address the issue of the experimental conditions to determine the threshold of the T 1 transition
and demonstrate the importance of the pipe aspect ratio. A comparative study of results published
over the past few decades, combined with a simple model of the entrance effect backed up by
simulations, shows that the pipe length should exceed several hundreds times its diameter to resolve
the T 1 transition while remaining free of artifacts from end effects. When this aspect ratio criterion
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is verified, the published data for the T 1 transition threshold become consistent again, which is not
the case for the data obtained at the lowest aspect ratio. This interpretation provides a solution to a
50-year-old open problem on one of the most simple hydrodynamics transitions of superfluids. We
hope the present work will help to sort among existing experimental data sets when testing models of
the T 1 transition. The origin of the T 1 instability itself was not addressed in this work and remains
an open question. This question may not be addressable with the HVBK model, which supposes the
pre-existence of background vortices.

We showed that the entrance length effect can also mimic a T 2 transition, even in pipes of aspect
ratio of a few hundreds. This observation may contribute to the difficult and controversial topic of
the T 2 transition by allowing to discard some suspicious experimental data sets as well.

Thanks to the recent progresses in flow visualization techniques, new counterflow experiments in
cm-sized channel have been developed in recent years ([81,82]) to explore the velocity profiles and
ultimately to understand the nature of flow transitions. The present work shows that special attention
is deserved when designing the reservoir and its connection with the counterflow channel (not to
mention the channel aspect ratio issue), at least for studies below the T 1 transition. For instance,
the amount of vorticity entering in the channel should be reduced by proper flow conditioning
and spatially distributed reservoir cooling. An excessive entry of quantum vortices will indeed
generate far-reaching distortions of the superfluid and normal velocity fields (e.g., with production
of flat-tailed normal fluid velocity profiles and raised-tail profile for the superfluid) and differ in the
settling of the steady state in the channel.

In classical hydrodynamics, the understanding of the laminar to turbulent transition in pipes
has been a subject of research for more than a century [83] and the importance of proper flow
conditioning appeared quite early. In superfluid helium, the situation is expected to be even more
complicated due to the presence of two fluids and ill-understood boundary layer interactions. As
stated by Schwarz in 1992, “the critical velocities represent a much more complicated problem than
the fully developed vortex tangle, and that they require consideration of a variety of detailed factors.
We are certainly a long way from a full understanding (p. 3344)” [39]. In this study, we found that
classical hydrodynamics design rules are not sufficient as far as pipe aspect ratio and penetration
depth of small-scale vorticity is concerned. The memory effect associated with remanent superfluid
vortices is another example of a limitation of classical design rule. To fully understand the T 1 and
T 2 transitions, the prior development of an engineering of flow conditioning of quantum fluids will
be probably needed.

We hope that this work has also paved the way for use of the lattice Boltzmann method for
finite-temperature simulation of superfluid flows. In particular, this numerical method allows us to
take into account complex geometry of boundary layer, which opens the way for the study of wakes,
friction, and lift forces in He-II.
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