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The intermittency of turbulent superfluid helium is explored systematically in a steady wake flow from
1.28 K up to T > 2.18 K using a local anemometer. This temperature range spans relative densities
of superfluids from 96% down to 0%, allowing us to test numerical predictions of enhancement or
depletion of intermittency at intermediate superfluid fractions. Using the so-called extended self-
similarity method, scaling exponents of structure functions have been calculated. No evidence of
temperature dependence is found on these scaling exponents in the upper part of the inertial cascade,
where turbulence is well developed and fully resolved by the probe. This result supports the picture
of a profound analogy between classical and quantum turbulence in their inertial range, including the
violation of self-similarities associated with inertial-range intermittency. Published by AIP Publishing.
https://doi.org/10.1063/1.4991558

I. MOTIVATION AND STATE-OF-THE-ART
A. Introduction

When liquid 4He is cooled below Tλ ' 2.18 K, it expe-
riences a phase transition and enters a superfluid state, called
He-II. The hydrodynamics of superfluids has fascinated physi-
cists and engineers since the late 1930s, in particular for their
ability to flow without experiencing any viscosity, and for the
quantification of vorticity, discovered a decade later.1,2 Due
to their exotic properties, He-II and other quantum fluids have
also attracted interest from the classical turbulence commu-
nity, as it allows tackling some open problems using a fluid
with unique dissipative and vorticity properties.3 The so-called
quantum turbulence of mechanically stirred He-ii was found
to share many features with classical turbulence,4 in particu-
lar in the so-called inertial range of scales, where the kinetic
energy continuously cascades from larger to smaller eddies,5

resulting in a Kolmogorov-Obhukov-like k�5/3 velocity power
spectrum (k is the wavenumber). The present study explores
the phenomenon of intermittency in this inertial range, an
effect associated with a violation of self-similarity of veloc-
ity fluctuations, which is still actively studied in classical
turbulence.6–9

Using the Landau and Tisza two-fluid model, He-ii hydro-
dynamics can be described by two interpenetrating fluids in
mutual interaction: one inviscid superfluid of density ρs and
one normal fluid of viscosity µ and density ρn = ρ � ρs

(where ρ is the density of He-ii).1,2 By changing the tem-
perature between Tλ and 0 K, the superfluid fraction ρs/ρ
can be arbitrarily chosen between 0% and 100%. This tem-
perature dependence is a key property of the present study:
it allows exploring intermittency from the Navier-Stokes case
(T > Tλ and ρs/ρ= 0%), down to a nearly pure superfluid (here
ρs/ρ ' 96%). The universality of intermittency can therefore
be tested versus a continuous change of fluid properties.

B. Contradictory numerical predictions

For convenience, Table I summarizes the literature review
presented in the following paragraph.

The first experimental studies of intermittency in super-
fluids were published in 1998 and 2011.10,11 They focused
on the low temperature regime with superfluid fractions
ρs/ρ = 92% and 85% (respectively, 1.4 K and 1.56 K). Both
experiments reported no difference with the intermittency of
classical fluids.

In 2011, some direct numerical simulations (DNSs)
based on the so-called HVBK (Hall-Vinen-Bekharevich-
Khalatnikov) continuous model1,2 were also reported in
Ref. 11. In the HVBK model, the quantized nature of the super-
fluid vorticity is coarse-grained into a continuous field, which
allows describing the fluid using an Euler equation (for the
superfluid) and a Navier-Stokes term (for the normal fluid)
coupled by a mutual friction term. In the DNS study men-
tioned above, both the low and high temperature regimes were
explored, with superfluid fractions of 98% and 9%, respec-
tively. Again no difference was found with the classical fluid
intermittency.

In 2013, Boué et al.12 reported numerical simulations
using a shell-model13 of the HVBK dynamics. In the low
and high temperature limits, they found the same results
as the previous studies. But they also reported a significant
enhancement of intermittency at intermediate temperatures,
corresponding to the window ρs/ρ ' 20% − 90% (yet the
exponent of the second order structure function reaches val-
ues corresponding to the absence of intermittency).12 In 2016,
numerical studies by Shukla and Pandit14 using a differ-
ent variant of shell model [respectively, Sabra version and
a GOY (Gledzer-Ohkitani-Yamada) variant] agreed on the
low and high temperature limits but reported opposite results
in the intermediate window with a significant reduction or
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TABLE I. Experimental and numerical studies of quantum turbulence intermittency. The statements “more” or “less” intermittent are based on structure functions
of order larger than two (e.g., as shown in Fig. 11). The second order structure function can suggest an opposite trend.

References Approach Superfluid fraction ρs/ρ (%) Intermittency exponents (ζp>3)

Maurer and Tabeling10 Experiment 92 Consistent with classical
Salort et al.11 Experiment 0 and 85 Consistent with classical

DNSs (based on HVBK) 9 and 98 Consistent with classical
Boué et al.12 Shell-model simulations ∼20 − 90 More intermittent

(Based on HVBK) .20 or &90 Consistent with classical
Shukla and Pandit14 Shell-model simulations ∼10 − 80 Less intermittent

(Based on HVBK) .40 or &65 Consistent with classical
Bakhtaoui and Merahi15 LES simulations 84 More intermittent

(Based on HVBK) 23 and 98 Consistent with classical
Krstulovic16 Gross-Pitaevskii simulation 100 More intermittent
Rusaouen et al.17 Experiment 0, 19, and 81 Consistent with classical
Rusaouen et al. (present study) Experiment 0, 11.3, 51, 63, 85.8, and 95.7 Consistent with classical

absence of intermittency (the second order structure func-
tion exhibits a more complex behavior). No experimental data
were available for comparison in this intermediate temperature
range.

In 2014, some Large Eddy Simulations (LESs) of the
HVBK model were reported for ρs/ρ = 98%, 84%, and 23%
by Bakhtaoui and Merahi.15 The authors report a significant
difference of intermittent behavior at their intermediate tem-
perature (T = 1.6 K, ρs/ρ = 84%) compared to their lowest and
highest temperature cases, and they interpret it as a signature
of intermittency enhancement.

Adding to the apparent puzzle, another 2016 study
explored quantum-fluid intermittency at zero temperature
(ρs/ρ = 100%) using Gross-Pitaevskii equations and con-
cluded on intermittency enhancement.16 Once again, no exper-
imental data on intermittency are available today in this zero
temperature case where the normal fluid fraction is null.

Finally, a 2017 experimental study in a highly turbulent
von Kármán cell (Rλ ∼ 10 000) took a different perspec-
tive by analyzing the intermittent statistics of coherent struc-
tures for ρs/ρ = 0%, 19%, and 81% (±2%). No temperature
dependence was found,17 like in the previous experimental
studies.

As a side note, we can mention for completeness two on-
going studies have been reported by Emil Varga and Victor
L’vov in the Quantum Turbulence workshop held in Tallahas-
see in April 2017: one experimental work on transverse struc-
ture functions performed in Tallahassee and numerical simula-
tions performed by DNS in collaboration between groups from
Rehovot and Rome. Some DNSs using the HVBK model have
also been performed lately in Rahul Pandit’s group (private
communication).

The puzzle of these contradictory numerical results and
the lack of experimental data at intermediate temperatures
motivated the present systematic experiment.

C. Methodology

Our experimental aim is a high-resolution assessment of
the temperature-dependence of intermittency in the inertial
range of turbulent helium from its classical state (T > Tλ)

to its superfluid one, down to the temperature corresponding
to a superfluid fraction of ρs/ρ = 96%.

An accurate determination of intermittency is only pos-
sible under several conditions. One condition is a good con-
vergence of velocity statistics, which led to the choice of a
steady flow rather than an unsteady one. The second condi-
tion is to have a sufficiently large inertial range,18 and the
third condition is to resolve its velocity fluctuations: here we
cover more than 1.5 decades of frequencies, as illustrated in
Fig. 6.

After considering different types of flows, such as the grid
and von Kármán flow, we chose to study the turbulence in
the wake of a disc. Furthermore, the flow was confined in a
pipe to preserve a well-defined mean direction. Although wake
turbulence is neither isotropic nor homogeneous, it appeared
as a good compromise to meet the requirements listed above
and to explore the temperature dependence of intermittency in
a well-defined developed turbulent flow. Wakes of discs have
been widely studied in classical turbulence (e.g., Refs. 19–22),
and even in superfluid helium for one of the intermittency
studies previously mentioned.11 Thus, the existing literature
allows us to size the experiment (see Sec. II A) and probes
(see Sec. II B) in order to generate a well-defined turbulent
flow (see Sec. III A).

Compared to the previous experimental studies,10,11 the
flow temperature is varied systematically and over a broader
range. Reference measurements are performed above and
below the superfluid transition in conditions as similar as
possible, to allow one-to-one comparison. To allow a direct
comparison with the previous studies cited above, intermit-
tency is quantified by the exponents of the velocity structure
functions, as discussed later (Sec. III B).

II. THE TOUPIE EXPERIMENT
A. Experimental setup

The TOUPIE liquid helium wind-tunnel, previously
described in Ref. 5, has been upgraded and adapted to the
requirements of the experiment. It consists in a 1-m-long wind-
tunnel, mounted at the bottom end of a cryogenic insert exceed-
ing 2 m in length [see Fig. 1(a)]. Such a long insert allows an
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FIG. 1. The TOUPIE experiment: yellow part is the inner wind tunnel, blue
part is the instrumentation support, green tends for the decoupling springs, and
the wake-generator disc is in black. The room temperature motor and drive
shaft are schematized in violet and the propeller is in pink. (image © Ph.R.).
(a) General view. (b) Zoom on the wind tunnel part.

hydrostatic pressurization of the wind tunnel under a column
of liquid helium exceeding h = 1 m in height, which prevents
cavitation up to flow velocities exceeding

√
2gh ' 4.4 m/s.

The insert is designed to provide high stiffness to the experi-
ment thanks to the truss structure visible on the general view
in Fig. 1(a).

The wind-tunnel itself has a coaxial cylindrical geometry:
the test section is within the inner cylinder, while the return
channel is between the inner and outer cylinders [see Fig. 1(b)].
The 19.5-cm-diameter outer cylinder is made of a thin Cu
sheet for efficient energy exchange with the surrounding cool-
ing helium bath, while the inner cylinder is a 80 cm-long and
5.1 cm-internal-diameter cardboard tube (in yellow on the
sketch). Cardboard is chosen to reduce the propagation of
vibrations. It is partly decoupled from the rest of the struc-
ture by three springs (in green on the sketch). The cardboard
tube (from the roll of a poster-printer paper) is interrupted
by a massive brass ring at the location where the probes are

mounted (in blue on the sketch). The spring stiffness is chosen
just as large as required to support slightly more the weight of
the brass ring and tube ('1.5 kg). This allows benefiting from
the low-pass filter of this mass-spring mechanical resonator.

Reminiscent of the design of the so-called étoile flow
conditioner, six flow-guides made of Kapton sheets prevent
helicoidal motion of the flow along the return section. In the
same spirit, two honeycombs are inserted at the entrance of
the inner pipe and at its end, right upstream the propeller. Both
honeycombs exhibit the same cell density: 10 cells/cm2 and
respective length of 5 cm (input of the wind-tunnel) and 2 cm
(output of the wind-tunnel). Their main purpose is to straighten
the flow, remove swirl, and lower to turbulence intensity.23

Flow instabilities sustain an acoustic standing wave set-
tling in helium, between the top and bottom walls of the
wind-tunnel. To reduce its impact on the Pitot tube measure-
ment (see Subsection II B), the probe-holding brass ring was
initially located at mid-height in the tunnel, where the 1st
mode of the standing wave has a pressure node. The improve-
ment on the acoustic pollution captured by the Pitot tube
was found marginal and this probe-positioning constrain was
abandoned.

The fluid is set into motion by a centrifugal pump opti-
mized to reach a mass flow of 130 g/s of liquid helium. A drive
shaft connects the pump to a motor at ambient temperature.
Special attention was paid to the stainless steel ball bearing
located at the bottom of the shaft since past experiments have
shown that it can be a source of vibrations in the few hun-
dreds of Hz range. For cost reasons, we use standard stainless
steal bearings, cleaned in a solvent to remove the lubricant oil
which would freeze at low temperatures. Unsurprisingly, these
oil-free bearings aged more rapidly, even when dry lubricants
are added, which result in more vibrations. As a consequence,
a new bearing is mounted before each cool-down of the wind-
tunnel. To spoil the acoustic impedance matching coupling
between the stainless steal bearing and the stainless steal plate
on which it is fixed, a fiber-glass-reinforced epoxy cage in
inserted in-between [in purple on Fig. 1(b)].

Rotation of the shaft (Ω in Hz) is measured using a
dynamo and is proportional to the velocity of the fluid V in
the test-section, up to small corrections due a reduced effi-
ciency of the pump at the lowest rotation frequencies. Unfor-
tunately, the proportionality coefficient—around few tens of
Hz/(m s�1)—was not measured accurately due to a techni-
cal problem. So velocity is kept in arbitrary units of propeller
rotation.

A disc of diameter d = 25.5 mm, 3.7 mm thickness with
sharp edges generates a turbulent wake in the test section.
For the maximum He mass flow of 130 g/s and a density of
ρ = 145 kg/m3, the wind-tunnel has been designed to reach
a maximum mean velocity which is 〈V〉 ≈ 0.5 m/s with the
present pipe section. In this work, the rotating velocity is half
the maximum one, corresponding to a disc Reynolds number

Red =
〈V〉 d
ν
' 3.105, (1)

for a kinematic viscosity ν = µ/ρ taken at 2.32 K. A rough
estimation of the Taylor microscale Reynolds number at the
location of the probe can be made assuming an integral
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TABLE II. Flow’s main characteristics. Temperature is computed from the
measured pressure of the saturated liquid. Densities and kinematic viscos-
ity are computed using the temperature and pressure corrected from the
hydrostatic pressure.

Temperature Pressure Superfluid fraction Kinematic viscosity
T (K) P (mBar) ρs/ρ (%) µ/ρ (m2/s)

2.32 70 0 1.99 × 10−8

2.15 47.3 11.3 1.52 × 10−8

2.10 41.3 25 1.28 × 10−8

1.95 26.9 51 9.57 × 10−9

1.85 19.6 63 9.00 × 10−9

1.55 6.08 85.8 9.50 × 10−9

1.28 1.42 95.7 1.24 × 10−8

scale of d/2 and a turbulence intensity of 7% (as measured),
Rλ =

√
15 × 0.07Vd/2ν ∼ 400.

Temperature is decreased below 4.2 K by pumping the
helium bath with a roots group (Leybold model SV300 and
WS2001). With such a flow, temperature can be as low as
1.28 K at the largest Reynolds numbers. This corresponds to a
superfluid fraction of nearly 96% (see Table II). Experiments
have been performed at seven different temperatures.

B. Instrumentation
1. Probes

Two probes, a micro-cantilever anemometer and a minia-
ture total head-pressure probe (later referred to as the “Pitot
tube”), are inserted in the test section.

The micro-machined cantilever is sketched in Fig. 2(a),
above an electron microscope image. It consists in a rectangu-
lar beam, 375 µm long, 32 µm large, and 1.2 µm thick, made
of silicon oxide which is deflected by the incident flow. Both
probes are sensitive to the local dynamic pressure 1

2 ρu2. The
cantilever beam, its supporting structure, and its built-in resis-
tive strain gauge are machined using micro-system techniques
in a clean room. Details about the manufacturing process can
be found in Refs. 24 and 25. The first resonance frequency
of the cantilever immerged in liquid helium is estimated to be
around 5 kHz,25,26 which is above the range of frequency of
interest in the present study (typically DC-1 kHz).

The Pitot tube is built with a capillary tube of internal
diameter 0.8 mm and 34 mm long, parallel to the mean flow at
one end and closed with a micro-machined differential piezo-
resistive pressure transducer at the other end. The Helmholtz
resonance of this probe at ambient temperature is close to
1500 Hz, leading to a 500 Hz resonance at 2 K, due to the
threefold ratio between sound velocity in atmospheric air and
in liquid helium. Unfortunately, acoustic perturbations have
polluted the signal and significantly reduced the exploitable
frequency range down to 70 Hz typically. As a consequence,
we only use the Pitot tube to validate the mean response of the
cantilever probe and the efficiency of the centrifugal pump,
using the well-known quadratic response of Pitot tubes versus
velocity.

Both miniature Pitot tubes and micro-cantilevers have
been previously validated for anemometry of the longitudi-
nal velocity component in wind-tunnels, above and below

FIG. 2. Two probes were inserted in the wind tunnel: a Pitot tube and a
micro-machined cantilever anemometer. (a) Sketch of a cantilever probe. (b)
Electronic microscope image of the cantilever. (c) View of the probes.

the superfluid transition.5,10,24,27 In He-ii, both anemometers
are sensitive to the barycentric velocity of the superfluid and
normal fluid V = V sρs/ρ + Vnρn/ρ (with obvious notation).
But at the inertial scale resolved by the probes, the two
fluids are known to be locked together in this temperature
range,28 and the probes are thus sensing the common velocity:
V ' Vs ' Vn.

2. Position in the flow

Reference 19 shows that wake turbulence downstream a
disc becomes fully developed (i.e., self-similar) at 15 disc
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diameters, for an unconfined flow with Red ' 7.104. In our
experiment, Red is half a decade larger and the disc of diame-
ter d = 2.5 cm is confined in a tube of diameter 5.1 cm, which
obviously results in different streamwise flow properties. To
our knowledge, no study of this particular issue in the wake
of a disc and at such a large Reynolds number exists. Thus,
we have chosen to place the probes 20 disc diameters down-
stream the disc of diameter d and we do not expect turbulence
to be fully developed down to the smallest scales of the inertial
range

The Pitot tube is located on the axis of the test section
whereas the cantilever is d/6 aside the axis, see Fig. 2(c).

C. Measurement protocol

Two different electronic circuits are used: one dedicated
to high signal-to-noise fluctuation measurements (see Fig. 3)
and the second one to accurate measurements of mean val-
ues. Two 9 V batteries in series polarise the circuitry, and their
common pole is grounded to the cryostat. Two similar resis-
tors in series with the batteries allow tuning the polarisation
voltage of the Wheatstone bridge integrated on the probe. The
typical polarisation of the cantilever is 43.6 mV (≈90 µA)
and 1 V (≈175 µA) for the Pitot tube. The output signal is
amplified directly on the top of the cryostat, using a low-
noise AC preamplifier (EPC1-B), then anti-alias filtered by
a KEMO 4th order filter. The acquisition is performed with
an 18-bit multi-channel card (National Instrument 6289). The
cutoff frequency f c of the filter is chosen to satisfy the Shan-
non criterion (fc < fs/2, with f s as the sampling frequency). A
numerical low-pass filter at 800 Hz further reduces the band-
width to discard frequencies altered by the 0.7nV/

√
Hz noise

floor, which is reached around 1 kHz and corresponds to the
voltage noise of the preamplifier. In this configuration, the fre-
quencies below ∼10 mHz are rejected by the AC-preamplifier.
That is why a dedicated DC electrical circuit is needed to mea-
sure the mean response of the probes. This is done replacing
the batteries with a symmetrical 10 Hz AC source and per-
forming lock-in detection (NF LI5640) on the pre-amplified
output signal. Although neither signal distortion nor probe
over-heating was found, as a precaution, the AC driving volt-
age is chosen to be equivalent to one of the circuits with
batteries.

Calibration is performed in situ using the mean response
curves and a quadratic fit of the mean signal versus rotating

FIG. 3. Electrical circuit used for fluctuation acquisitions. The Wheatstone
bridge is fully integrated on the probe. In the alternative circuit used to calibrate
the DC response of the probe, the batteries are replaced by an AC symmetrical
voltage generator, and the filter is replaced by the input of a lock-in amplifier
synchronized to the AC generator.

FIG. 4. Mean response of the cantilever probe versus the rotating velocity of
the propeller, Ω, in (Hz). Ω can be considered as an image of the mean flow
velocity at first order. The signal of the cantilever is quadratic versus velocity
and linear versus signal of the Pitot tube (see the inset) as illustrated by the
parabolic and linear fits.

velocity of the propeller (see Fig. 4). This response is fully
consistent with the one obtained in air.25 It is then possible to
reconstruct the complete signal of the probes by combining the
AC and the DC measurements. Surely, AC frequencies below
10 mHz are not fully recovered with this procedure, but this
has no consequence on the results of the present study.

1. Validation of the cantilever response

The cantilever beam is deflected by the hydrodynamic
force imposed by the flow. As for the Pitot tube, this force
is directly related to the dynamic pressure generated by the
incoming flow. Above the superfluid transition, the typical
Reynolds numbers based on the transverse size l = 32 µm
for the cantilever is the following:

Recanti =
〈V〉 l
ν
≈ 450. (2)

At such a large Reynolds number, the dynamical pressure
scales with the square of the velocity p = ρV2/2.29 The sig-
nal of the cantilever should then be quadratic with respect to
the rotating velocity of the pump, which is actually the case
(see Fig. 4), and linear with respect to the Pitot tube signal, as
confirmed by the inset.

III. RESULTS AND DISCUSSIONS
A. Flow characterisation

Using the so-called Reynolds decomposition, velocity
fluctuations are defined as

v = V − 〈V〉 . (3)

Figure 5 shows the probability density functions (PDF)
of fluctuations in root mean square (noted RMS) units. All
time series plotted are obtained for the same propeller rotation
(Ω ≈ 3.5 Hz) and thus for nearly the same mean velocity.
Colors correspond to different temperatures except for the
1.85 K temperature (ρs/ρ = 63%), which has been achieved
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FIG. 5. PDF obtained at different mean temperatures and nearly constant
mean velocity (Ω ≈ 3.5 Hz). The dashed line corresponds to a gaussian
distribution.

twice and is represented using two different colors. Except the
ρs/ρ = 25% time series (2.1 K), all the PDFs remain close
to a gaussian, with a small residual dissymmetry [skewness
33/(3RMS

3/2) within (�0.16; �0.11)]. This suggests that turbu-
lence is not yet completely developed at 20 diameters down-
stream the disc. We have no explanation for the odd behavior
of 2.1 K time series; one could speculate on the appearance
of a flow instability producing a recirculation or a corner-flow
near the disc. Unfortunately, we discovered this odd behaviour
too late to repeat the measurements.

Frequency spectra are presented in Fig. 6. As previously
said, the time series are numerically filtered at 800 Hz, which
explains the corresponding cutoff. To improve this signal-to-
noise ratio, a higher polarisation voltage would have been
necessary. Unfortunately, higher polarisations have proved
to be potentially destructive for the fragile micro-machined
electrical tracks of the probe.

At low frequency (typically f . 10 Hz), the spectra
evidence a characteristic plateau of one-dimensional veloc-
ity spectra. Above 10 Hz typically, the slope gets close to
�5/3, which is characteristic for a fully developed turbulent
cascade regime.6 This slope has been reported in previous
superfluid experiments in various very high Reynolds number

FIG. 6. Spectra of the velocity measured with the cantilever probe. The color
code is the same as in Fig. 5. The cutoff at high frequency results from signal
filtering.

flows, such as von Kármán cells,10,30 wind tunnels,31 disc
wakes,5 grid flows,27 and jets.32 A closer analysis shows that
the slope becomes slightly steeper than �5/3 in the second half
of the resolved inertial range (roughly above 140 Hz). This
is consistent with an incomplete development of the turbulent
cascade and consistent with the observations of Refs. 21 and 22
in the wake behind a disc with a classical flow in conditions
compatible with the present ones. A peak compatible with the
vortex shedding frequency could have been expected around
1 Hz typically, which is not the case here. Two explanations
are possible. First, in an unconfined flow, the appearance of
the peak is dependent on the radial position of the probe, in
particular the peak can disappear at the center of the wake.
Second, in some flows, the phenomena of vortex shedding are
not present for specific ranges of the Reynolds number com-
patible with the present one, as shown by Ref. 33 in the wake
of cylinders.

The spectrum associated with the 2.1 K time series differ
from the others, again. Its spectrum is more energetic, which is
consistent with the appearance of a large scale flow instability
in the tunnel, feeding more energy in the cascade. Considering
that our main interest is not in this range of superfluid density
ratio, we will not exploit this temperature in the following.
Since no difference was found between the two time series
independently recorded at 1.85 K, only one will be displayed
in the following figures.

As a test of data convergence, we examine third order
statistics of velocity increments, which reveals the energy cas-
cade process from large scales to small ones. The increments
δv of the longitudinal velocity V in the x direction parallel to
the mean flow are defined as

δv = V (x + δx) − V (x). (4)

Taylor’s frozen turbulence hypothesis is used to map the
time domain, where the time series V (t) are acquired, to the
space domain V (x), where the velocity increments are defined.
This mapping is justified by the low turbulent intensity of
the present flow, close to 7%. Using one of the datasets, we
checked that the use of the instantaneous Taylor hypothesis34

was not changing significantly the intermittency exponents
(and only slightly accounting for the residual velocity skew-
ness). The negligible influence on scaling exponents of this
improved Taylor hypothesis was already pointed in the orig-
inal paper.34 In practice, velocity increments will be directly
estimated in the time domain as

δv = V (t) − V (t + τ) (5)

with τ = δx/ 〈V〉. The 4/5 law of turbulence predicts the
inertial-range scaling of the skewness of velocity increments,〈

δv3
〉
= −

4
5
ε · δx = −

4
5
ε 〈V〉 τ, (6)

where 〈· · · 〉 denotes time averaging. At the Reynolds num-
ber of the present study (Rλ ∼ 400), one does not expect
a well defined plateau when plotting

〈
δv3

〉
/τ versus τ

due to finite Reynolds number corrections. The 4/5 pref-
actor itself (not measurable in our experiment due to cali-
bration uncertainty) is expected to be only approximatively
reached (typ. within 10%) in the middle of the inertial range
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FIG. 7. Third order structure function, same color code as in Fig. 5.

(e.g., see Refs. 36 and 37 and reference within). With this in
mind, one can still distinguish in Fig. 7 a clear leveling of this
compensated third moment in the inertial range, which is con-
sistent with the literature (for example, see Refs. 35 and 38)
even if we do not resolve the small scales where

〈
δv3

〉
is

expected to decrease to 0.

B. Determination of intermittency exponents

There exist several ways to quantify intermittency and
this topic is still debated (e.g., see discussion in Ref. 8). The
motivation of the present work is not to obtain absolute preci-
sion in the coefficient characterizing intermittency but rather to
obtain sensitivity in the determination of these coefficients ver-
sus temperature. This motivated the choice of a wake flow and
led us to use the so-called “extended self similarity” (ESS)
method39 to quantify intermittency through a set of scaling
exponents ζp defined in the (extended) inertial range as〈

|δv |p
〉
∼

(〈
|δv |3

〉)ζp
. (7)

This method produces extended scaling ranges, which
allows an accurate determination of the exponents ζp. One
drawback of this method is the (small) difference between the
ESS exponents ζp and the exponents ζ ′p resulting from the

“genuine” definition 〈δvp〉 ∼ δxζ
′
p . This drawback is a priori

not an issue here since we focus on the relative variation of
exponents versus temperature. We will come back on this point
in Sec. IV.

As a preliminary test of statistical convergence, we com-
puted the histograms of |δv|p up to p = 6 and checked that
their tails well converge to zero. To determine the ESS expo-
nents ζp, we focus on their deviation from the exponents p/3
that would be expected in the absence of intermittency. Thus,
the intermittency corrections µp = p/3 � ζp are directly fitted

using a compensated log-log plot of 〈|δv |p〉
〈
|δv |3

〉−p/3
versus〈

|δv |3
〉

or more precisely �µp is fitted as the slope of the affine
function,

log *
,

〈|δv |p〉〈
|δv |3

〉p/3
+
-
= −µp · log(

〈
|δv |3

〉
) + cst. (8)

This fit was performed for time increments chosen within
0.007-0.05 s (i.e., 20-140 Hz), a range of increments which

FIG. 8. Example of the determination of the intermittency correction
µp = p/3 � ζp (here at 2.32 K for the blue curves and 2.15 K for the red
ones). In this representation, the mean slope of each set of points is �µp. The
time increments are windowed in the frequency range 20–140 Hz. Black lines
are the fit of the 2.32 K case.

avoids the highest frequency part of the spectrum where the
cascade is not fully developed. Although this range of incre-
ment is limited to 0.84 decade, the good statistical converge of
the data allows an accurate determination of a local exponent
µp, as illustrated by Fig. 8. This accurate determination should
also be credited to the ESS method, which partly compensates
for the absence of a pure scaling over the spectral range 20-140
Hz. As a check, a reduced range of time increments (20-80 Hz)
will also be used. The small steps visible for the p = 5 datasets
of Fig. 8 are also present for the other orders and are interpreted
as noise. In this representation, they do not alter significantly
the slope determination and therefore exponent determination.
They would have been more detrimental if we were estimating
exponents using the derivative d log 〈|δv |p〉/d log(

〈
|δv |3

〉
) and

that is why we did not use this alternative approach.
All the structure function exponents ζp and their fitting

uncertainties are reported in Table III and plotted in Fig. 9.
The error bars associated with the uncertainties are too small to
worth plotting in Fig. 9 and later figures. The exponents derived
from Kolmogorov’s 1941 self-similarity arguments (absence
of intermittency, ζp = p/3) and those from the She-Lévêque
model40 (ζ ′p =

p
9 + 2[1 − ( 2

3 )p/3]) are plotted for compari-
son. A direct quantitative comparison with the later model is
delicate due to our use of the ESS method and the lack of
isotropy and homogeneity of wake flows, but we can state that

TABLE III. Structure function exponents calculated with the ESS method in
the 20-140 Hz range.

T (K) ζ1 ± 0.2 (%) ζ2 ± 0.1 (%) ζ4 ± 0.2 (%) ζ5 ± 0.5 (%) ζ6 ± 0.7 (%)

2.32 0.349 0.682 1.302 1.585 1.86
2.15 0.350 0.683 1.301 1.59 1.86
1.95 0.349 0.683 1.300 1.585 1.85
1.85 0.348 0.681 1.303 1.59 1.86
1.55 0.348 0.681 1.304 1.595 1.87
1.28 0.348 0.682 1.303 1.59 1.87
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FIG. 9. Experimental exponents computed using the ESS method (coloured
circles). The error bars corresponding to the fit uncertainty reported in Table
III are not plotted because they are smaller than the size of the circle symbols.
For comparison, exponents ζp = p/3 expected with no intermittency (black
line) and those from the She-Lévêque model40 (ζ ′p =

p
9 +2[1−( 2

3 )p/3]) are also
plotted, predicted using the standard definition of exponents (dashed curve).

the flow presents the characteristic features of intermittency
(e.g., µ2 < 0 and µ4, µ5, µ6 > 0) and is quantitatively con-
sistent with previous velocity fluctuation measurements done
using a miniature Pitot tube in a perfectly homothetic confined
wake geometry.11

The main result of this study is the following: up to
uncertainties and over the full temperature range explored,
intermittency is found independent from the superfluid frac-
tion, including the intermediate temperature cases where a
pronounced temperature dependence was reported in some
numerical studies.12,14

C. Comparison with previous studies

A preliminary comment is needed before comparing
the exponent ζp from experiment and numerics. Since the
anemometer is sensing (one component of) the barycentric
velocity V = V sρs/ρ + Vnρn/ρ, the experimental exponents
ζp are therefore characterizing this specific velocity. In shell-
model simulations, the normal fluid and superfluid velocity
fields are modeled separately by discrete complex variables un

m
and us

m, one for each shell of index m (wavelength). Exponents
are therefore computed separately for each fluid component.
Still, due to the strong coupling between the two fluids, they
are nearly locked together in the inertial range (Vs ' Vn ' V ),
which implies that the normal and superfluid exponents are
similar. This is indeed the case in the numerics as illustrated
in Fig. 10, in the supplemental materials of Ref. 14 (see the
G1-G21 subsets, which are obtained using the fluid proper-
ties of He-ii), and in Fig. 1 of Ref. 12 which shows similar
normal and superfluid structure functions in the inertial range,
implying similar intermittency exponents. It is therefore fair
to compare the exponents from the experiment and numer-
ics. Surely, this would no longer be straightforward if we
were studying small-scale intermittency and not inertial-range
intermittency.

To summarize the existing results, experiments (Refs.
10 and 11 and present study) and simulations (Refs. 11,
12, and 14) did not reveal any difference of intermittency
between classical turbulence and quantum turbulence in both

FIG. 10. Exponents of the second order structure function as a function of
the superfluid fraction. For explanation on open symbols, see the text.

temperature limits: high (ρs/ρ � 1) and low (but finite) tem-
peratures (0.04 . ρn/ρ � 1). In the intermediate temperature
range, the present experiment exhibits no difference between
the classical and quantum cases up to an excellent resolu-
tion, in contradiction with shell-model simulations predicting
significant enhancement12 or reduction.14

To illustrate quantitatively the disagreement between our
experiment and both shell simulations, we plot in Fig. 10 the
second order exponent ζ2 from these three studies. The values
in the classical (Navier-Stokes) limit ζNS

2 = ζ2(ρs = 0) differ
between the shell models (0.72) and our experiment results
('0.68) but this should not be considered as an issue. Indeed,
the absolute value of ζNS

2 results from an arbitrary choice of
model parameters in shell simulations (as recalled in Ref. 12)
and it is biased by the use of the ESS method in experiments, as
already explained, and possibly by residual non-homogeneity
and anisotropy of wake flows. To check if the 20-140 Hz win-
dowing of the time increments as a significant impact of the
fitted exponents, the reduced window 20-80 Hz was also used.
The open symbols in Fig. 10 show that the impact is limited.
The most striking features of this figure are the difference in
temperature dependence between the three studies. Interest-
ingly, the exponents ζ2 obtained in the simulations by Shukla
and Pandit14 both exceed and fall short of their classical limit
ζNS

2 , which could be interpreted, respectively, as an intermit-
tency enhancement and reduction. In Boué et al. simulations,12

the exponents ζ2 have a minimum below the Kolmogorov 1941
value ζ2 = 2/3, which corresponds itself to the absence of inter-
mittency. The authors’ interpretation of an “enhancement” of
intermittency (instead of the apparent cancellation) is based
on higher order exponents.

To focus on the possible superfluid effect on the intermit-
tency, we now consider the relative exponents,

ζp − ζ
NS
p = ζp − ζp(ρs = 0) ' ζp − ζp(ρs → 0), (9)

which can be seen as the superfluid correction to the classical
exponent. Since all studies agree that the classical exponents



105108-9 Rusaouen et al. Phys. Fluids 29, 105108 (2017)

FIG. 11. Superfluid correction of the intermittency exponents. Note that the
dotted line for orders p = 4 and p = 6 have been calculated from an analytical
formula provided in the original paper.

ζNS
p are recovered in the ρs/ρ→ 0 limit, this definition allows

us to single out only superfluid effects.
Figure 11 represents this superfluid intermittency correc-

tion on exponents for p = 2, 4, 6. To put numbers on Eq. (9),
values from Shukla and Pandit simulations are taken from the
supplemental materials of their article.14 Boué et al. paper12

provides one value ζ4 ' 1.21 for ρs/ρ = 0.5 and ζNS
4 = 1.256

(see cross in Fig. 11), a plot of ζ2 and a relation for ζp ver-
sus ζNS

p and ζ2 “in good agreement with the observed values”

[with our notations, they found ζp − ζ
NS
p = p

(
ζ2 − ζ

NS
2

)
/2]

which allowed us to estimate the complete Fig. 11. Similarly to
Fig. 10, the differences between the three studies are striking:
no superfluid effect is found in the present experiment, while
strong opposite effects are reported in the shell simulations.
This is the central experimental result of this study.

IV. CONCLUDING REMARKS

We measured intermittency in the upper inertial range of
a turbulent cascade of superfluid 4He, with a special attention
for the intermediate temperatures where none of the two fluid
components of He-ii can be neglected. In this range of tem-
perature, no other experimental data were published and two
published simulations are giving contradictory results: Boué
et al. predicting an excess of intermittency12 and Shukla and
Pandit a deficit of it.14 Our measurements disagree with both
simulations: we do not detect any temperature dependence of
scaling exponents (with better than ±0.7% precision up to 6th

order) when the temperature is varied between the Navier-
Stokes limit (ρs = 0 for T = 2.32 K) down to 1.28 K, where
96% of He-ii is superfluid. Our results also contradict a LES
claiming an enhancement of intermittency near 1.6 K.15

Understanding the reason for the disagreements between
the shell-model simulations12,14 is beyond the scope of this
paper. As acknowledged by the authors of these numerics, it
is not surprising that shell-model simulations recover the clas-
sical intermittency exponents in the low and high temperature
limits. Indeed, in these limits, the fluid with the largest density
fully controls the dynamics without being significantly dis-
turbed by the low-density one (which follows the former due
to strong coupling). Thus, one recovers a one-fluid dynam-
ical system with an inter-shell coupling term NL[un,s

m ] and
numerical coefficients “a, b, c” which had been specially
tuned to recover the classical exponents. The disagreement
between both simulations (not to mention the experiment) at
intermediate temperatures question the ability of the tradi-
tional inter-shell-coupling model to capture the intermittent
corrections in the presence of mutual coupling between the
superfluid and normal fluid, at least for the mutual coupling
model implemented in both simulations. To go beyond, a sys-
tematic study of the sensitivity of scaling exponents versus
shell-model parameters could be interesting. Further stud-
ies in particular high-resolution DNSs will probably be of
great help. Efforts in this direction are underway by different
groups.

We now come back to the comparison between the shell-
model simulations and the experiments. The simulations pro-
vide the absolute scaling exponents ζ ′p defined as 〈|δum |

p〉

∼ km
−ζ ′p (km is the wavevector of the mth shell), which is

the shell-model version of the definition 〈|δv |p〉 ∼ δxζ
′
p . The

ESS method used for the experiment produces relative scal-
ing exponents ζp [see Eq. (7)] defined with respect to the
third moment, which is expected to scale linearly with δx
in the inertial range of homogeneous isotropic turbulence. It
has been noticed that (inertial range) absolute exponents ζ ′p
determined from shell-model simulations can be sensitive to
the dissipative processes occurring at small scales, while rela-
tive exponents ζp ∼ ζ

′
p/ζ

′
3 are not.41 A priori, this could have

explained the observed discrepancy between the experiment
and shell-model, but it is not the case here, as can be seen in
two ways. First, if the absolute exponents of ζ ′2 in the present
study had the 10% temperature dependence found in the simu-
lations, the spectra of Fig. 6 would not overlap as well. Second,
when the absolute exponents reported in the shell-model sim-
ulations12,14 are normalized by the third order exponent, we
find that ζ ′p/ζ

′
3 still have a significant temperature dependence.

Thus, the difference of definition of scaling exponents cannot
explain the qualitative difference between these simulations
and the experiment.

On the experimental side, it would be interesting to extend
the result to purely homogeneous and isotropic conditions.
The use of a grid to generate turbulence would have pro-
duced a more “ideal” flow, but also smaller length scales and
a smaller level of velocity fluctuations, resulting in a signifi-
cantly lower range of resolved scales given to finite resolution
and sensitivity of probes. New probe and flow designs would
therefore be required to go in this direction. Regarding the
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present results, we only explored the inertial range over nearly
1 decade of scales (the largest ones) and we cannot exclude
that a different picture may emerge at smaller scales. In par-
ticular, it would be interesting to explore length scales closer
to the mesoscale “gray” zone, where strong differences in the
dynamics between the superfluid and normal fluid are expected
to appear and a partial randomization (or equipartition) of the
superfluid excitations has been predicted.42
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