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Abstract
The long-standing puzzle of diverging heat transport measurements at very high Rayleigh
numbers (Ra) is addressed by a simple model based on well-known properties of classical
boundary layers. The transition to the ‘ultimate state’ of convection in Rayleigh–Bénard cells is
modeled as sub-critical transition controlled by the instability of large-scale boundary-layer
eddies. These eddies are restricted in size either by the lateral wall or by the horizontal plates
depending on the cell aspect ratio (in cylindrical cells, the cross-over occurs for a
diameter-to-height ratio around 2 or 3). The large-scale wind known to settle across convection
cells is assumed to have antagonist effects on the transition depending on its strength, leading to
wind-immune, wind-hindered or wind-assisted routes to the ultimate regime. In particular winds
of intermediate strength are assumed to hinder the transition by disrupting heat transfer, contrary
to what is assumed in standard models. This phenomenological model is able to reconcile
observations from more than a dozen of convection cells from Grenoble, Eugene, Trieste,
Göttingen and Brno. In particular, it accounts for unexplained observations at high Ra, such as
Prandtl number and aspect ratio dependences, great receptivity to details of the sidewall and
differences in heat transfer efficiency between experiments.

How does natural convection transport heat in the limit of intense thermal forcing ? This old question is
still vividly disputed in the convection community.

Beyond the academic motivation of unraveling the properties of natural convection in its asymptotic
limit, understanding these intense flows is relevant to various environmental (oceans, . . . ) and large scale
industrial flows (nuclear reactors, . . . ). Indeed, the intensity of forcing in natural convection is proportional
to the cube of the flow vertical extension, resulting in intense forcing in large-scale flows, even when a
moderate temperature difference is driving the motion.

A model system is prevalent in laboratory studies of natural convection: the Rayleigh–Bénard cell
operated in Boussinesq conditions [1] (see figure 1(a)). As detailed in the next section, three dimensionless
numbers traditionally characterize respectively the thermal forcing, the fluid properties and the resulting
heat transfer: the Rayleigh (Ra), Prandtl (Pr) and Nusselt (Nu) numbers. This study focuses exclusively on
fluids with intermediate Pr, that is fluids with comparable viscous and thermal molecular diffusivities, such
as air, helium and water, and not on fluids where one diffusivity significantly exceeds the other one, such as
liquid metals or oils. We refer the reader to the review [2], and references within, for a general introduction
on turbulent Rayleigh–Bénard convection.

The heat transfer dependence Nu(Ra) at given Pr provides an indirect but easily measurable piece of
information on the flow. Thus, most models of convection provide predictions for this dependence. In
1962, R Kraichnan predicted the existence of an asymptotic flow regime at very high Ra, characterized by
the presence of turbulence not only in the bulk of the flow—as in the preceding regime—but also in its
boundary layers [3]. A distinctive Nu(Ra) dependence—recalled later—was predicted by Kraichnan, with a
significantly enhanced heat transport compared to the preceding flow regime called hard turbulence state.
The first observation of a marked Nu(Ra) transition interpreted following Kraichnan’s prediction was
reported in Grenoble in the late 90s [4]. The expressions ‘ultimate regime’ [4] or equivalently ‘ultimate state’
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Figure 1. (a) Typical Rayleigh–Bénard cell. The fluid layer between two plates is set into motion by natural convection. Most of
the temperature drop between the plates is concentrated in two thermal boundary layers. (b) Compensated heat transfer
Nu · Ra−1/3 versus Ra for experiments reaching at least Ra = 1013 in cylindrical cell of aspect ratio Γ = 0.5 unless otherwise
noted, and for Prandtl numbers within 0.6 < Pr < 7. References to the various experiments are provided in the table.

Table 1. Very high Ra Rayleigh–Bénard experiments discussed in the present paper.

Location
Aspect ratio Complementary Cell height

Fluid Comment and referencesΓ = φ
h designation h [cm]

Grenoble 0.5 Chavanne 20 He cryo [4, 15]
Grenoble 0.23 43 He cryo [16]
Grenoble 0.5 Vintage 20 He cryo Reference Γ = 0.5 cell with a 1.3◦ or 3.6◦ tilt [16]
Grenoble 0.5 Flange 20 He cryo With a flange at sidewall mid-height[16]
Grenoble 0.5 Paper 20 He cryo With layers of paper on the inner sidewall[16]
Grenoble 0.5 ThickWall 20 He cryo With sidewall x 4.4 thicker [17]
Grenoble 1.14 8.8 He cryo [16]
Chicago 0.5 40 He cryo [18]
Eugene 0.5 100 He cryo [19, 20]
Trieste 1 50 He cryo Eugene experiment moved to Trieste [21]
Trieste 4 12.5 He cryo [22]
Brno 1 30 He cryo [10, 23]
Göttingen 0.33 330 SF6 [24]
Göttingen 0.5 I, IIa, IIb 224 SF6 Unsealed [25, 92]
Göttingen 0.5 IIe 224 SF6 Seals between plates and sidewall [26]
Göttingen 1 112 SF6 [27]

[5] were coined at that time to name the new flow state observed at very large Ra. We choose to use the
same terminology in this paper.

Since, new experiments have explored Rayleigh–Bénard convection at very high Ra (say Ra > 1013) and
for intermediate Pr, in Grenoble, Eugene, Trieste, Göttingen and Brno (see table 1 for references). As
illustrated by figure 1(b), most Nu(Ra) measurements agree below Ra # 1011, while the situation at larger
Ra is more puzzling and has been a fuel for scientific controversy [6–14]. Indeed, the compensated heat
transfer Nu · Ra−1/3 decreases or level out with Ra in some experiments (Chicago, Eugene, Brno) while it
increases significantly in others (Grenoble, Trieste), leading up to a two-fold difference in heat transfer
efficiency around Ra = 1014.

How does the convection literature deal with the striking apparent contradiction between the high Ra
datasets ? Over the years, three different approaches have consolidated in Grenoble/Lyon (e.g. see [4, 16]),
Trieste/Brno/Prague (e.g. see [21, 23]) and Göttingen/Santa Barbara/Twente (e.g. see [27, 28]) to account
for the results1. These views are either based on variants of Kraichnan’s prediction or on non-Boussinesq
approximation effects. Taken separately, the respective datasets and interpretations are certainly fair and
often self-consistent, but no proposed model is yet able to account for all existing observations. As a
consequence, most papers propose a simple discussion, but disregard or depreciate previous results in
apparent contradiction.

1 Surely, there are differences in judgment and emphasis between the members of the three subgroups.
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It is easy to disregard experimental datasets because the ideal Rayleigh–Bénard cell, operated in perfectly
Boussinesq approximation will never exist. In real life, measurements can be biased by numerous
side-effects, including violations of the Boussinesq approximation, finite conductivity/response time of the
heating and cooling plates, fluid property uncertainties, gas and heat leaks, etc. . . These effects are certainly
interesting to understand, as attested by vivid arguments exchanges [7–10]. Still, it seems unrealistic to us
that such effects can fully account for the ‘sudden’ appearance of discrepancies right above Ra # 1012

knowing that all datasets are consistent at lower Ra.
The present work explores a new and inclusive modeling approach. We first make the (subversive ?)

hypothesis that all very high Ra experiments are not significantly biased by side-effects, at least not enough
to fully account for a scatter of Nu(Ra) appearing above Ra # 1012. In other words, we will assume that the
surprising experimental results regarding—for instance—the Nu(Ra) scatter, the unexplained aspect ratio
dependence of the transition and the sensitivity to experimental details are not problems but features of the
transition to the ultimate state of convection. An heuristic approach allows to profile a minimal model able to
reconcile all the apparently ‘contradictory experiments’. This model relies on three conjectures, each based
on well known properties of transiting classical boundary layers2. These conjectures are presented in the
section 2, after the introductory section 1.

1. Introduction

1.1. Dimensionless numbers
Rayleigh–Bénard cells consist in a layer of fluid confined between two horizontal plates [1], as illustrated by
figure 1(a). A destabilizing temperature difference ∆ is imposed between the two plates, such that natural
convection motion appears in the cell. The Boussinesq approximation consists in assuming fluid
incompressibility (except for a linear temperature dependence of density yielding the buoyant term),
constant fluid properties, and decoupling of heat and mechanical energies [1, 29]. In this approximation,
the flow is determined by only two control parameters which are traditionally chosen as the Rayleigh and
Prandtl numbers. Their respective definitions are:

Ra =
α∆h3g
κν

and
Pr =

ν

κ

where α, κ, ν, g and h are respectively the isobaric thermal expansion coefficient, the molecular thermal
diffusivity, the kinematic viscosity, the gravitational acceleration and the cell inner height. The Rayleigh
number can be seen as the control parameter associated with the thermal forcing of the flow while the
Prandtl number is the only relevant property of the fluid. In this study, we only focus on Prandtl numbers
of order unity (typically 0.6 ! Pr ! 7), which are found in air, water, helium, SF6, perfect gases,. . . In
response to thermal forcing, a heat flux P is transported across the cell from the hotter plate to the colder
one (when α > 0). The corresponding dimensionless number is the Nusselt number Nu, defined as

Nu =
P

Pdif
(1)

where Pdif is the heat flux that would diffuse by molecular conduction through the cell if the fluid was
quiescent. The Nusselt number can be seen as the efficiency of convection as a heat transport mechanism.
In practice, Rayleigh–Bénard cells are bounded by vertical sidewalls. In cylindrical cells of diameter φ and
height h, it results in an extra dimensionless control parameter: the cell aspect ratio Γ defined as

Γ =
Φ

h
.

1.2. The hard turbulence state
The so-called hard-turbulence state [30] is the flow regime which precedes the ultimate one on the scale of
increasing Ra. For aspect ratio and Prandtl numbers of order 1, its onset is typically around Ra = 107 –108

[18] and its heat transfer dependence Nu(Ra) can be described with an effective local scaling Nu ∼ Raγ

such that 2/7 ! γ(Ra) ! 1/3. Nearly all heat transfer measurements Nu(Ra, Pr) reported in the literature
agree within typically a few percents over more than 4 decades of Ra, provided that second order effects and

2 Here ‘classical boundary layers’ refers to the boundary layers of Navier–Stokes fluids.
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corrections are taken into account. These effects include in particular temperature drop across the plates
(eg. [31–34]), finite conductance of the sidewall (eg. [35–37]), dependence with the cell’s aspect ratio (eg.
[38–44]), residual tilt of the cell (e.g. [45–47]), black body radiation (eg. [48–51]), flow multistability (eg.
[52–54]), adiabatic gradient correction [1, 15] and systematic errors on fluid properties.

A number of theoretical models describes the hard turbulence state (eg. see [30, 55–64]). At first order,
the observed Nu(Ra) dependence can be accounted by the elegant model of W Malkus [55, 56] which
predicts:

Nu(Ra) ∼ Ra1/3.

Malkus 1
3 exponent is simply derived writing that i) the heat transfer across the cell is limited by two

boundary layer resistances localized near the interface between each thermal plate and the fluid, ii) the
thermal resistance of these boundary layers is independent of the cell height. The concept of
quasi-independent boundary layers concentrating most of the temperature gradient near the plates is well
accepted3. Most of the alternative models listed above can be seen as corrections of Malkus model that
introduce some coupling between both boundary layers, for instance through a large scale circulation across
the cell or by exchange of thermal plumes crossing the cell. These models allows to account for the
observation of scaling exponents slightly lower than Malkus exponent γ = 1

3 . Incidentally, a

Nu ∼ Ra( 1
3 ±0.006) scaling over nearly 3 decades of Ra can been obtained in a vertically-elongated

Rayleigh–Bénard cell (Γ # 0.23), suggesting that the residual coupling between boundary layers is cancelled
in highly confined geometries [16].

1.3. The ultimate state of convection
At large enough Ra, R Kraichnan predicted that the boundary layers will undergo a turbulent transition,
leading to a turbulent heat transfer across the boundary layers [3]4, with the following heat transfer
dependence:

Nu(Ra) ∼ Ra1/2

(
log Re

)3/2 ∼ Ra1/2

(
log Ra

)3/2 (2)

where Re ∼ Ra1/2 is Reynolds number of velocity fluctuations in the plates’ vicinity [57]. A simple way to
derive the asymptotic Nu ∼ Ra1/2 scaling of the numerator consists in a dimensional analysis which
neglects the contribution of diffusive processes (viscous and thermal diffusivities) in the overall transport
[65]. In practice, a viscous sub-layer always persists at the walls due to the non-slip condition at the
fluid-solid interface. The log correction of the denominator of equation (2) arises from the Re dependence
of the thickness of this viscous boundary sublayer. In a cell with a roughness matching the thickness of the
thermal boundary layer at the transition, the sublayer thickness is no longer Re dependence, the log
correction cancels and the pure Nu ∼ Ra1/2 scaling recovered, as predicted [66] and observed [67, 68].

Variants of Kraichnan’s model, with different corrections from the pure Nu ∼ Ra1/2 scaling, have been
proposed (see eg. [15, 28, 57, 69]) as well as a class of models based on extremum methods, that provides
some bounds for heat transfer law in the fully turbulent case (see e.g. [70–73]). For alternative approaches
of the flow regimes at very high Ra, see for example [61, 63].

1.4. Datasets reaching very high Ra
Table 1 summarizes the main specifications of the Rayleigh–Bénard experiments discussed in the present
paper. For convenience, names picked from previous publications are given to experiments when their
geographical location and aspect ratio are insufficient to identify them unambiguously (3rd column of the
table). The table includes most experiments5 reaching at least Ra # 1013. Data will be restricted within
0.6 ! Pr ! 7 and some data considered as non-Boussinesq by their authors are discarded. The two cells
with rough surfaces reaching very high Ra will not be further discussed [67, 68], but the interpretation
presented in the original paper are consistent with the model proposed in this study6.

3 Bypassing the boundary layer resistance is possible thanks to a radiative heating or cooling of the bulk of the flow (eg see [125, 126]).
4 Below the transition, the boundary layer is not laminar is a classical way. It is indeed fluctuating both in space and time (eg. [78, 127,
128]).
5 The few very high Ra experiments performed in deliberately altered Rayleigh–Bénard cells are not listed here. For instance, some used
screens inserted within the flow and others heaters/cooler attached to the sidewall [16].
6 The heat transfer Nu(Ra) can be improved beyond a threshold Ra without occurrence of the ultimate state: this occurs for instance at
low Ra in rough cells, when the boundary layer thickness reaches the typical height of the roughness (eg. see [129]) which leads to an
increase of the effective surface contributing to heat transfer. Depending on the roughness shape, and therefore on the effective surface
contributing to heat transfer, different Nu(Ra) scalings can appear (eg. see [130]) and they should not be confused with a signature of
the ultimate state. Only two studies have been performed with rough cells at high Ra, in conditions where a heat tranfer transition is
also observed in the corresponding cell with smooth walls: both reported a Nu(Ra) scaling exponent close to 0.5, consistent with the
present model ([67, 68]).
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Some experiments in large water cells reach ‘only’ Ra # 1012 and they will not be discussed due to the
limited range of very-high Rayleigh numbers. Indeed, only a few data with the largest Ra are likely to
experience a heat transfer increase, but possible non-Boussinesq deviations make evidence less conclusive.
Among these water experiments, two do not report a heat transfer enhancement (in Honk-Kong [74] and
Lyon [75]) while one does (in Minneapolis [76]).

Direct numerical simulations (DNS) are not able yet to achieve high-enough Ra to observe a transition
to the ultimate state, at least in 3D and arguably in 2D [12, 13]. Still extrapolation of the shear Re of the
boundary layer at high Ra (eg. see [77, 78]) suggests that this transition is within reach of experiments (see
also [57, 69]). Very large eddy simulations allowed to reach Rayleigh numbers up to Ra = 1015 and gave
clear indication of a possible transition above Ra = 1013 [79].

2. A minimalist model accounting for all observations

We now make three simple conjectures about the transition to the ultimate state of convection, and show
that they allow to account for most experimental observations.

2.1. Conjecture #1: a sub-critical transition to the ultimate state
The transition to turbulence of classical boundary layers has been a very rich and active field of
investigation over more than 150 years [81] and the general properties of this transition have been well
identified (e.g. see reviews [82–86]). In contrast, our understanding of transition in the boundary layers of
Rayleigh–Bénard cells is still in its infancy. For example, there is no consensus on the scenario(s) which
lead(s) to its destabilization, nor on the assessment of the shear stresses appearing in the boundary layers at
given Ra and Pr.

The complexity of Rayleigh–Bénard boundary layers, compared to classical boundary layers, arises from
a number of reasons including the close nature of the flow, the coexistence of energy transfer from
small-to-large scales and vice-versa due to the build-up of a large scale wind associated with a collective
motion of thermal plumes, the unsteady dynamics of the boundary layers even in their laminar state,
feedback mechanisms between thermal and mechanical forcing, the interplay between viscous and thermal
scales. . . In experimental and numerical set-ups, extra difficulties arise from the finite lateral extent of the
convection cell, resulting in non-homogeneity in the horizontal direction. Given these peculiarities, the
theory of classical boundary layer transition is not expected to provide accurate predictions in
Rayleigh–Bénard cells. Still, by lack of well-accepted theoretical alternatives, the classical theory of turbulent
boundary layer provides a customary framework for modeling turbulent boundary layer in convection cells.
Along this line, our model is built from analogies and comparisons with robust qualitative features of
classical transitions.

The transition of a classical boundary layers is most often described as a globally sub-critical process: in
the transitional region, the flow is a mix of laminar and turbulent phases, separated by a sharp interface
evolving intermittently in space and time. In this transitional region, the system response becomes very
sensitive to flow details such as roughness, wall curvature, free-stream turbulence, sound, perturbations. . . a
well-known property called ‘boundary layer receptivity’ [82, 87].

Our first conjecture is that the transition to the ultimate state in Rayleigh–Bénard cells of infinite aspect
ratio is globally sub-critical.

In cells of finite aspect ratio Γ, confinement by the lateral sidewall alters the horizontal homogeneity of
the boundary layers by direct mechanisms (eg momentum and heat exchanges) and indirect ones (eg.
constrains on the large-scale flows and corner flows). This non-homogeneity of the boundary layers will
inevitably produce some smoothing of the transition [78], and can contribute to restore some apparent
continuity of the crossover between the hard turbulence state and the ultimate one.

The expected consequence of this first conjecture on the average heat transfer is summarized by the
sketches of figures 2(a) and (b), which show respectively the compensated Nu(Ra) and local scaling
exponent of Nu(Ra) in convection cells with smooth and rough walls.

An analogy between heat transfer in a convection cell and momentum transfer in a transiting pipe flow
[86, 88] is interesting as both processes are controlled by a balance of diffusive or/and turbulent transport
across boundary layers. This analogy is emphasized by the friction factor Cf (Re) plots of figures 2(c) and
(d), which mirror the subplots a and b. The dimensionless friction factor Cf is defined as the normalized
pressure drop δp per unit length along a pipe:

Cf (Re) =
δp

δpturb
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Figure 2. Heat transfer in the present model of transition to the ultimate state in a Rayleigh–Bénard cells with smooth (a) and
rough walls. (b) Corresponding local scaling exponent of Nu(Ra) expected from the model. (c) Friction factor Cf (Re) for smooth
and rough pipe flows (based on the correlation proposed by F A Morrison [80], page 532). (d) Local scaling exponent of Cf (Re),
highlighting the overshoot at the transition

where δpturb = ρV2/2D is proportional to the pressure drop that would appear along a pipe due to a purely
turbulence drag (D, ρ and V are respectively the pipe diameter, the fluid density and the mean flow
velocity)7. The absence of saturation of Cf (Re) at very large Re (see figure 2(c)) is well understood as the
result of a log correction associated with the viscous sublayer at the (smooth) walls. As discussed earlier, the
same type of correction is present in Kraichnan’s model of the ultimate state, and it is depicted in subplot a
and b.

One key feature of so-called globally sub-critical transitions is the existence of two distinct states,
characterized here by their respective Nu(Ra) or Cf (Re) dependences, displayed in blue and red on figure 2.
The bistable cross-over from one state to the other (yellow region) is expected to be intermittent and highly
receptive to the details of its environment. Thus, over the transitional range, a non-universal cross-over
Nu(Ra) is expected (purple curves). Contrariwise, the ultimate state is expected to have more universal
properties, modulo sidewall corrections in small Γ cells.

We now explore if published data support this first conjecture. In particular we look if the transitions
reported at high Ra in Rayleigh–Bénard cells present evidence of three key features of globally sub-critical
transitions:

(a) A cross-over between two distinct states.

(b) Receptivity of the transition to tiny changes.

(c) Intermittent fluctuations in the transitional range.

7 The Nusselt number is defined by normalizing heat transfer P by a purely diffusive (heat) transfer Pdif (see equation (1)) while the
friction factor Cf normalization is done with a purely turbulent (momemtum) transfer. To make a more complete analogy, heat transfer
P across a convection cell could be normalized by a purely turbulent heat transfer proportional toPturb = Pdif.

√
Ra. Pr. This expression

for Pturb is derived from dimensional considerations imposing than Pturb should not depend on the viscous and thermal molecular
diffusivities ν and κ of the fluid [65].
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Figure 3. Compensated heat transfer in Grenoble Rayleigh–Bénard cells of aspect ratio Γ = 1/2, with sidewalls having 3
different designs from [16]. Datasets acquired in similar conditions share the same symbols (" Pr # 0.76, #Pr # 0.97–0.98,
$Pr # 1.6–1.7, %Pr # 2.2, •Pr # 2.9). . . (a) Vintage-cell. Open symbols: original datasets, Solid symbols: same after an
arbitrary vertical offset of each dataset, to restore Nu(Ra) continuity regardless of prefactor variability produced by flow
multistability, Pr dependence and uncertainties on fluid properties (see text) (b) Vintage-cell (blue), Flange-cell (red) and
Paper-cell (gray) after the same dataset offsetting procedure. This representation illustrates the variability of the abruptness of the
transition from one cell to the other, as a consequence of changes of the cell sidewall designs. It can be compared with the sketch
of figure 2(c). For comparison, the data from Göttingen IIe cell [26] with colder surroundings (closed green triangles) and
warmer surroundings (open green triangles) are plotted, with an arbitrary vertical offset to both. See figure 5(a) for the original
datasets.

2.1.1. Evidence for two distinct states
Super-critical transitions are characterized by a continuous bifurcation between two states without
transitional region. In contrast, sub-critical ones evidence a transitional region between two pure states, here
the ‘hard turbulence’ and ‘ultimate’ states. Thus, the challenge is to find evidence of well defined markers
for the onset and the end of a transitional region. This requires high resolution datasets.

For this purpose, rather than focusing on the Nu(Ra) dependence, it is more informative to focus on its
local scaling exponents γ

γ (Ra, Pr) =

(
∂ log Nu
∂ log Ra

)

Pr

(3)

provided that it can be determined with sufficient accuracy. Indeed in specific experimental conditions
(listed later), three sources of scatter of Ra and Nu data can be circumvented by focusing on local scaling
exponents. These sources of scatter are the uncertainty on fluid properties, the Pr dependence and a
statistical bias due to flow multi-stability. The last bias is caused by rearrangement of the large scale flow
between quasi-stable configurations over long macroscopic diffusive time scales (of order a fraction of
h2/κ # h2/ν) [45, 46, 52, 53, 75, 89, 90]. It has been reported that such changes of configurations
essentially result in heat transfer offsets, up to 7% percents in Γ = 1/2 cell [54] and 14% for Γ = 0.23 [16].
Fortunately, in specific conditions, these 3 sources of scatter are only responsible for nearly constant
prefactor corrections on Nu, so they nearly leave unchanged the local scaling exponent γ of Nu(Ra), at least
over a limited range of Pr.

The specific conditions to benefit from constant prefactor offsets between datasets can often be met by
performing a sequential acquisition faster than the macroscopic diffusive time (to reduce the chances of
large-scale-flow rearrangement), at a fixed mean temperature and density, thus at constant Pr and fluid
properties. A consistency check of the constancy of prefactors is done a posteriori on a log-log plot of
Nu(Ra): datasets obtained in different conditions should collapse thanks to a small vertical offsetting, as
illustrated on figures 3(a) and (b) in the restricted range 0.7 < Pr < 3.

Different mean flow configurations could exhibit different scaling exponents, or the apparent exponent
could be biais by a continuous drift in the flow rearrangement. We never experienced such conditions but
their existence cannot be excluded, and such conditions would reduce the benefit of this method. That is
why the consistency check mentioned above should be performed.

Another advantage to focus on the scaling exponent γ(Ra) rather than Nu(Ra) is the possibility of direct
comparison with the predictions of convection models, which rarely provide precise numerical prefactors.

The plots of figure 4 present exponents γ(Ra) measured in Grenoble cells with different sidewall
properties, all within 0.7 ! Pr ! 7. All the data are from [16]. The exponents at Ra0 were determined by
plotting Nu.Raσ versus Ra and adjusting manually the compensation exponent σ till the operator deemed
the curve horizontal at Ra0. The errorbars on the exponents correspond to the margin of error on σ

7
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Figure 4. Local scaling exponents γ in Grenoble cells having different sidewalls or different aspect ratio (0.7 ! Pr ! 7). These
plots can be compared to the sketch of figure 2(b) corresponding to expectations for a sub-critical transition. The only difference
between the vintage-cell sidewall (subplot (a), with the steepest transition) and the paper-cell sidewall (subplot (d), with the
mildest transition) is a multi-layer paper sheet rolled against the inner stainless-steel sidewall, which results in an increase of
roughness and thermal inertia. Data and detailed description of the cells in [16]. Subplot (e): thick continuous curve: Kraichan
model (equation (5)) with a boundary layer Reynolds number (Re = ReL) estimated assuming than boundary layer velocity
fluctuations amounts for 10% (top curve) and 2% (bottom curve) of the mean velocity of the large scale circulation. Brown dash
curve: Grossmann and Lohse model (from figure 2 of [28]) using the characteristic velocity derived from the authors laminar
model [60] (top curve) or from a 100-times-weaker velocity (bottom curve).

assessed by the operator. The procedure was performed independently by two operators (first and second
authors of [16]) and led to very similar results (the worst errorbar was retained).

One remarkable feature is the common general shape of all γ (Ra) dependences, with a break when
γ(Ra) # 1

3 (or slightly earlier for the Γ = 1.14 cell) interpreted as the onset of the transitional region, and
with a saturation of the exponents within γ # 0.36–0.40, interpreted as the end of the transitional region.
The saturation exponents cannot be accurately determined because the plateau regions are only reached by
a few points. Nevertheless, the non-monotonic variations of the exponent versus Ra and the leveling of
exponents around 0.38 ± 0.02 (at the highest Ra) are robustly observed in the 6 experiments. Two
qualitative markers can thus be clearly identified. The overshoot observed before saturation of γ (Ra) in the
Grenoble-vintage cell corresponds to the inflection point visible on figure 3(b) and is reminiscent of the
inflection point of friction factor Cf (Re) for pipe flows at the transition, as illustrated by figures 2(c) and
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Figure 5. (a) Compensated heat transfer in Göttingen cells for its different coupling between the inner cell and its environment
(Γ = 1

2 and Pr # 0.77 ± 0.10). Unsealed cells in a subcooled (orange triangles) and overheated (fuchsia squares) environments,
and sealed cell in a subcooled (blue disks) and overheated (green stars) environments. Data compiled from [25, 26, 91]. For a
detailed description of the cells, see [26]. (b) Göttingen cells for Γ = 0.33 (red squares), Γ = 0.5 (black disks) and Γ = 1 (blue
diamonds). The transition range Ra∗1 − Ra∗2 determined by the authors of [24] is marked with double sided arrows (the value
given in the text Ra∗2 = 7.1013 is chosen instead of the value Ra∗2 = 6.1013 extracted from their figure 2). Heat transfer data
reported in [24], with an arbitrary few percents vertical offset for visibility. The Nu ∼ Ra0.35 power laws plotted in green illustrate
the scaling used in Grenoble to defined a transition threshold.

(d). The existence of an overshoot followed by a saturation of γ(Ra) is one of the strongest evidence of the
existence of separated Nu(Ra) branches for the hard turbulence and ultimate states. These observations
support the transition pictured by figure 2(a), of a transitional region between two pure states. The precise
extension of the transitional range is delicate to assess precisely by lack of data at large enough Ra (see
double sides arrows) but an estimate is 1.5 decade of Ra.

2.1.2. Evidence of boundary layer ‘receptivity’
We now need to verify if the transition observed at very high Ra is very sensitive to small change of the
set-up, as expected for sub-critical transition of boundary layers.

Receptivity to the sidewall properties. Figure 4.d gathers on a single plot the γ (Ra) dependences
observed in four Rayleigh–Bénard cells operated in similar experimental conditions, with the same top and
bottom plates but which differ by the thickness and material of their sidewalls. The cell with the thinest
stainless steel sidewall (Grenoble-vintage cell) has the most abrupt transition, in particular compared to the
thickwall-cell with its 4.4-times-thicker walls. The mildest Nu(Ra) increase is found in the Grenoble-paper
cell, where the thin stainless steel sidewall is thermally isolated from the convecting fluid by a quiescent layer
of fluid trapped in the pores of a multilayer paper roll (see table 1 for details). Interestingly, the Nu(Ra)
increase in this cell is as mild as the one reported in Göttingen, as can be see on figure 3(b). Thus, the
transition is found to be highly sensitive to small changes in the sidewall construction, which can be seen as
a first evidence of boundary receptivity.

Receptivity to heat and mass exchange between the cell and its environment. The Göttingen cell is not
perfectly isolated from its surrounding and successive modifications, as well as tests in various thermal
configurations, have produced differences in Nu(Ra). Figure 5(a) encompasses heat transfer measurements
for Γ = 0.5, as reported in three papers [25, 26, 91]. The triangles and square symbols correspond to
‘unsealed’ cells (cells I, IIa and IIb), allowing mass exchange through gaps along the sidewall between the
cell and its surrounding environment, while a filling valve has been added to fill/empty the cell IIe used for
the two other datasets (disks and stars). The two upper sets of data (squares and stars) have been obtained
with a mean cell temperature colder by at least 2 K than its surrounding, while the two lower datasets with a
cell hotter than its environment. Interestingly, both mass and thermal exchanges with the environment
result in a heat transfer change exceeding 10%, that is larger than the increase of Nu attributed to the
transition to the ultimate regime in these cells. It is difficult to speculate on the various physical
mechanisms which produce such significant variations of heat transfer from one cell to the other, in
particular when the apparent Nu(Ra) scaling becomes lower than in the regime at lower Ra. Still, these
datasets suggest that the heat transfer, and therefore the boundary layer which controls it, becomes very
sensitive to perturbations coming from the cell environment.

Receptivity to change of aspect-ratio Γ. It is delicate to define precisely the Ra numbers for the onset and
end of the transitional region. Indeed, most definitions tend to depend on models or expectations of the
flows before and after the transition, and there is consensus on neither one. In Grenoble, conservatively, a
unique characteristic transition RaU was defined [16]: it corresponds to the Rayleigh number for which
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γ(Ra) reaches the arbitrary threshold exponent γ(RaU) = 0.35. This threshold exponent is chosen to be
intermediate between the largest exponent predicted for hard turbulence state (γ = 1

3 ) and the lowest
exponent at which γ(Ra) saturates at very high Ra, after the transition. An aspect ratio dependence
RaU ∼ Γ−2.5±0.5 was reported within 0.23 & Γ & 1.14 [16]. It is clear from figures 5 and 12(a) from [16], as
well as present figure 4 that the onset and end of the transitional region have a nearby Γ dependence. The
Göttingen and Santa-Barbara groups interpret their measurements using the Grossman–Lohse model, and
reciprocally their experimental data play a key role in the developments and parameters fitting of this model
(eg. see [28, 92]). This synergy allows the former to determine lower and upper bounds Ra∗1 and Ra∗2 for
transitional range, based on expectations of the scalings before the transition (they expect it to be
significantly lower than Malkus’ 1

3 ) and after the transition (expected to be 0.38, without overshoot of
γ(Ra)). For reference, an alternative interpretation of same measurements based on Malkus scaling, rather
than Grossman–Lohse’s, is proposed in [14]. Figure 5(b) shows the determined bounds Ra∗1 and Ra∗2 for
Γ ∈ {0.33, 0.5, 1}. The authors found a weak dependence for Ra∗1(Γ) [27], but a significant one for Ra∗2(Γ),
with a Ra∗2 ∼ Γ−3.26 scaling [24]. For comparison, the figure also shows in green the Nu ∼ Ra0.35 scaling
used in Grenoble to define the transition threshold RaU. Within accuracy, this threshold definition would
have lead to RaU # Ra∗2. Strikingly, both scalings of RaU(Γ) and Ra∗2(Γ) are compatible suggesting a
common underlying physics in Grenoble and Göttingen. The difference of the prefactors of both scaling
laws is addressed later.

In all cases, the present observations are a third set of evidence that the transition is highly sensitive to
the details of the cell, here lateral confinement by the sidewall. Later in this paper, we propose a quantitative
physical interpretation for this aspect ratio dependence.

To summarize, we have three independent sets of evidence of the great receptivity of transition thanks to:

• Change of sidewall material and geometry, systematically tested in Grenoble.

• Change of parasitic heat and mass exchanges with the surrounding of the cell, reported in Göttingen.

• Change of the cell aspect ratio, with consistent scalings of the transitional Ra in Grenoble and
Göttingen.

For reference, we recall that three systematic changes of plate properties had little influence of the
transition: plate material modified from copper to brass [68], plate with an uneven surface [93] and plate
unpolished by sand-blasting (unpublished).

2.1.3. Evidence of intermittent fluctuations
Sub-critical transitions exhibit so-called intermittent fluctuations in the transitional region, due to the
spatio-temporal competition between the laminar and turbulent states. These fluctuations have been
reported in the literature even before Reynolds seminal article on pipe flow transitions [94]. The continuity
of the friction factor Cf (Re) in the transitional range of pipe flows reflects the mean properties of these
underlying macroscopic fluctuations (e.g. see [95]). By analogy, we need to verify if similar intermittent
fluctuations are present in Rayleigh–Bénard cells concomitantly with the heat transfer enhancement
attributed to the ultimate regime. We review below the existing measurements of local and integral
fluctuations at the transition8.

Local temperature fluctuations. Non-invasive measurements within the boundary layers are very delicate
due to its small thickness (typically λ = h/2.Nu # 0.2 mm at the transition in Grenoble 20 cm-high cells
and Göttingen 224 cm-high cell). A direct test of the flow state of the boundary layer is therefore difficult.
Nevertheless, a probe can be positioned right above the boundary layer. In Grenoble, such a probe sees extra
fluctuations at the transition, with a change of second order statistics, as reported in [15] and later
confirmed independently [96] with a probe 10 ten times smaller, having a sensitive spot of size 17 µm.

The Göttingen group has also reported local temperature measurements above the bottom boundary
layer. In contrast with Grenoble, no signature of a transition was found and it concludes that the spectral
shape of temperature fluctuations is universal [97], in other words that the transition to turbulence of
thermal boundary layers does not lead to any change in the second order statistics of the temperature above
the boundary layer. This surprising observation may result from the positioning the sensor close to the
sidewall, contrary to the positioning chosen in Grenoble near the plates axis. The stronger large-scale wind
present in Gottingen cell at high Ra (later discussed) may also contribute to hide a transition of the thermal
boundary layer.

8 In the context of Rayleigh–Bénard convection over rough plates, not discussed in the present paper, intermittent bursts of coherent
plumes have been reported, as well as increase of heat transfer and root-mean-square (rms) fluctuations of the velocity above a tran-
sition threshold associated with roughness height [75]. As suggested by J Salort (private communication), the present interpretation
framework may be relevant in this case too.
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Figure 6. Compensated spectral density P∗ of the slow temperature fluctuations of the bottom plate (full symbols) and
corresponding quantity in the bulk of the flow (stars) in a cell of aspect ratio Γ = 1

2 . The increased fluctuations observed for
Ra ' 3 × 1012 in the bottom plates -compared to the core of the flow- evidence the emergence of fluctuations of thermal
resistance across the bottom boundary layer. Data from [98].

Integral fluctuations of the heat transfer. Taking advantage of the very large thermal diffusivity of copper
at low temperature, which is nearly 4 decades larger at 6 K than at 300 K, the spatially-averaged fluctuations
of the heat leaving the bottom plate are proportional to fluctuations the plate temperature, which can be
resolved [98]. The spectra of the integral fluctuations of heat flux (in practice the bottom plate
temperature) exhibit a low frequency plateau followed by a cut-off. As customary in shot noise
characterization, e.g. in photonic and electronic transport, the power spectral density level of the low
frequency the plateau can be used to characterize the integral fluctuations. In practice, this density (in
K2 Hz−1) is normalized by ∆2h2/ν to become a dimensionless quantity labelled P∗ in figure 6 [98]. The
Grenoble group emphasized that their observed Nu(Ra) transition is concomitant with the emergence of
strong fluctuations of the heat flux across the bottom boundary layer, as illustrated by figure 6. Besides,
these emerging fluctuations are highly non-gaussian [98]. If they were produced from a large number of
degrees of freedom (e.g. numerous unstable plumes), the central limit theorem would have gaussianized
them. In contrast, non-gaussianity is consistent with the picture of a few competing laminar and turbulent
regions, each having a significant contribution to the total heat transfer. This picture is highly reminiscent
of the intermittent fluctuations associated with transition of classical boundary layers (eg. see [99]). Still,
one cannot reject the original interpretation proposed in [98] which attributes the increase of fluctuations
to intrinsic turbulent dynamics of the boundary layer in the ultimate state, rather than attributing them to
the intermittent switching between the hard turbulence state and the ultimate state.

To summarize, we listed indirect evidences of the intermittent fluctuations of the boundary layer at the
transition, both from local and integral measurements conducted in Grenoble. In contrast, local
temperature measurements close to the plate-sidewall corner of Göttingen cell did not evidence any
statistical signature of a transition.

2.2. Conjecture #2: macroscopic boundary layer eddies control the transition
Classical turbulent boundary layers are often described, using a similarity-assumption, as a continuous
superposition of eddies of sizes z positioned at a distance z from the wall. At first approximation, this
phenomenological picture is successful in accounting for the famous log law-of-the-wall of the velocity
profile and for the constant momentum flux across the boundary layer [100]. In the ultimate state,
following Kraichnan’s original model, we thus expect that a similar superposition of eddies prevails to
sustain a turbulent mean heat transfer away from the plates in the vertical direction. The conjecture below
is based on this simple analogy.

In Rayleigh–Bénard cells, a dynamical network of line-shape plumes forms on both plates. At the
bottom plate for instance, plumes rise, accelerate, swirl and cluster, while colder fluid flows toward the plate
(when α > 0) balancing mass fluxes (eg see [79, 101–106]). This results in unsteady swirls or coherent
vortical structures of different sizes and finite lifetime above the plates [107–109]. The largest of these freely
evolving structures will be named boundary layer eddies, or in short bl-eddies. As illustrated symbolically in
two-dimensions (2D) by figure 7, we expect that the size L of bl-eddies to be either constrained laterally by
the vertical sidewall in narrow cells (say Γ ! 2) or vertically by the opposite horizontal plate in wide cells
(Γ ' 2), resulting in a Γ-dependent characteristic length scale of order O

(
min(h/2,Φ/4)

)
. For

convenience, we define L as:
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Figure 7. Symbolic 2D illustration of the effect of lateral versus vertical confinements on the size of the largest unsteady vortical
coherent structures above the plate in cells of aspect ratio ∼0.5, 1, 2 and 4 (model). The largest of such structures, named
bl-eddies, are predicted to become unstable at high Ra, marking the transition to the ultimate state. The (unsteady) wind is
depicted by the gray dashed line. In contrast with bl-eddies, the wind is a highly confined flow mode that preserves its spatial
coherence across the whole cell and time coherence over several turn-over times.

L = min

(
h
2

,
Φ

4

)
. (4)

Our second conjecture states that these bl-eddies play a key role in the transition to the ultimate regime,
the transition onset being associated to an instability determined by the characteristic Reynolds number
ReL of these structures.

We now explore if published data support this second conjecture, in particular:

(a) An instability of bl-eddies occurring at the observed critical Rayleigh number.

(b) A transition controlled by the characteristic length scale L defined above.

2.2.1. Instability of bl-eddies at the transition
We need to check if the transitional Ra is consistent with an instability of bl-eddies. For that purpose, we
need to estimate their typical ReL when the heat transfer transition is observed.

In cells of aspect ratio Γ of order unity, a large scale circulation wind (with characteristic Reynolds
number Rewind # V · h/ν) fills the entire volume of the cell. This wind sweeps the rising (resp. falling) hot
(resp. cold) plumes and benefit from their buoyancy to sustain its prominence over the velocity field inside
the cell [77, 89, 90, 110, 111]. The wind strength has been extensively studied at very large Ra (eg [15, 16,
112, 113]) and was found to be hardly altered by the transition.

Thus, the mean wind velocity V is a first gross overestimate of the characteristic velocity of bl-eddies. A
tighter overestimate is obtained from the characteristic velocity fluctuations of the wind over the boundary
layers. The root-mean-square fluctuations of the wind velocity are known to amount for few tens of
percents of its mean value (we arbitrarily take 25% below) [77, 89, 90, 110, 111]. Thus, for Γ # 1 and
Ra = 1011, a bl-eddy of size L = Φ/4 will have a typical Reynolds number of

ReL =
L · VL

ν
! (Φ/4) × (V.25%)

ν
=

Rewind

4
× 25%

and using the order of magnitude estimate Rewind #
√

Ra/10, and taking Ra = 1011, we find

ReL !
√

Ra/160 # 2000.

Typical transitional Reynolds number of classical shear flows [114] are in the few hundreds range9. The
above overestimate of ReL is therefore compatible with the occurrence of transitions in Grenoble and
Trieste cells at Ra where a heat transfer enhancement is reported10.

A priori, one could argue that it is difficult to discriminate in practice between the above interpretation
and the most common alternative interpretation, namely that the transition is directly triggered by the shear
produced by the large scale circulation wind on the plates11. In fact, discriminating between both
interpretations is possible because ReL and Rewind are predicted to be associated with different physical
processes that can be varied independently. In particular, three experimental tests undertaken in Grenoble

9 Plane Couette flows evidence transient turbulent spots above Re # 280, are unconditionally stable below Re # 325 and exhibit fea-
tureless turbulence above Re # 415 [85]. The same order of magnitude are found in other shear flows such as Taylor–Couette, torsional
Coutte et plane Poiseuille channel flow [114].
10 To our knowledge, no measurement below Ra = 4.1011 has been reported from Gottingen’s Γ# 1 cell. It would be interesting to
perform very high resolution measurement in this range to examine the possibility of a hindered transition.
11 This wind-shear interpretation, first proposed by Chavanne and collaborators [4], is a cornerstone of the model/experiment
ecosystem elaborated by G Ahlers, E Bodenschatz, D Lohse and collaborators (eg. [26, 28]).
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have evidenced a robustness of the transition RaU against modifications of Rewind. Independent
modifications of Rewind were produced (1) by cell tilting, (2) by Pr variations12 and (3) by insertion of 4
clogging screens in the flow at a distance ( 2L from the plates [16]. These experimental observations seem
hardly consistent with a transition instability triggered by a wind-shear in Grenoble. Besides this wind-shear
scenario cannot explained the diversity of experimental results reported by various groups. The convergence
of experimental findings against this pure wind-shear model of the transition has motivated the
development of this second conjecture.

Quantitative consistency between this interpretation and Kraichnan’s original prediction can be
examined, while being mindful of Kraichnan warnings that his model is not expected to be accurate right
above the transition. From equation (2) and (3), the scaling exponent γ predicted by Kraichnan is found to
be

γ = 0.5 − 3
4 ln Re

, (5)

(we took Re ∼ Ra1/2). Kraichnan’s defines Re from the rms velocity at mid-height and from the
characteristic length scale h/2. His definition matches the definition of ReL in large aspect ratio cells
(finite-Γ are not considered by Kraichnan), and leads to γ = 0.4 for ReL # 1800 and γ = 0.38 for
ReL # 500. The quantitative agreement with the previous estimates and the measured exponents are found
to be good.

Figure 4(e) displays the exponents estimated with Kraichnan model (equation (5)) generalized to finite
Γ taking Re = ReL, and assuming that the typical velocity of bl-eddy amounts respectively for 10% and 2%
of the typical velocity of the wind. We recall that Kraichnan model is not expected to be accurate right
above the transition, according to its author. Predictions of the Grossmann and Lohse model [28] are also
displayed for reference.

In the next section (conjecture #3), we will examine how a strong enough wind can alter adversely the
bl-eddies instability, and explain the absence or limited heat transfer enhancements reported in some cells.

2.2.2. Evidence of a characteristic length scale L controlling the transition
Assuming for now that the wind does not alter significantly the strength of the bl-eddies, ReL is expected to
only depend on the macroscopic length scale L, which implies on dimensional grounds

ReL ∼ F
(

Ra · L3

h3
, Pr

)

where F is an unknown function13. Assuming that the transition to the ultimate regime occurs when ReL
reached a critical Reynolds number, and using equation (4), we immediately see that the corresponding
prediction for the transitional Rayleigh number RaL(Γ) scales as:

RaL ∼
(

h
L

)3

∼ max(1,
23

Γ3 ). (6)

As mentioned earlier, the transition Rayleigh number is observed to scale roughly like ∼ Γ−3 both in
Grenoble [16] and Göttingen [24] within 0.23 & Γ & 1.14. This is consistent with the prediction above.
This scaling in mind, it is interesting to return to the Eugene/Trieste cells of aspect ratio Γ = 0.5, 1 and 4 to
see if a similar Γ dependence can be discerned, although no evidence of transition was claimed by the
authors of these studies. A close look at heat transfer data of figure 8(a) allows to single out two transitional
Ra arbitrarily defined (for convenience) from the minimum value of Nu.Ra−1/3 versus Ra for Γ = 1 and 4,
and to define a third one based on the increase of data scatter above Ra # 1012 in the Γ = 0.5 cell. All the
threshold Rayleigh numbers from Grenoble (RaU), Göttingen (Ra∗2) and Eugene/Trieste are gathered in
figure 8(b) with an arbitrary vertical offset applied to each subgroup of data. This important plot carries
two (new) pieces of information.

First, a RaL ∼ Γ−3 scaling still holds for 0.23 ! Γ ! 1.14, which suggests that the increase of scatter in
the Γ = 0.5 Eugene dataset can be interpreted as the signature of a damped, hindered or frustrated
transition. By analogy, the significant increase of scatter observed in the Chicago data for Ra # 2 × 1012 (see

12 The wind strength Rewind was varied at constant Ra taking advantage of its ∼Pr − 0.75 dependence.
13 F is expected to have a weak Pr dependence within 1 & Pr & 3 to account for experiments (see figure 7(a) of [16]) and a
power law dependence of exponent # 0.4–0.5 versus α.∆.g, and therefore versus Ra · L3

h3 , as most Reynolds numbers in turbulent
Rayleigh–Bénard convection. The ‘free-fall model’ provides a justification of this dependence. A plume with zero initial velocity and
experiencing a constant buoyant acceleration of g.α.∆/2 will reach at a distance L/2 from the plate the velocity

(
L.g.α.∆/2

)1/2
, lead-

ing to the scaling law ReL ∼ Ra1/2
( L

h

)3/2
. The Pr dependence has been omitted: it is probably not reliable in this free-fall model which

ignores the diffusive processes such as those at play in plumes interaction. Corrections associated with the material properties of the
sidewall are omitted here.
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Figure 8. Aspect ratio dependence of the transitional Ra for Pr ∼ 1. (a) Compensated Nu for the Eugene/Trieste experiments.
The vertical arrows mark the three threshold Ra defined in the present study (see text) (b) Transitional Ra versus aspect ratio. An
arbitrary vertical offset is applied to each sets of experiments to highlight their aspect ratio dependence irrespective of the
differences in transition threshold definition and Pr. The lines correspond to RaU ∼ Γ−3. For the Göttingen dataset, the Ra∗2
threshold determined by the authors has been used.

Figure 9. Very high Ra experiments of aspect ratio Γ # 1. The three Brno datasets with open symbols, reported in 2019 [10],
have been acquired at constant temperature and pressure. Among these three datasets, experimental conditions for which the
saturation curve is crossed are not displayed here because a two phase flow appear, as acknowledged in the original publication.
Also the Brno data acquired above roughly Ra # 3 × 1014 do not fulfill the Boussinesq conditions according to the authors. The
Trieste data are restricted to those fulfilling the Boussinesq conditions according to their authors. (a) Compensated heat transfer
(b) Corresponding parameter space Ra–Pr.

figure 3 in [59] or figure 6(c) in [16]), and possibly in Brno 2019 data [10] (see figure 9(a)) can be
interpreted as hindered transitions too. This calls for a direct exploration of the boundary layer flow in these
experiments using alternative techniques such as fluctuations measurements.

Second, obviously a RaU ∼ Γ−3 (or Ra∗2 ∼ Γ−3) scaling cannot hold up to very large aspect ratio Γ,
because it would have unphysical implications, eg that the sidewall confinement effect remain relevant for
Φ ) h, and that the transition Ra could be significantly reduced. Therefore for large enough Γ, one expects
the transition Ra to saturate at some constant value. The figure 8(b) plot suggests that the saturation occurs
above Γ # 2–3. This saturation supports our prediction that the characteristic length scale controlling the
onset of the transition Rayleigh number in cylindrical cells is not the height h but rather L ∼ min(h,Φ/2).

We conclude by listing three consequences of the model:

• Besides explaining the unexpected Γ dependence of the transitional Ra, the existence of bl-eddies
could explain the observed great receptivity to sidewall details in confined cells (Γ ! 2), because
bl-eddies have a direct interaction with the sidewall. We therefore predict that sidewall receptivity of
the transition to the ultimate regime will gradually vanish above Γ # 2–3.

• The universal properties of laterally-unconfined ultimate state should be sought for Γ ' 2–3 typically.
The Trieste Γ = 4 experiment suggests that an universal transition can be reach at Rayleigh number as
low as RaL # 2.1010 in laterally unconfined Rayleigh–Bénard cells, at similar Pr.
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• From a practical point of view, a Γ # 2 aspect ratio appears as a good compromise for the
construction of new cells, as it maximizes the range of Ra where a transition can be observed with
limited sidewall effects.

2.3. Conjecture#3: transition routes and the antagonistic properties of the wind
We still lack a phenomenological understanding for one important issue: some cells have pronounced heat
transfer enhancement while others have not at similar Ra. This issue is illustrated on figure 9(a) with
datasets of Γ # 1 cells from Trieste, Grenoble, Göttingen and Brno (see figure 9(b) for the legend). Surely, it
would be interesting to contribute to the debate on the interpretations of the Göttingen versus Brno
datasets [7, 8, 10] in light of the present model, in particular on the evidences for and against the
occurrence of a transition in both experiments. But the most striking issue to resolve is the difference
between pronounced and/or early heat transfer enhancements (Grenoble and Trieste) and, on the another
side, absent, hindered and/or late transitions (Brno and Göttingen). The same striking issue also exist for
Γ = 0.5 cells, and the rest of this section is also relevant to these other geometries.

It is important to first stress that, rigorously speaking, almost no experiments discussed in the present
work are in contradiction, because they are all obtained in different parts of the Ra–Pr parameter space (see
figure 9(b) for Γ # 1, and figure 6(a) from [16] for Γ = 0.5). In other word, there is no contradiction
between all published data if one recall that the heat transfer Nu depends on three parameters: Ra, Pr and
Γ. The only exception to this statement is the Γ = 1 datasets of Trieste and Brno, which roughly overlap
along a curve in Ra–Pr space but significantly differ in heat transfer trend (see figure 9). This notable
apparent contradiction may be a sign that the curve is close to a separation between two regions in Ra–Pr
space, as developed below. Further dedicated investigation would be interesting, for instance by
independent variation of Ra and Pr, as performed in Grenoble at lower Ra (see figure 9(b)).

In cells of large aspect ratio, the concept of large-scale wind is ill-defined (eg see [115–117]), and the
wind can be seen a freely evolving large-scale vortical structure fulfilling our definition of a bl-eddy. In cell
of finite aspect ratio (say for Γ ! 2), the wind which settles across the cell is distinct from the freely
evolving bl-eddies. This wind is topologically well constrained by the cell walls and it has its own space-time
dynamics. We need to consider how the wind can alter the boundary layer and thus the conditions for a
transition.

Our third conjecture is that the wind which settles across convection cells of finite aspect ratio can have
antagonist effects of the strengthening of the bl-eddies, and therefore on the transition.

• A weak wind across the cell will not alter significantly the buoyant development of bl-eddies, and
therefore will not alter their instability threshold. At a given Ra, the wind is known to weaken as Pr
increases, at least in the range of parameters of interest of the present study [15, 113], with a
dependence more or less consistent with the Re ∼ Pr−2/3 or Re ∼ Pr−5/7 scalings of the mixing length
theories [59]. The Grenoble datasets are obtained at larger Pr than the others (eg. see figure 9(b)), and
thus are most prone to be in this ‘weak-wind limit’. Given the reported robustness of the critical RaU

against variations of Rewind, this weak-wind limit is most likely reached in Grenoble, and by analogy in
Trieste. Surely, increasing Pr to infinity at constant Ra will inevitably restore, at some point, the
stability of the boundary layer by reducing the bl-eddies Reynolds number ReL.

• An intermediate wind settling across a cell is expected to alter adversely the buoyant development of
bl-eddies, and therefore to lead to an hindered or delayed transition. This prediction is based on
evidences that a weakly forced flow over a thermally active laminar boundary layer lower heat transfer
by disrupting the development of coherent plumes-like structures (eg. see [118–121] and reference
within). At a given Ra, this intermediate case is expected to prevail at lower Pr (hence larger Rewind).
This is consistent with Ra–Pr parameter space of the Chicago, Eugene and Brno experiments, which
all happen to exhibit scatter or irregularities of Nu(Ra) around Ra = 1012 but no significant
enhancement of Nu(Ra). The Göttingen experiment may as well be in this case below Ra # 1015.

• Finally, a high enough wind will inevitably destabilize the boundary layer and feed energy (back) into
the bl-eddies. The Göttingen experiment may eventually reach this point at the largest Ra. It would be
interesting to test this by varying Rewind at given Ra.

A consequence of this third conjecture is the existence of different routes to the ultimate state in finite-Γ
cells: wind-immune, wind-hindered and wind-assisted routes, as summarized by figure 10. This multiplicity
of routes is reminiscent of classical boundary layers transition for which different paths to the turbulent
state have also been identified [82, 86, 122]. Although the primary instability leading to the transition may
differ between these routes, they lead to the same final ultimate state. One of the strongest experimental
evidence supporting the existence of a single ultimate state is the common aspect-ratio dependence of the
transition Ra reported in Grenoble, Göttingen and possibly in Trieste/Eugene cells.
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Figure 10. Schematics summary illustrating the different routes to the ultimate regime in a Rayleigh–Bénard cell. The frontier
between the different regions are indicative and aspect-ratio dependent.

3. Summary of the model

The motivation of this study was to sketch out a minimalist model able to reconcile all very high Rayleigh
numbers experiments. A simple phenomenological model meeting this objective has been elaborated based
on 3 conjectures, all directly elaborated from present knowledge of transitions in classical boundary layers:

• The transition is globally sub-critical, as depicted in figure 2(a), with well defined hard-turbulence
and ultimate-state branches.

The heat transfer scaling exponent for the upper branch is around γ # 0.4, consistently with Kraichnan
prediction. The ultimate branch is reached only in few experiments. The non-universal cross-over between
the two states is highly receptive to details of the cell, in particular from those coming from the lateral wall
in small aspect ratio cells (Γ < 2).

• The boundary layer transition is associated with an instability of unsteady macroscopic structures,
that we called boundary-layer eddies, or bl-eddies.

Wide and narrow cells should be differentiated, as depicted symbolically in figure 7. In wide cells (say
for Γ ' 3), the bl-eddies typical size is set by the inter-plate distance (as in Trieste Γ = 4 cell). In narrow
cells (Γ ! 2), the bl-eddies typical size is set by the sidewall lateral confinement.

• The large-scale-circulation wind which settles in cells of finite aspect ratio can have antagonist effects
on the boundary layer stability, resulting in 3 routes to the ultimate state (wind-immune,
wind-hindered and wind-assisted), associated with different range of control parameters Ra, Pr and Γ,
as illustrated on figure 10.

For a weak wind, the transition occurs when the ReL of bl-eddies reaches some threshold (Grenoble and
Trieste cells). At smaller Pr and/or larger Ra, the wind strengthens and alters the dynamics of these eddies:
the wind damps, prevents or delay the transition (Chicago, Eugene, Brno and Göttingen cells). Nevertheless,
the shear from a strong enough wind will inevitably promote a transition again at high enough Ra (possibly
in Göttingen).

Although mostly phenomenological, this model has testable predictions proposed through the text. It
introduces a number of new ideas and concepts in the context of Rayleigh–Bénard convection, such as
boundary layer receptivity of the transition, the adverse effect of wind on the transition, the existence of
different routes to the ultimate state, the macroscopic length scale L and the resulting concept of laterally
confined (Γ ! 2) vs. unconfined (Γ ) 2) ultimate state.

The existence of bl-eddies have been ‘post-predicted’ to reconcile experimental results, but we lack direct
experimental or numerical evidence of their existence. Among the questions which remain open is how to
discern the bl-eddies in DNS and visualization over an unsteady background flow.

Surely, the long history of studies on the transition of classical boundary layers, since Darcy, Hagen and
Reynolds pipe experiments [81, 83–86, 123, 124] urges for circumspection and modesty when building a
model of boundary layer transition. After more than one century of research, the threshold of the transition
remains notoriously difficult to predict in pipe flows from the real world, and there is no reason why the
Rayleigh–Bénard version of this transition, with lateral confinement and buoyancy, should be simpler. The
present model is surely oversimplified, unfinished, and imperfect like existing models for the ultimate state.
Nevertheless, it should be seen as a first attempt to propose an unifying and consistent picture
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encompassing the diversity of results reported at very high Rayleigh numbers. Hopefully it can initiate the
development of more refined models having a similar global perspective.
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