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Miniature heaters are immersed in flows of quantum fluid and the efficiency of heat transfer is monitored
versus velocity, superfluid fraction, and time. The fluid is 4He helium with a superfluid fraction varied from
71% down to 0% and an imposed velocity up to 3 m/s, while the characteristic sizes of heaters range from
1.3 μm up to a few hundreds of microns. At low heat fluxes, no velocity dependence is observed, in agreement
with expectations. In contrast, some velocity dependence emerges at larger heat flux, as reported previously, and
three nontrivial properties of heat transfer are identified. First, at the largest superfluid fraction (71%), a new heat
transfer regime appears at non-null velocities and it is typically 10% less conductive than at zero velocity. Second,
the velocity dependence of the mean heat transfer is compatible with the square-root dependence observed
in classical fluids. Surprisingly, the prefactor to this dependence is maximum for an intermediate superfluid
fraction or temperature (around 2 K). Third, the heat transfer time series exhibit highly conductive short-lived
events. These cooling glitches have a velocity-dependent characteristic time, which manifest itself as a broad
and energetic peak in the spectrum of heat transfer time series, in the kHz range. After showing that the velocity
dependence can be attributed to the breaking of superfluidity within a thin shell surrounding heaters, an analytical
model of forced heat transfer in a quantum flow is developed to account for the properties reported above. We
argue that large scale flow patterns must form around the heater, having a size proportional to the heat flux (here
two decades larger than the heater diameter) and resulting in a turbulent wake. The observed spectral peaking of
heat transfer is quantitatively consistent with the formation of a Von Kármán vortex street in the wake of a bluff
body nearly two decades larger than the heater but its precise temperature and velocity dependence remains
unexplained. An alternative interpretation for the spectral peaking is discussed, in connection with existing
predictions of a bottleneck in the superfluid velocity spectra and energy equipartition.
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I. INTRODUCTION AND MOTIVATION

Below its superfluid transition temperature, liquid helium
4He enters the He II phase which displays amazing quantum
properties at large scales [1]. In particular, this fluid can flow
without viscous friction, it hosts propagating heat waves—
called second sound waves—and is extremely efficient in
transporting heat.

Quantum fluids [2] such as He II are also characterized by
the existence of quantized vortex filaments which concentrate
all the vorticity of the superfluid [3]. Although the presence of
superfluid vortices reduces the efficiency of heat transport, the
latter remains much more efficient than standard convection
and diffusion heat transport in most situations [4].

*pantxo.diribarne@univ-grenoble-alpes.fr
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A famous model to describe heat transport and hydro-
dynamics of quantum fluids at finite temperature is Tisza
and Landau’s two-fluid model, which describes He II as an
intimated mixture of an inviscid superfluid component and
a viscous normal component that contains all the entropy
of the fluid [5]. The local relative density fraction of both
components depends on the local temperature.

Thus, steady heat transport can be described as a flow of
normal component carrying its entropy. When this mass flow
is balanced by an opposite mass flow of superfluid, we have
a so-called thermal counterflow. This situation occurs, for
instance, in the vicinity of heaters and coolers, and it has been
extensively studied in pipe and channel geometries [4].

Contrary to the situation in classical fluids, forced con-
vection in He II has long been assumed not to improve
measurably heat transfer, because the classical convection and
diffusion mechanisms are far less efficient than counterflows
in transporting heat, at least in subsonic flows. The special
case of flows reaching or exceeding the velocity of second
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sound, or even first sound in helium (typically 16.5 and
227 m/s at 2 K), is not addressed in the present study nor
in others to the best of our knowledge.

Yet, in a recent instrumental study, Durì et al. [6] reported
that an external (subsonic) flow can favor heat transfer from
a hot wire, but the underlying mechanism was not addressed.
This paper reports a study of forced heat transfer from heaters
immersed in a subsonic flow of superfluid and reveals a rich
phenomenology.

Related previous studies are reviewed in Sec. II. The ex-
periments are presented in Sec. III, in particular the subsonic
flows and the various miniature heaters used. Sections IV–VI
report three key properties of forced heat transfer in He II:
the existence of metastable conduction states, velocity and
temperature dependencies of heat transfer, and the existence
of short-lived cooling events, named cooling glitches. Sec-
tion VII presents analytical models accounting for some—but
not all—observations.

II. STATE OF THE ART

In the absence of an external flow, He II heat transfer stud-
ies are often reported in the thermal counterflow literature. In
particular, the modeling of nonplanar geometries has recently
been the subject of a number of numerical and theoretical
studies, most of which predict nontrivial behaviors.

Saluto et al. [7] have used a so-called hydrodynamical
model [8] to assess the behavior of the vortex line density of
a counterflow between two concentric cylinders at different
temperatures. From their initial model they derived a modified
Vinen equation which, in addition to the original source and
sink terms, features a vortex diffusion term. In the presence
of a nonuniform heat flux, the model predicts a nonuniform
vortex line density (as does the original Vinen model) with
a diffusive migration of vortices produced in the most dense
region to the most dilute region. The main consequence of this
addition is that if the heat flux is varied faster than the typical
diffusion time, the local vortex line density has an hysteretic
behavior.

Using the vortex filament method Varga [9] has shown
that in spherical geometry (using a point source), for bath
temperatures larger than 1.5 K, all initial seeding vortices are
annihilated on the virtual heat source. For smaller tempera-
tures, a self-sustained vortex tangle was generated but, due
to computational limitations, it could not reach a stationary
state. Inui and Tsubota [10] have run a similar numerical
simulation with a different approach for the core: Instead of
a point source, they simulated an actual spherical heater (of
a finite diameter) using suitable boundary conditions for the
normal and superfluid velocities. Contrary to Varga [9] they
show that they are able to obtain a self-sustained vortex tangle
at most temperatures, with a nontrivial density profile.

Rickinson et al. [11] used the same vortex filament method
to model the vortex tangle of a cylindrical counterflow, with
a finite inner diameter. What they find is that in order to
reach a stationary state, they need to specify a radius depen-
dent friction parameter between the two components of He II
(which somewhat mimics the effect of an actual temperature
gradient). The latter trick was inspired by a previous finding
[12] that showed that using the coarse-grained Hall-Vinen-

Bekarevich-Khalatnikov (HVBK) model it was necessary to
take the variations of the fluid properties around the wire
into account, in order to reach a stationary state in cylindrical
geometry. Rickinson et al. [11] showed the standard scaling
for the vortex line density L as a function of the relative
velocity vns between the two components holds: L ∝ vn

ns with
n ≈ 2. This is an important result in that it allows for the
use of standard macroscopic laws for the heat transfer around
nonplanar surfaces. Among others, it supports a posteriori the
use of the conduction function when simulating the heat flux
around a cylindrical heater [6].

Now we turn to the problem of heat transfer in He II in
the presence of an external flow, for which the literature is
much sparser. First, two experimental studies in pipe flows
are worth mentioning. Johnson and Jones [13] have mea-
sured the heat flux through a tube in the presence of both
temperature and pressure gradients and concluded that the
presence of a pressure driven flow inside the tube some-
what increased the mutual friction between the superfluid and
normal components, thereby depleting the efficiency of the
heat transfer. Rousset et al. [14] measured the temperature
profile around a heater that was placed in the middle of a
tube traversed by a subsonic He II flow. They were able to
account for most of the results using simple entropy conser-
vation model and isenthalpic expansion corrections (see also
Refs. [15–17]).

A third experimental observation is directly related to the
present one. In an instrumentation study, Durì et al. [6] re-
ported that an external flow increases the heat transfer around
a hot-wire anemometer, which is basically an overheated wire-
shaped thermometer. They were able to account quantitatively
for the heat transfer at null velocity assuming that standard
counterflow laws still hold in cylindrical geometry despite
very high heat flux but did not propose any explanation for
the heat transfer improvement due to the external flow.

To the best of our knowledge, there has not been any at-
tempt at studying specifically the effect of an external flow on
the heat transfer at the interface between a solid body and He
II. This paper attempts to fill these gaps in our understanding
of heat transfer in superfluid flows.

III. EXPERIMENTAL CONDITIONS

This study uses three different miniature heaters immersed
in flows of He II to assess the properties of intense heat
transfer in subsonic quantum flows. In the following we first
describe the measurement protocol and then provide the de-
tailed description of the flows and, finally, of the heaters. The
experimental conditions are summarized in Table I.

A. Measurement principles

The heat flux from the heaters is produced by the Joule
effect, Q̇ = eI = RI2, where e is the voltage across the heater,
I is the current through it, and R is its electrical resistance.
The spatially averaged temperature of the heater Tw is inferred
from the calibration law R(Tw ) of its temperature-dependent
resistance. The heaters can thus be considered as overheated
thermometers. Their different shapes and sizes are described
in Sec. III C.

144509-2



COOLING WITH A SUBSONIC FLOW OF QUANTUM FLUID PHYSICAL REVIEW B 103, 144509 (2021)

TABLE I. Summary of experimental conditions for all heaters.
Here v∞ and T∞ are, respectively, the fluid velocity and temperature
away from the heater. The density fraction of superfluid component
Xs f is estimated in pressurized helium using the HEPAK® library.

Heater Facility/flow P (bar) v∞ (m/s) T∞ (K) Xs f (%)

Wire HeJet/ 2.6 0–0.40 1.74 71
grid flow 0–0.52 1.93 51

0–0.52 2.05 31
0–0.52 2.13 10
0–0.52 2.29 0

Film HeJet/ 2.6 0.38 2.00 40
grid flow

Chip SHREK / 3.0 0–3 1.6–2.1 82–20
rotating flow (0–1.2 Hz)

In order to monitor the fluctuations of the heat trans-
fer, two types of electronics circuitry are used to drive the
heaters: constant-current sources and a constant-resistance (or
temperature) controller. The latter is a commercial hot-wire
anemometry controller able to control the resistance over a
bandwidth exceeding DC-30 kHz (DISA model 55-M10). The
measured voltage e is either the voltage drop across the heater
when using the constant current circuit or an image of the
current through the heater (via a shunt resistance) when using
the constant resistance controller. In both cases, time series are
calculated for the total heat flux Q̇ and the heater overheating
Tw − T∞ with respect to the fluid temperature away from the
heater T∞.

The use of two types of electronics allows us to check
if the observed instabilities are artifacts associated with the
electronic circuitry. The signals are acquired by a delta-sigma
analog-to-digital converter (NI-PXI4462), at sampling fre-
quencies up to 100 kHz (most often 30 kHz). For given
flow conditions, the typical data set consists of 15 files with
4 × 106 data samples.

B. Descriptions of the flows

Two facilities in Grenoble, SHREK and HeJet, are used to
produce pressurized flows with a steady mean velocity and
limited turbulent fluctuations. The pressurization of the flow
above the fluid critical pressure is required to prevent boiling
or the formation of a gas film around the heater irrespective of
the amount of overheating.

In mechanically-driven isothermal turbulent flows, such as
those produced by both facilities, the superfluid and the nor-
mal fluid components that make up He II are locked together
at large and intermediate flow scales [18,19]. In the quantum
turbulence literature, such flows are sometimes referred to as
co-flows, to distinguish them from the thermally driven He II
flows, called counterflows. Surely, as discussed later, the flow
in the close vicinity of the heater is no longer a co-flow. In
the following subsections we give the most important details
about the HeJet facility where most measurements were done
using the two smallest heaters, and the SHREK facility, in
which measurements with the largest heater were performed.

FIG. 1. Left: Sketch of the experimental apparatus. 1: DC motor.
2: Centrifugal pump. 3: Venturi flow-meter. 4: Grid. 5: Pt-Rh wire
heater. 6: film heater array. 7: Temperature sensor. Right: zoom of the
test section with relevant dimensions and a picture of the convergent
followed by the grid.

1. HeJet: The grid flow

The HeJet facility is a closed loop of pressurized liquid
helium immersed in a liquid helium bath at saturated pres-
sure (dark gray in Fig. 1). The flow in the loop is driven
by a centrifugal pump empowered by a DC motor at room
temperature. The facility, originally designed to produce an
inertial round jet of liquid helium [20], has been modified
to produce a turbulent grid flow (see Fig. 1). The motivation
for this change was to obtain a quantum flow with relative
velocity fluctuations I within a few percents.

The experimental flow section consists of a 32 × 32 mm2

square cross section tunnel with length 450 mm. Prior to
entering the tunnel, the flow goes through the conditioning
section: a divergent (32 mm to 50 mm round section) followed
by a 16 mm long honeycomb with 3 mm mesh size and then
a convergent part which smoothly concentrates the flow into
the square tunnel section.

The grid is etched by wire electroerosion in a 0.8 mm thick
stainless steel plate. The rods are thus 0.8 mm × 0.8 mm wide
and the mesh size is M = 4 mm which leads to a solidity (or
obstruction ratio) of 36%. The geometry of the grid follows
the now standard recommendations from Comte-Bellot and
Corrsin [21].

Measurements are done at a distance of 60 M downstream
the grid. At this location, the longitudinal integral length scale
is L f = 5.0 ± 0.2 mm and the turbulence intensity, defined
as the ratio of the root-mean squared fluctuating velocity v′
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to the mean velocity v∞, is I ≈ 2.6%. The procedure for
characterizing the flow is detailed in the Appendix.

The range of explored temperatures is 1.74 K to 2.28 K,
corresponding to a superfluid fraction from 71% to 0%. The
temperature in the pressurized bath is measured at the outlet
of the grid flow tube (see Fig. 1) with a Cernox® thermometer
and is regulated by means of a heater within a few tenths of
milliKelvin. The absolute value of the temperature, known
to better than 1 mK, is checked in situ using the saturated
pressure of the (superfluid) outer bath when the pressurized
flow is at rest.

The range of mean velocities is v∞ = 0 to 0.52 m/s, as cal-
culated from the Venturi flow-meter pressure drops (see item
3 in Fig. 1). For all experiments, the pressure is maintained
at 2.6 ± 0.1 bars. In such a condition, the superfluid transition
occurs at Tλ ≈ 2.15 K.

2. SHREK: The rotating flow

SHREK is a large cylindrical vessel, Ds = 78 cm in inner
diameter and 116 cm in height, equipped with two identical
turbines facing each other (see Rousset et al. [22] for details).
The turbines are fitted with curved blades so that, depending
on their respective rotation direction, the facility can produce
different kinds of flows: from the quasisolid rotation flow
when turbines rotate in the same direction (co-rotation) to the
von Kármán flow when turbines rotate in opposite directions
(counter-rotation).

In this paper we report data acquired in co-rotation from a
bare chip heater (see Sec. III C 3) located in the midplane of
the vessel, 1 cm away from the wall. This sensor was previ-
ously used as an anemometer in He I (see Fig. 14 in Ref. [22]).
In those co-rotation conditions, the turbulence intensity was
found to be of the order 5%.

In order to estimate the velocity of the fluid around the
sensor, we assume that the co-rotation produces a solid-body
rotation flow with the same angular velocity ω as the turbines:
v∞ = ωDs/2. This simple model probably slightly overesti-
mates the velocity but it gives an order of magnitude of the
velocity with sufficient accuracy for the purpose of the current
study.

The flow pressure is maintained at 3 bars to avoid boiling
and cavitation on the miniature heaters. In such conditions,
the superfluid transition occurs also at Tλ ≈ 2.15 K.

C. Description of the miniature heaters

1. The wire

The wire heater is made of a 90% platinum–10% rhodium
alloy. It is manufactured from a Wollaston wire by etching its
50 μm-diameter silver cladding. The wire diameter, as docu-
mented by the manufacturer, is dw = 1.3 μm and its length is
estimated from resistance measurements to be 450 μm. It is
essentially built the same way as it was in Durì et al. [6], and
the main difference is that the present wire is soldered on a
DANTEC 55P01 hot-wire support.

The resistivity of the Pt-Rh alloy decreases almost linearly
with the temperature from 300 K down to 40–50 K, and
the sensitivity, dRw/dT , where Rw is the wire’s resistance,
is therefore almost constant. Below this temperature, the

FIG. 2. Electron microscope picture of the frame holding the film
heater array. Two heating Pt strips are dark areas, pointed by white
arrows, near the center of the supporting 1-mm-long SiN ribbons.
A gold layer deposited on both sides of Pt provides the electrical
contacts (lighter area). Thermal contact between Au and the Pt strip
is reduced thanks to an intermediate buffer of Pt.

sensitivity starts to decrease until it eventually vanishes
around 13 K. For this reason it is necessary to maintain the
wire at temperatures well above 13 K, in order to have access
to its temperature through the resistance measurement. We
typically overheat it to Tw ≈ 25 K which corresponds Rw ≈
36�. The wire heater is driven at constant resistance and thus
at constant temperature.

2. The film

The film heater consists of a platinum thin-film strip,
patterned within a 2.6 μm × 5 μm area and deposited on a
500 nm-thick, 10 μm-wide and 1 mm-long SiN ribbon (see
Fig. 2). The current leads to the Pt strip consist of 200 nm gold
layers. As previously for the Pt-Rh alloy of the wire heater,
the temperature sensitivity of Pt electrical resistivity vanishes
around 13 K [23]. In practice, the heater is overheated up
to few tens of Kelvins to benefit from a nearly temperature-
independent sensitivity. Without overheating, the resistance of
the film is 730 � below 10 K and 1060 � at 77 K. To reach
an overheating of 25 K in a quiescent 2 K He II bath, a cur-
rent of 300 μA is needed. Details about the microfabrication
process of this probe will be provided in another paper. This
heating film is mounted in the grid flow—with the film facing
upstream—and driven with a constant-current electronics.

3. The chip

The chip heater is a bare Cernox® CX-BR thermometer
from Lake Shore cryotronics Inc., mounted in the SHREK
experiment. It consists of a 0.3 μm thick zirconium oxynitride
film deposited on a sapphire substrate whose dimensions are
0.2 mm × 0.97 mm × 0.76 mm [24].

Like semiconductors, and contrary to Pt-Rh and Pt heaters,
the resistance increases as the temperature decreases. The sen-
sitivity (T/R)dR/dT remains almost constant (−0.45 ± 0.05)
over the explored temperature range, from 1.7 K to 30 K. This
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FIG. 3. Histogram of the wire heater voltage output at T∞ =
1.74 K for various velocities. Each curve represents a dataset with
4 × 106 samples.

contrasts with the two previous heaters which lose tempera-
ture sensitivity below roughly 13 K.

The probe is driven at slowly varying sinusoidal current
i(t ):

i(t ) = I0 sin
(

2π
t

τ

)
, (1)

where I0 is the current amplitude and τ is the period. The
resulting voltage e across the chip together with the current
are recorded using a NI-PCI-4462 acquisition board.

The period τ is typically 0.2 s, much larger than the thermal
time constant of the chip and than the turnover time of large
eddies in the flow. This allows us to determine continuously
the temperature of the chip as a function of the input power,
from bath temperature to around 30 K.

IV. METASTABLE HEAT TRANSFER STATES AT LOW
TEMPERATURE

At the lowest temperature explored in this study, T∞ =
1.74 K which corresponds to a superfluid fraction of 71%,
we report the observation of two metastable heat-transfer
regimes. As the external velocity over the wire heater in-
creases, the less conductive regime takes precedence over
the more conductive one, in terms of residence time in each
metastable state.

This effect manifests itself as a decrease of the averaged
heat transfer as velocity increases, at least in the intermediate
range of velocity where both coexist. Rather than focusing on
the average heat transfer, this effect is better illustrated by the
histograms of the instantaneous heat transfer.

Figure 3 presents the histogram of the wire heater voltage
at the four smallest velocities. Each curve is the histogram for
one dataset, an approximately two-minutes-long segment of
signal. This duration is much longer than the longest charac-
teristic time scales of turbulence at the heater location; these
time scales are of the order of only a fraction of a second

(typically M/v∞ � 4 mm/0.1 m.s−1 ≈ 0.04 s). In this re-
gard, a segment of any signal’s segment that belongs to one
of the conduction states can be considered quasistationary as
far as hydrodynamic phenomena are concerned, and the cor-
responding states can be considered as stable or metastable. It
cannot be fully excluded, though, that the switching from one
state to the other is triggered by very rare events in the flow.

At null velocity, the more conductive state is clearly the
most probable and as the velocity is increased the probability
of observing this state progressively decreases and eventually
vanishes. In the present conditions, the difference in heat
transfer efficiency between the two states is around 10% and
both states coexist for v∞ � 0.2 m/s. Analysis of the time
series (not shown here) shows that the typical lifetime of each
state is of the order of tens of seconds. For this reason, the
two-state behavior described here should not be confused with
that described below in Sec. VI B for the film heater signal.
In the latter case, no metastable behavior will be observed:
The persistence time of the most conductive state will be
typically four to five decades shorter and of the order of the
shortest resolved time scale of the turbulence. In the following
section, which addresses the mean heat transfer versus mean
velocity, the velocity response of each state will be examined
separately.

V. EFFECT OF THE VELOCITY ON THE MEAN
HEAT TRANSFER

In this section we analyze the sensitivity of the mean heat
transfer to the velocity of the surrounding flow. Using the chip
heater, we first show that the sensitivity is conditioned to the
presence of an He I film at the surface of the heater. Then we
use the wire heater to determine how the temperature of the
surrounding He II affects the sensitivity to the velocity.

A. Sensitivity to velocity conditioned to the presence
of an He I film

We report here that the heat transfer from a heater im-
mersed in He II becomes velocity dependent concomitantly
with the formation of an He I film around the heater.
Figure 4(a) shows the power required to overheat the chip
heater in the absence of an external flow. As expected, at the
lowest power input, below approximately 10 μW, the chip
temperature Tchip is close to the bath temperature T∞. This
part of the curve is not detailed.

For power inputs larger than 10 μW, the chip temperature
is measurably larger than the bath temperature. At interme-
diate power inputs exceeding 10 μW the curves for all bath
temperatures tend to collapse on a single baseline curve, but
for larger power inputs, above a bath temperature dependent
critical power Q̇crit, the chip temperature starts to increase with
Q̇ much more rapidly.

As illustrated by the inset of Fig. 4(a), the temperature
baseline common for all curves in the intermediate power
range evolves roughly as T n

chip − T n
∞ ∝ Q̇ with n = 3. Such

a dependence is typical of a heat transfer limited mostly by
a large-heat-flux Kapitza resistance. For instance Van Sciver
compilation reports exponents of n = 3 ± 0.5 (see p. 293 in
Ref. [4]). This thermal resistance appears at the interface
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(a)

(b)

FIG. 4. (a) Temperature Tchip of a bare chip Cernox® as a function
of the dissipated electrical power for various bath temperatures:

2.11 K, 2.05 K, 1.93 K, 1.74 K. Inset: T 3
chip − T 3

∞ as a
function of Q̇. (b) Average sensitivity of the temperature of the chip
to the velocity in the range 1–1.5 m/s as a function of the input
power. Inset: Temperature of the chip as a function of the velocity
for various dissipated electrical powers. The temperature of the bath
is T∞ = 2.11 K, corresponding to the orange curve in panel (a).

between the chip and helium, and at the inner solid interfaces
within the chip. It is responsible for a significant overheating
of the chip (Tchip) compared to the liquid helium in contact
with it (T ′

chip) [25].
With this in mind, the critical heat flux Q̇crit is interpreted

as the threshold at which the temperature T ′
chip of helium at

the solid-liquid interface becomes larger than Tλ. Above this
threshold, a thin He I layer forms around the heater. Since He
I is significantly less conductive than He II, the chip temper-

ature grows much more rapidly as the heat flux is increased
beyond Q̇crit. A similar phenomenology is reported in the “film
boiling” literature when a heater is overheated in a bath of He
II at saturated vapor pressure, instead of a bath of pressurized
helium in our case. In this case, a helium gas layer forms
around the heater and also contributes to thermal isolation of
the heater from its surrounding.

Figure 4(b) presents an important result. In the inset, the
heater’s mean temperature is displayed versus the mean veloc-
ity of the surrounding flow at T∞ = 2.11 K (20% superfluid
fraction). In the main axes, the average sensitivity dTchip/dv∞
in the velocity range from 1 to 1.5 m/s is displayed as a
function of the input power. At the lowest heater power, no
velocity dependence is discernible. This absence of sensitivity
is observed down to 1.74 K, the lowest tested bath temper-
ature, and is consistent with the standard understanding of
heat transfer in He II [13]. Above Q̇ ≈ 0.093 W ≈ Q̇crit, some
sensitivity starts to develop. In other words, the observed
velocity sensitivity is concomitant with the appearance of the
He I layer surrounding the heater. As the power increases, the
He I layer is expected to thicken thus leading to an increase,
observed in our experiment, of the magnitude of sensitivity.

B. Velocity-temperature dependence of heat transfer

The chip heater, described above in Sec. III, is not well
suited to explore experimentally the basic mechanism of
forced heat transfer. First, due to its “large” size and the sharp
angles of its parallelepiped shape, its wake is highly turbulent
at all velocities, which complicates modeling. Second, it is
assembled with different materials leading to a larger Kapitza
resistance and larger temperature inhomogeneity within the
heater and thus at its surface. Third, its shape does not have
any simple symmetry which could ease analytical description
of heat transfer. Other limitations arise from the flow facility
as it is not optimized to produce low velocity and thus a less
turbulent wake on the heater. Besides, the velocity field in the
vicinity of the heater is poorly known.

For all these reasons, systematic measurements have been
performed in the grid flow using the wire heater. In these
conditions the flow of He I over the wire can be regarded
as laminar: Its characteristic Reynolds number Re = dwv∞/ν,
with dw = 1.3 μm, v∞ = 0.2 m/s, and ν = 2 × 10−8 m2 s−1,
is of the order of 10. In contrast, the corresponding Reynolds
number of the flow around the chip heater is three decades
larger, well beyond wake instability thresholds.

Figure 5 presents the electrical power required to regulate
the wire heater at 25 K versus the mean velocity, for flow
temperatures ranging between 1.74 K (71% superfluid frac-
tion) and 2.28 K (0% superfluid fraction). It shows that when
the heater is submerged into an external flow, an additional
electrical power is required to maintain its temperature. This
conclusion is consistent with the previous observation in a
jet flow [6] but we can now resolve more precisely the bath
temperature dependence of Q̇.

In two-dimensional laminar flows (such as, e.g., the flow
around a thin wire) of classical fluids, at high Péclet numbers
Pe = Re · Pr, where Pr = ν/D � 1 is the Prandtl number,
with D being the fluid thermal diffusivity, the heat transfer
rate between a solid surface, and the fluid scales as v

1/2
∞ . This
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FIG. 5. Electrical power required to regulate at 25 K the wire
heater as a function of the flow mean velocity for various bath
temperatures: 2.28 K (0% superfluid), 2.13 K (10% superfluid),

2.05 K (31% superfluid), 1.93 K (51% superfluid), 1.74 K
(71% superfluid) in the “less conductive” regime, see Sec. IV),
1.74 K (71% superfluid) in the “more conductive” regime. Solid lines
indicate the best linear fit for each data series.

follows from the analysis [26,27] of the convective-diffusive
heat transfer in the thermal boundary layer. For the forced heat
transfer around a heated wire this scaling has been experimen-
tally and empirically confirmed in, e.g., Ref. [28]. In Fig. 6 we

FIG. 6. Time average of the excess power required to overheat
the wire at 25 K once the flow is turned on versus the square root
of the velocity for various bath temperatures: 2.28 K, 2.13 K,

2.05 K, 1.93 K, 1.74 K in the “less conductive” regime (see
Sec. IV). The markers indicate the actual computed values while the
lines show the best linear fit of the data corresponding to Eq. (3).
Inset: values of the slopes β for all temperatures.

TABLE II. Summary of the parameters obtained when fitting the
power Q̇ against v∞ (see Fig. 5) or v1/2

∞ . The wire heater is overheated
at constant temperature, here 25 K.

T∞ (K) 2.28 2.13 2.05 1.93 1.74

Xx f (%) 0 10 31 51 71
Q̇(v∞ = 0) (mW) 0.64 1.03 2.12 2.78 3.00

Q̇ = χ + γ · v∞
χ (mW) 0.74 1.05 2.06 2.78 3.00
γ (mW m−1 s) 1.45 1.37 1.68 0.81 0.12

Q̇ = ζ + β · v1/2
∞

ζ (mW) 0.52 0.71 1.59 2.57 2.86
β (mW m−1/2s1/2) 1.26 1.40 1.84 0.87 0.30

thus present the excess power

�Q̇(T∞, v∞) = Q̇(T∞, v∞) − Q̇(T∞, 0) (2)

required to maintain the temperature of the wire at 25 K once
the flow is turned on, as a function of the square root of the
velocity.

The best fit of the form

Q̇(T∞, v∞) = ζ (T∞) + β(T∞) · v1/2
∞ (3)

is calculated omitting the data at null velocity as is customary
in standard fluids where natural convection prevents the v1/2

scaling to hold down to small velocities. The coefficients ζ

and β are reported in Table II. For completeness, we also
reported in Table II the coefficients for a linear fit of the form

Q̇(T∞, v∞) = χ (T∞) + γ (T∞)v∞, (4)

where χ and γ are temperature-dependent coefficients.
Due to the limited range of velocities, the above fits do not

allow us to determine which of the two scaling laws, (3) or (4),
is the best suited. At 2.28 K, in He I, we know from experience
the v1/2 scaling is better suited, and this probably remains true
at 2.13 K, but at all other temperatures both laws could work.

A notable result, highlighted in the inset of Fig. 6, is the
nonmonotonic dependence of the sensitivity to velocity ver-
sus the superfluid fraction (or fluid temperature T∞) with a
maximum sensitivity somewhere between superfluid fraction
of 10% and 50%; also note that the sensitivity to velocity
significantly decreases for large superfluid fractions.

One point is worth stressing for subsequent modeling. For
flow temperatures T∞ � 1.93 K, the sensitivity to velocity,
say defined as dQ̇/dv∞, varies only slightly with the temper-
ature, while Q̇ significantly depends on it. In particular, the
sensitivity in high temperature He II is close to sensitivity in
He I that is in the absence of superfluid. The sensitivity to
velocity versus the wire heater temperature was not explored,
but the experiment with the chip heater indicates that it can be
significant (see, e.g., Fig. 4).

VI. HIGH FREQUENCY PEAK: THE COOLING GLITCHES

We now report a puzzling feature of heat transfer in a
quantum flow: A well defined spectral peak in the PSD which
we show can be attributed to the quasiperiodic occurrence of
intense short-lived heat flux enhancements. These events have
been named “cooling glitches.”
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FIG. 7. Power spectral density P ( f ) of the current in the wire
at 25 K for various flow temperatures: 2.28 K (0% superfluid),

2.13 K (10% superfluid), 2.05 K (31% superfluid), 1.93 K
(51% superfluid), 1.74 K (71% superfluid) in the “less conductive”
regime (see Sec. IV). The black line shows a f −5/3 power law. In each
case, the mean velocity is 0.250 ± 0.015 m/s. The amplitude of the
signal is rescaled so that spectra overlap at f = 1 Hz.

A. Emergence of a spectral peak

The wire heater was inserted in the grid flow and its tem-
perature was maintained around 25 K. The time series of
the electrical current has been analyzed. Figure 7 shows the
power spectral density (PSD) P ( f ) of the current in the wire
for a superfluid fraction varied from 0% (2.28 K) up to 71%
(1.74 K) and at a mean velocity v∞ = 0.250 ± 0.015 m/s.

In the absence of superfluid, the measured spectrum in
the range of intermediate frequencies is compatible with the
Kolmogorov spectrum of classical turbulence, as expected for
grid turbulence (see Appendix for further discussion). For a
10% superfluid fraction (T∞ = 2.13 K), the spectrum departs
from the Kolmogorov shape above ≈500 Hz. For superfluid
fractions equal to or larger than 31% (T∞ � 2.05 K), a broad
spectral bump centered around fp ≈ 1 kHz is observed. The
bump is energetic enough to contribute to most of the variance
of the signal.

A departure from the classical turbulence spectra has been
previously reported using a similar heated wire in a superfluid
jet experiment (see Fig. 2 in Ref. [6]), but the effect was much
less pronounced and no peak reported. A possible explanation
for not resolving a peak in this previous experiment is the
combined effect of insufficient time resolution (the maximum
resolved spectral frequency was 5 kHz) and faster time scales
of the jet flow. Indeed, compared to the conditions of Fig. 7,
the flow mean velocity was five times larger and the vari-
ance of velocity fluctuations 482 times larger (peak excluded),
which could shift a possible peak beyond the maximum
resolved frequency.

B. Evidences of cooling glitches

To gain more insight into the physical parameters that drive
the high frequency behavior, an additional experiment was

FIG. 8. Sample of the film heater voltage at T∞ = 2 K as a func-
tion of time, with a mean fluid velocity v∞ ≈ 0.38 m/s as a function
of time. The black horizontal line marks the chosen threshold.

done using the film heater described in Sec. III C 2. This heater
was operated in the grid flow at 2.0 K, but unfortunately it
broke very rapidly so we only have one velocity condition,
v∞ = 0.38 m/s.

Figure 8 shows a small portion of the signal from the
film heater. The heat transfer is enhanced during seemingly
random brief periods, lasting typically a tenth of a millisec-
ond or less. The recorded time series for this smaller heater
evidences the same spectral peaking at high frequency as
illustrated by Fig. 9(a) which displays the PSD, P ( f ), from
this film heater together with that from the wire at the same
velocity but lower temperature (1.74 K). The bumps, even
though they do not have the exact same shapes for the film
and the wire, are located at nearby frequencies. This rules
out the length of the heaters as a parameter governing the
apparition of the bump since they have very different length
(by two orders of magnitude). This also lets us assert that the
electronic driving mode is not at fault: Whether the heater
is driven at constant temperature (wire) or constant current
(film), the bump remains. Figure 9(b) shows the centered and
normalized probability density function (hereafter PDF) of the
output signal recorded from the wire and the film electronic
drivers.

A first observation is that the PDF of the signals are
skewed in opposite directions: The wire shows large excur-
sions towards high current (positive skew s ≈ 0.83), while
the film shows large excursions towards low voltage (nega-
tive skew s ≈ −2.0). These skewed PDF evidence that both
heaters record rare and intense heat-flux events. The opposite
signs of the skewness are easily explained by the difference
in electronic drivers: The wire heater is driven at constant
temperature while the film is driven at constant current. An
increase of the cooling efficiency increases the current in the
wire but decreases the temperature of the film, and thus the
measured voltage drop across it. Thus, both PDF indicate the
existence of rare and intense events of enhanced heat transfer
between the heaters and the flow. In the following, these
events will be nicknamed “cooling glitches.”

The dashed lines in Fig. 9(a) and Fig. 9(b) show, respec-
tively, the PSDs and the PDFs of the same signals after a
low-pass filtering at 400 Hz. As can be seen in Fig. 9(a),
the result of the filtering is the suppression of the spectral
bump, while in Fig. 9(b) we can see that each PDF becomes
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(a)

(b)

FIG. 9. (a) Comparison of the PSD, P ( f ), of the film heater at
T∞ = 2 K and of the wire heater at T∞ = 1.74 K, with a mean fluid
velocity v∞ ≈ 0.38 m/s. Dashed lines correspond to the same data,
but low-pass filtered at 400 Hz. (b) Probability density function of
the film and wire output signals in the same conditions as in (a). The
signals are centered and normalized by the standard deviations σ of
the unfiltered signals.

almost gaussian. To be precise, both PDFs end up with a
small negative skew of order s ≈ −3.10−3, as expected for
standard hot-film and hot-wire anemometer in a turbulent flow
of low turbulent intensity. Indeed, assuming that the PDF of
the velocity is gaussian, the recorded PDF must be negatively
skewed since the sensitivity to the velocity decreases with
velocity. This filtering test strongly suggests that the cooling
glitches and the broad frequency peaks refer to the same phe-
nomenon. The bimodal shape of the film’s PDF in Fig. 9(b)
supports the view that the system is continuously switching
between two well defined heat exchange modes: the default
one and one with a higher cooling efficiency.

FIG. 10. Power spectral density Pb of the wire and film heaters
binarized signals (see the text for detail).

In the time domain, the occurrence of a cooling glitch on
the film heater can be spotted using an arbitrary threshold
value, for instance the average between the peaks of both
modes in the PDF (ethresh ≈ 0.3235V , see the black line in
Fig. 8. On the other hand, the PDF from the wire time series
does not allow us to resolve two distinct modes, possibly
because of a lower temporal resolution. In order to binarize
the wire heater signal we chose to define the threshold value
as ethresh = 〈e〉 + 3σ where σ is the standard deviation of the
signal.

Figure 10 shows the PSD of the binarized signal, Pb( f ),
for both the film and the wire heaters. For the film, which
has a clear bimodal behavior, the spectral bump is preserved
and the frequency of its maximum is unchanged. The re-
sult is essentially the same for the wire except that the
bump is much less pronounced than in the PSD of the raw
signal.

The binarized signal only contains information about the
temporal distribution of gliches, i.e., their duration and the
time interval between them. The fact that this very basic signal
has a spectral bump similar to that of the original signal is
another strong evidence that the glitches are the root cause of
the spectral bump.

C. Glitch characteristic frequency versus velocity

We have shown above that the sequence of cooling glitches
exhibits a characteristic frequency scale of a few kHz in
present flow conditions. We now characterize how this glitch
peak frequency varies with the flow mean velocity.

The 1.74 K dataset from the wire is more specifically
explored because it allows the most accurate quantitative
assessments. Indeed, the sensitivity of the mean (and low
frequency) signal to the velocity is the lowest and most of
the fluctuations of the energy of the signal are concentrated in
the high frequency bump. At low velocity, we only used data
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(a)

(b)

FIG. 11. (a) PSD P ( f ) of the hot-wire voltage at 1.74 K for var-
ious flow velocities. (b) Frequency of the observed peak frequency as
a function of the external flow average velocity (•), together with a
linear fit (solid blue line) and the result of the model developed in the
next section, see Eq. (43) (dashed line). Inset: Same data in log-log
coordinates. Here the solid line is a fit with a power law fp ∝ v1.4

∞ .

acquired during a period of time where the wire was in the
less conductive state since they prevail at most velocities (see
Sec. IV).

Figure 11(a) shows the power spectra of the wire heater
signal for various external flow velocities and Fig. 11(b) the
evolution of the peak frequency versus velocity. The peak fre-
quency, extracted using a local third-order fit, is defined as the
first local maximum above 500 Hz. Over the explored range,
the velocity dependence of the peak frequency is consistent
with an affine law fp = a + bvα

∞ with α ≈ 1, a = −340 Hz,
and b = 6912 Hz sm−1. This linear dependence suggests the
existence of a fixed length scale in the flow of order 1/b ≈
150 μm, i.e., much larger than the wire diameter. The ap-

pearance of macroscopic length scales will be discussed in
Sec. VII C.

On a log-log scale, the best power law fit of the data [see
inset in Fig. 11(b)] is fp ∼ vα

∞ with α ≈ 1.4. Obviously, the
limited range of velocity—slightly more than half a decade—
does not allow us to discriminate between both laws. These
scalings will be discussed in the next section.

VII. DISCUSSION. MATHEMATICAL MODELING
OF HEAT TRANSFER IN AN HE II EXTERNAL FLOW

A. Analytical model of heat transport at zero velocity

At null velocity, Durì et al. [6] showed that the mean heat
flux from a wire heater can be modeled satisfactorily assuming
that a thin supercritical He I layer surrounds the wire and
concentrates most of the temperature gradient. In this region,
the temperature gradient ∇T is proportional to the heat flux ϕ,
according to the standard Fourier law: The fluid temperature
decreases from T ′

w in He at the surface of the wire (r = r+
w ),

to Tλ at r = rλ. In the region r > rλ the temperature gradient
evolves as [29–31]

ϕm = f (T )
dT

dr
, (5)

where f (T ) is the so-called conduction function; the power m
will be specified later.

This basic model, solved numerically, enabled us [6] to
reasonably account for the mean heat transfer at all bath
temperatures, including close to Tλ. In the following we solve
the problem analytically. Let Q̇ be the heat rate needed to
overheat the wire material at a mean temperature Tw in a liquid
helium bath at temperature T∞.

The problem is assumed to be axisymmetric and the aspect
ratio of the wire large enough to neglect ends effect. In such
conditions, the wire temperature does not depend on the lon-
gitudinal coordinate and the heat flux around the heated wire
is given by

ϕ = Q̇

2π lr
= �

r
, (6)

where l is the length of the wire and r(
 l ) is the radial
coordinate. Here the constant � is the heat transfer rate per
radian and per unit length.

Let T ′
w be the temperature of helium in contact with the

wire. Due to the thermal resistance within the wire and
Kapitza resistance at the solid-fluid interface, T ′

w < Tw and we
can define a thermal resistivity ρK such that

Tw − T ′
w = ρK�. (7)

This temperature difference is expected to be more sig-
nificant for the bulkier heaters (due to internal resistance),
for nonmonolithic ones (due to internal interface resistance),
and at lower overheating (due to larger Kapitza resistance at
lower temperatures). For all reasons, this temperature drop is
expected to be more relevant for the chip heater than for the
wire heater. In the following, for simplicity, we will simply
refer to this temperature drop as the “Kapitza correction,”

In the supercritical He I region, the Fourier law writes

�

r
= −k

dT

dr
, (8)
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where k is the thermal conductivity of helium. Neglecting the
temperature dependence of k, the integration of Eq. (8) gives:

� ln
( rλ

rw

)
= k(T ′

w − Tλ). (9)

In the superfluid He II region, Eq. (5) is integrated between
Tλ (at r = rλ) and T∞ (for r � rλ):

�m

(m − 1)rm−1
λ

=
∫ Tλ

T∞
f (t )dT︸ ︷︷ ︸

F (T∞ )

. (10)

Here we have introduced the conduction integral F (T∞).
Eliminating � between Eqs. (9) and (10) we obtain

ln
( rλ

rw

)
= k(T ′

w − Tλ)[
(m − 1)rm−1

λ F (T∞)
]1/m . (11)

From the numerical solution [6] of this problem, we know
that the width of the supercritical He I layer is small compared
with the radius of the wire (that is, rλ − rw 
 rw), provided
the bath temperature is not too close to Tλ (say T < 2.1 K). As
ln(rλ/rw ) ≈ (rλ − rw )/rw 
 1, this necessarily requires that
the right-hand side of Eq. (11) is small. Introducing a small
parameter

ε = k(T ′
w − Tλ)

[(m − 1)rm−1
w F (T∞)]1/m 
 1 , (12)

and making use of the first-order asymptotic expansion of
Eq. (10) with respect to ε, we obtain for the heat rate per
radian and unit length:

�(T ′
w, T∞) = �II (T∞)

[
1 + ε

m − 1

m
+ O(ε2)

]
, (13)

where

�II (T∞) = [
(m − 1)rm−1

w F (T∞)
]1/m

. (14)

From Eq. (11) it follows that the asymptotic expansion for rλ,
which determines the width, rλ − rw of the supercritical layer,
should be sought in the form

rλ = rw(1 + ε + a2ε
2 + ...). (15)

Making use of expansions (13) and (15), Eq. (9) can now be
used to calculate the second-order term (i.e., the coefficient
a2) of the expansion (15). However, the second (and higher)
order corrections are of no interest in the context of this work.

Neglecting the corrections of order ε2 and higher and
making use of Eq. (12), which can be written as ε�II =
k(T ′

w − Tλ), it is more convenient to represent relation (13)
in the form

�(T ′
w, T∞) ≈ �I (T ′

w ) + �II (T∞), (16)

where

�I (T ′
w ) = m − 1

m
k(T ′

w − Tλ). (17)

Here the heat flux per radian and per unit length appears as
the sum of a contribution �I (T ′

w ) due to the conduction in He
I and a bath temperature-dependent contribution �II (T∞) due
to heat transport in He II. As ε 
 1, at low temperatures the
former is much smaller than the latter. It is worth noting that

FIG. 12. Comparison of the measured and the modeled heat flux
per radian and unit length (o). The solid line is the heat flux modeled
according to Eq. (16), with no adjustable parameter, and the dashed
line shows the exact numerical solution. Computations were done
using Tw = 25 K.

such an additive contribution of heat fluxes is counterintuitive
in thermal systems with resistances in series.

Making use of Eq. (7), Eq. (16) can be rewritten in terms
of Tw (instead of T ′

w) and T∞ expression versus Tw:

�(Tw, T∞) ≈ 1

1 + K
[�I (Tw ) + �II (T∞)], (18)

where

K = ρK
m − 1

m
k (19)

is a dimensionless parameter, later referred to as the Kapitza
correction parameter which accounts for the strength of the
temperature drop between solid and liquid.

Figure 12 presents the measured and the simulated values
of the heat transfer rate � per unit length and radian as
a function of temperature. We used the Bon-Mardion/Sato
[29,31] form of Eq. (5), with m = 3.4. The thermal con-
ductivity of supercritical helium depends on temperature so
we used its average value k = 0.02 W m−1 K−1, determined
using the HEPAK® library over the range 5 K–25 K. Finally,
the Kapitza correction was assumed negligible for the wire
(K 
 1). As can be seen, the above simple model yields rea-
sonably good approximations for both absolute values and the
temperature dependence, without any adjustable parameter.
The contribution of the He I layer, �I ≈ 0.32 W rad−1 m−1,
is about 28% the total heat flux at 1.74 K and 87% at 2.13 K.

We also solved Eq. (11) numerically to estimate rλ and then
computed the exact value of the heat flux from Eq. (9) (see
dashed line in Fig. 12). The relative error in the estimate of the
total heat flux is about 4% at 1.74 K and 40% at 2.13 K. As
expected, below 2.1 K the linear approximation rλ = rw(1 +
ε) [see Eq. (15)] is quite reasonable.
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B. Analytical model of heat transport at finite velocity

We now use an empirical approach to extend this analytical
model and account for the extra heat transfer observed in the
presence of the external flow. The occurrence of one cooling
glitch results in an increase of heat transfer. Thus, in principle,
the overall velocity dependence of heat transfer could result
from or be significantly affected by a change in the statis-
tics of occurrence of glitches or a change in their strength.
Still, this possibility could be discarded by the analysis of the
histograms of instantaneous heat transfer. Indeed, they reveal
that the most probable instantaneous heat transfer, which does
not coincide with the occurrence of a glitch, has nearly the
same velocity dependence as the mean heat transfer, glitches
included.

As pointed out earlier, the sensitivity to velocity, say
d�/dv∞, varies only slightly with the flow temperature
within the interval 1.93 K � T∞ � 2.28 K, although �, or,
more precisely, �II vary significantly. The (chip) heater, sen-
sitive to temperature near Tλ, has revealed that the velocity
dependence is bound to the presence of a He I layer. The
velocity dependence will thus be modeled by a modification
��

I (T ′
w, T∞, v∞) of the contribution �I (T ′

w ), so that

�(Tw, T∞, v∞) = ��
I (T ′

w, T∞, v∞) + �II (T∞). (20)

As customary in classical flows, the velocity depen-
dence can be formally embedded in the Nusselt number
Nu�(Tw, T∞, v∞) defined by the relation

��
I (Tw, T∞, v∞) = Nu� · �I (T ′

w ). (21)

This definition of Nu� is related to the classical Nusselt num-
ber Nu of the heat transfer from an arbitrary bluff body:
Nu�(Re) = Nu(Re)/Nu(0).

As discussed above in Sec. V [see Fig. 6 and Eq. (3) in
particular], the heat transfer rate is consistent with a v

1/2
∞

scaling with velocity, provided the magnitude of the velocity
is sufficiently away from v∞ = 0. We, therefore, will adopt
the following model for the Nusselt number:

Nu� = A + BRe1/2
w , (22)

where A and B are dimensionless constants of the order unity
and Rew is a Reynolds number based on the diameter of the
wire [the definition is given below, see Eq. (23)].

In classical hydrodynamics, Eq. (22) is known as King’s
law and accounts for forced heat transfer from hot-wire
anemometers (see, e.g., Ref. [28]). The square root depen-
dence is understood as the signature of the thermal boundary
layer around the anemometer. The reason why Nu�(Rew =
0) = A �= 1 reflects the existence of an alternative heat trans-
fer mechanism at zero velocity, e.g., natural convection.

Helium at 2.28 K is a classical fluid, and our wire heater
resembles a hot-wire anemometer. Hence, it is not surprising
that Eq. (22) accounts for heat transfer measurement above
the superfluid transition at T = Tλ. The persisting agreement
of Eq. (22) in a superfluid bath strongly suggests that a similar
phenomenology remains at play, in particular the stretching of
the He I layer surrounding the heater by the incoming flow.

Thus, for T < Tλ the Reynolds number Rew is defined as

Rew = dwVeff

ν
, (23)

where ν is the kinematic viscosity of the He I layer surround-
ing the wire, and Veff = (ρnvn + ρsvs)/ρ is the momentum
velocity impinging on the He I thermal layer, resulting from
the interaction between the external co-flow at velocity v∞
and the local counterflow generated by the heater.

In the King’s law, for classical fluids a Prandtl number
correction Pr1/3 is sometimes included in the second term of
Eq. (22), but since this fluid’s property is close to unity for
helium in the range of pressures and temperatures of interest,
this correction is not included in our simplified model.

From Eqs. (20)–(22) it follows that the heat flux at arbitrary
(subsonic) velocity can now be written as

�(Tw, T∞, v∞) ≈ 1

1 + KNu�
[Nu��I (Tw ) + �II (T∞)]. (24)

The velocity dependence is better evidenced by subtracting
the heat flux � in the zero velocity limit v∞ → 0+. Retaining
the first-order Kapitza correction, we obtain

�� = �(Tw, T∞, v∞) − �(Tw, T∞, 0+)

≈ BRe1/2
w

{
�I − K

[(
2A + BRe1/2

w

)
�I + �II

]}
. (25)

At low enough velocity or temperature (e.g., below
∼0.1 m/s or below ∼2 K, respectively), �II is significantly
larger than ��

I , and Eq. (25) can be further simplified to obtain

�� ≈ BRe1/2
w [�I (Tw ) − K�II (T∞)]. (26)

Having assumed that the effective velocity Veff perceived by
the He I layer surrounding the wire heater is proportional to
v∞, we recover the expected v

1/2
∞ dependence of heat transfer

rate.
In Eq. (26), the term within square brackets increases

monotonically with T∞. Therefore, the behavior with tem-
perature of this term alone cannot explain the observed
nonmonotonic dependence of the sensitivity to velocity [see
β(T∞) in the inset of Fig. 6]. The temperature dependence of
the effective velocity impinging on the wire Veff(v∞, T∞) must
therefore contribute to this dependence, but this remains to be
understood.

C. Local heating in a co-flow and wing bluff bodies

This section addresses the flow patterns forming around the
heater. We show that the flow on a heating wire resembles
the flows on a symmetrical wing: on its leading edge for the
normal fluid and its trailing edge for the superfluid. Each vir-
tual wing is characterized by the two thickness length scales,
respectively, Ln and Ls = Lnρn/ρs, that are significantly larger
that the wire diameter in our experimental conditions.

As a first step, the flows of the normal and superfluid
components around a wire are modeled as two-dimensional
potential flows in the plane perpendicular to the wire, the
latter modeled as an infinitely long cylinder of radius rw. The
velocity potential �(r, θ ) of the flow around a cylinder is well
known (see, e.g., Ref. [32]):

�(r, θ ) = v∞ · r

(
1 + r2

w

r2

)
cos θ, (27)

where r and θ are polar coordinates whose origin coincides
with the axis of the cylindrical wire and where the flow far
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FIG. 13. Streamlines of the two-dimensional, normal, and super-
fluid potential flows around a cylinder of radius rw = 650 nm acting
as a sink for superfluid (in blue, top half) and a source for the normal
fluid (in red, bottom half). Each flow is symmetrical with respect to
the axis y = 0. The velocity far from the cylinder is v∞ = 0.25 m/s,
and the sink/source properties match the local counterflow produced
experimentally for a superfluid fraction of 51% (T∞ = 1.93 K) with
2π� = 8.5 W/m, which corresponds to a wire overheating around
Tw = 25 K. The dimensionless and dimensional scales on both x and
y axes are relevant for both fluids.

from the origin is uniform along the x direction with velocity
v∞. This velocity potential accounts for the flows of both the
normal and superfluid components of the external co-flow.
A radial local counterflow from a heating wire can also be
described by the normal and superfluid velocity potentials �n

and �s:

�n(r, θ ) = �

ρST
ln

r

rw

,

�s(r, θ ) = −ρn

ρs
�n(r, θ ). (28)

An analytical description of the normal and superfluid ve-
locity fields (vn and vs, respectively) is then obtained by
superpositions of the local counterflow potentials (28) with
the co-flow potential (27): vn = ∇(� + �n) and vs = ∇(� +
�s).

Figure 13 illustrates the streamlines of the superfluid (in
blue, upper half of the panel) and normal fluid (in red, lower
half) obtained from this model after matching the cylin-
der’s radius and the mass flow at the boundaries with the
experimental conditions: a radius rw = 650 nm, a co-flow
external velocity v∞ = 0.25 m/s, a superfluid fraction of
51% (T∞ = 1.93 K), a heating rate per unit length 2π� =
8.5 W/m (corresponding to the wire overheating Tw ≈ 25 K).
The background color highlights the flow regions with stream-
lines ending or starting at the surface of the heater.

The length scales of the normal and superfluid flow
patterns, Ln and Ls, respectively, are about two decades
larger than the wire’s radius (Ln ≈ Ls ≈ 143 μm, see figure).
Henceforth Ln and Ls are called the heater outer-flow scales.

On the (bottom) normal-fluid side of Fig. 13, the stream-
lines can be separated into those that are sourced by the heater,
in the red background region, and the others. The first ones are
within the flow “tail” of transverse length scale Ln at x = ∞
(see figure), which can be calculated from the thermal energy

balance Lnv∞ρST = 2π�, where S is the specific entropy of
the fluid, that is:

Ln = 2π�

ρST v∞
. (29)

A normal-fluid stagnation point forms upstream from the
wire, at a distance Rn calculated from the condition vn(r, θ ) =
0 for r = Rn and θ = π :

�

ρST Rn
= v∞

(
1 − r2

w

R2
n

)
≈ v∞, (30)

that is:

Rn ≈ �

ρST v∞
= Ln

2π
. (31)

The flow of normal fluid outside the red region experiences a
deflection similar to the one on the leading edge of a free-slip
symmetrical wing of thickness Ln.

The blue background region on the (top) superfluid side of
Fig. 13 shows streamlines “absorbed” by the heater surface.
The superfluid flow outside this region experiences a sort of
smooth backward step that resembles the flow in the vicinity
of the trailing edge of a free-slip symmetrical wing. The
thickness Ls of this “superfluid wing” can be calculated from
the mass conservation to yield

Ls = ρn

ρs
Ln, (32)

and the position of the superfluid stagnation point, Rs, can be
obtained by analogy with the case of the normal fluid as

Rs ≈ ρn

ρs
Rn = ρn

ρs

Ln

2π
= Ls

2π
. (33)

The simple model described in this subsection preserves
the key features of the normal and superfluid flows in the
wide range of conditions explored. Thus, Fig. 14 illustrates the
flow patterns around the heating wire of radius rw = 650 nm
for T∞ = 1.74 K. Note that in the considered example the
length scales of hydrodynamics patterns, whose dependence
on physical parameters is given by Eqs. (29) and (32), remain
significantly larger than the heater radius.

D. Beyond the model of potential flows

We address now the limits of validity of the potential flow
model developed in the previous subsection and analyze the
effects of compressibility, viscosity, mutual friction, and vor-
ticity that have been ignored so far. We show that the model
developed above in Sec. VII C leads, nevertheless, to robust
predictions for the outer-flow patterns at distances from the
heater of the order of or larger than Rn and Rs. Henceforth the
flow in the vicinity of the heater will be called the “near-wire
flow.”

First it is important to stress that a heater in He II acts as
a sink of the superfluid component mass flow and source of
normal component mass flow, regardless of the potential-flow
modeling. Thus the existence of superfluid flow pattern, of
typical thickness Ls [see Eq. (32)], resembling the trailing
edge of a wing, is expected to be a robust feature of the flow,
irrespective of modeling. The existence of a wing-leading-
edge pattern of typical thickness Ln [given by Eq. (29)] is also
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FIG. 14. Streamlines of the two-dimensional potential flows around a heater of radius rw = 650 nm, for v∞ = 0.25 m/s, a superfluid
fraction of 71% (T∞ = 1.74 K) and a heating rate 2π� = 8.5 W/m (Tw ≈ 25 K). The region of likely recirculation and instabilities is indicated
with symbolic swirling streamlines. With superfluid-normal fluid coupling (not included here), the key hydrodynamic patterns (stagnation
zones, contours of the virtual wings) are expected to be shifted and become time dependent, but we argue that their existence is a robust and
generic consequence of the local heating in a co-flow.

a robust feature but we will argue in the next subsection that
its downstream shape probably resembles more a wiggling
tail than that represented by nearly straight streamlines. For a
point heater, the concept can be generalized straightforwardly
with virtual obstacles having the shapes of three-dimensional
fuselages rather than two-dimensional wings.

Incompressibility. By definition of length scales Rs and
Rn, the velocities at such typical distances from the wire and
beyond are of order v∞, which in the conditions typical of
the experiment described above in this paper is always signifi-
cantly smaller than the lowest values of the first and the second
sound velocities in He II (respectively, 244 m/s and 6.5 m/s
at 3 bar and 2.13 K). Describing the flows by incompressible
potential fields is therefore justified for the outer flow and
partly for the near-wire region.

Viscosity. Potential flows are irrotational and thus the
model developed in Sec. VII C is not expected to be valid in
the wire boundary layer due to viscous friction of the normal
fluid. Nevertheless, compared to inertial effects, viscous ef-
fects are no longer prevalent in the outer flow field far enough
from the wire. For instance, the relative weakness of viscous
effects at distance Ln/2 for the wire can be assessed from
normal fluid Reynolds number ReLn = Lnv∞ρn/μ, where μ is
the dynamic viscosity of He I. This Reynolds number reaches
its smallest values at larger temperature, where it indeed satis-
fies the requirement ReLn � 1 (e.g., we find ReLn � 492 for
T∞ = 2.13 K and 2π� � 2 W/m). Thus, the flow patterns
can be estimated neglecting the normal fluid viscosity in the
outer flow and partly in the near-wire region.

Mutual coupling and vorticity. The chosen velocity poten-
tials (� + �n) and (� + �s) describe uncoupled superfluid
and normal fluid. In reality, the presence of superfluid vortices
in the flow is responsible for the mutual friction between the
two fluids, and eventually a strong coupling of their velocity
fluctuations at scales significantly larger than the typical dis-
tance between superfluid vortices [33]. Below we will discuss
in turn the following three flow regions: the upstream region,
the close vicinity of the wire, and the region downstream
of the flow. Upstream, the intervortex distance δco-flow in the

weakly turbulent grid co-flow can be estimated from the
turbulence intensity (I ≈ 2.6%, see Sec. III B), the turbulent
integral length (say L f ≈ 5 mm), and the effective viscosity
νeff as

δco-flow ≈
(

νeffκ
2L f

I3v3∞

)1/4

≈ 40 μm. (34)

This formula has been validated by a number of studies
[34–36]. The effective viscosity νeff is an empirical quan-
tity defined by postulating that ε = νeffκ

2L2, where ε is
the turbulence dissipation rate and L the average superfluid
vortex line density [37]. In the considered range of tem-
peratures, νeff can be estimated from experimental values at
saturated vapor pressure (see, e.g., Refs. [35,37]) as νeff ≈
10−8 − 10−7 m2/s, or just assuming for νeff the value νeff ≈
μ/ρ ≈ 1.2 × 10−8 m2/s valid for the kinematic viscosity of
the laminar He II flow, with the dynamic viscosity μ tabulated
in Ref. [38], or, based on the model of Ref. [39], as νeff ≈
ρnBκ/(2ρ), where B is a tabulated mutual friction coefficient
of order unity [38]. Although those values can differ by one
decade, they all lead to rather close estimates for δco-flow due
to the 1/4 power law dependence in Eq. (34).

The order of magnitude of δco-flow is comparable to the
characteristic scales of the outer-flow, which implies that
the superfluid and the normal fluid are nearly uncoupled at
such scales before entering the counterflow region. Besides,
the residual vorticity associated with the flow’s turbulent
background hardly distorts the streamlines due to the weak
turbulence intensity. In this regard, the potential-flow picture
is substantiated upstream from the heater.

In the wire’s vicinity, the counterflow velocities exceed the
co-flow velocity v∞ and produce a dense turbulent tangle of
superfluid vortices. The typical intervortex distances δctr-flow

within this tangle can be estimated from a well-known ther-
mal counterflow equation. Omitting an offset velocity, only
relevant at low velocities, this equation can be written in the
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form

δctr-flow(r) = 1√
a|vs(r) − vn(r)| , (35)

where vs · vn < 0 and a(T ) is a numerical coefficient tabu-
lated in the literature (see, e.g., Ref. [40]). Substituting the
counterflow velocities vn = ∂�n(r)/∂r and vs = −vnρn/ρs,
one obtains

δctr-flow(r) = r

Ln/2

π

v∞
√

a(1 + ρn/ρs)
. (36)

The counterflow velocities match in strength the external
velocity v∞ typically at one outer-scale distance from the
wire. Equation (36) is no longer strictly valid at such distance
but it should still provide an order of magnitude estimate for
the typical intervortex distance upstream from the heater or
in the transverse direction. For instance, for the experimental
conditions modeled in Fig. 13 (1.93 K, 3 bars, and v∞ =
0.25 m/s), we find

δctr-flow(Ln/2) ≈ δctr-flow(Ls/2) ≈ 1.4 μm,

which is two decades smaller than Ln ≈ Ls ≈ 140 μm.
We now question if this tangle is dense enough to enforce

a significant coupling between the superfluid and the normal
fluid at the outer-flow scales Ls and Ln. Owing to the large
scale separation between δctr-flow and Ls, Ln, the superfluid can
be described as a continuous medium characterized by a local
vortex line density δ−2

ctr-flow and a coarse grained velocity ṽs. In
such conditions, the coupling between the superfluid and the
normal components can be described, as first approximation,
by a volumetric mutual friction force whose magnitude Fns

can be written in the Görter-Mellink form

Fns = ρnρs

ρ

B

2
κδ−2

ctr-flow|vn − ṽs|.

Making use of the coarse-grained Hall-Vinen-Bekarevich-
Khalatnikov equations (see, e.g., Ref. [5]), it is straightfor-
ward to identify the relaxation times τn and τs, due to the
mutual friction force, for the normal and superfluid com-
ponents, respectively, from the estimates for the material
derivatives |ρnDvn/Dt | ∼ Fns and |ρsDvs/Dt | ∼ Fns:

τn(r) = ρn

ρs
τs(r) = 2ρ

Bκρs
δ2

ctr-flow(r). (37)

The superfluid coarse grained velocity ṽs at a distance ∼Ls/2
from the heater evolves with the characteristic time scale
Ls/(2v∞). The mutual coupling will alter significantly the
normal fluid streamlines if the relaxation time τn(Ls/2) is
short enough, say τn(Ls/2) � Ls/(2v∞). Similarly, mutual
coupling will alter the (coarse-grained) superfluid streamlines
at a distance of order Ln/2 if τs(Ln/2) � Ln/2v∞. In the
experimental conditions modeled in Fig. 13 (1.93 K, 3 bars,
v∞ = 0.25 m/s, B ≈ 1, ρ ≈ 2ρs ≈ 2ρn), both inequalities be-
come identical and are found to be valid:

78 μs ≈ 4

Bκ

[
δctr-flow

(Ls

2

)]2

� Ls

2v∞
≈ 280 μs.

More generally, using Eqs. (29), (32), (36), and (37), the
criteria for partial fluid locking reduce to

2πρST

Bκa(T )

ρn

ρ

[
max

(
1,

ρs

ρn

)]2

� �. (38)

Interestingly, this locking condition amounts to comparing
the heat flux with a quantity that depends only on the he-
lium properties. To the best of our knowledge, the empirical,
temperature-dependent coefficient a(T ) is not tabulated in
pressurized helium but the full left-hand-side term can be
estimated at saturated vapor pressure, and it is found to have
roughly the same magnitude as the right-hand-side term of
condition (38), � shown in Fig. 12.

This shows that the dense superfluid vortex tangle around
the heater must strongly couple the superfluid and the normal
components over length scales encompassing the outer-flow
scales Ls and Ln, an effect ignored in our simple velocity-
potentials model. We thus expect some distortion of the
streamlines, shown in Figs. 13 and 14 within a few Ls and
Ln from the heater. Besides, the strong mutual coupling will
favor a locking of the wakes of both fluids and allow vortical
structures to develop in the wake of the heater, definitely
invalidating the model of the irrotational, potential velocity
fields downstream from the heater. The issue of the turbulent
wake that forms downstream of the heater is addressed in the
next subsection.

E. The turbulent wake of the heater

In the previous subsection, we predicted two consequences
of a localized heating in a quantum flow. First, the emergence
of virtual obstacles of typical size Ls � rw (for the super-
fluid) and Ln � rw (for the normal fluid) across the flow.
Second, a strong coupling of the superfluid and the normal
component flows at length scales of the order and exceed-
ing max(Ls, Ln); however, in the vicinity of the heater [say
for r � max(Ls/2, Ln/2)] the counterflow velocities remain
significant so that the two fluids tend to move in opposite
directions.

Numerical simulations are probably needed to explore the
resulting hydrodynamic patterns but this is beyond the scope
of this study. Nevertheless, based on a few simple hypotheses
we can assess the flow stability. First we assume that the
outer-flow stability is controlled by a wake Reynolds number
Rectr-flow. As the superfluid “wing trailing-edge” profile is
possibly destabilized at distances of the order Ls from the
heater (symbolized by the curvy streamline of Fig. 14), we
now define the Reynolds number Rectr-flow of the flow based on
the characteristic length Ls. As we lack a better understanding
of the interplay between the superfluid and the normal fluid
wakes, such a choice of the length scale to satisfy the condi-
tions of stability is rather conservative (max(Ls, Ln) would be
a less conservative choice; however, such a choice would not
change our quantitative conclusions). At distances of the order
max(Ln, Ls) in the wake of the wire, the counterflow velocity
is small compared to v∞ but the vortex tangle still remains
dense, thus entailing some re-locking of the superfluid and the
normal fluid velocity fluctuations at scales larger than the in-
tervortex distance. He II can then be described as a single fluid
of density ρ = ρs + ρn and velocity v ≈ vs ≈ vn that inherits
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the viscous volumetric force of the normal fluid μ∇2vn ≈
μ∇2v. The kinematic viscosity ν = μ/ρ of this fluid is thus
a natural choice for the denominator of Rectr-flow. Hence, the
wake Reynolds number defined to assess the stability of the
outer-flow is

Rectr-flow = Lsv∞
μ/ρ

= ρn

ρs

2π�
STμ. (39)

Interestingly, this Reynolds number depends only weakly,
through �(v∞), on the velocity of the external co-flow, v∞.
Formally, Eq. (39) reduces to a Reynolds number characteriz-
ing the counterflow generated by the heater. It can be formally
written using the wire diameter 2rw as the characteristic length
and a characteristic velocity proportional to the counterflow
superfluid velocity vs = ∂�s(r)/∂r extrapolated at the surface
of the wire (r = rw):

Rectr-flow = (2rw )[πvs(rw )]

μ/ρ
. (40)

In present experimental conditions, Rectr-flow reaches a few
thousands, far beyond the instability threshold of a flow be-
hind standard bluff bodies, which becomes unsteady typically
for Reynolds number of a few tens. To summarize, the heater
is expected to generate a turbulent wake of the locked super-
fluid and the normal fluid and having a characteristic Reynolds
number weakly dependent on the co-flow velocity v∞.

F. The vortex street

In classical hydrodynamics, periodic large scale eddies can
form in the wake of a bluff body [41]. These structures,
sometimes called von Kármán vortex streets, are characterized
by their shedding frequency f = St · U/D where U is the flow
velocity, D is a characteristic transverse size of the obstacle,
and St is the Strouhal number [42] of the order 0.1–0.3 deter-
mined by the obstacle shape and the Reynolds number based
on U and D. In a turbulent flow, the periodicity of vortex
shedding can be altered and its frequency is not well defined
(see, e.g., Ref. [43]).

For a cylindrical obstacle of diameter D, St ≈ 0.20 ± 0.03
over the range of Reynolds number DU/ν ≈ 102 − 2 × 105.
For a symmetrical flat wing of thickness D with semicircular
leading and trailing edges, the Strouhal number is slightly
larger, e.g., St ≈ 0.27 for the aspect ratio 10 and the Reynolds
number of 1300 [44]. The latter geometry is not directly
comparable to ours due to the absence of boundary layer along
the superfluid virtual wing.

Since this vortex shedding effect is inertial and not viscous
[45,46], it is expected to exist in superfluids, although not
observed yet to the best of our knowledge. Could a vortex
street account for the spectral bump at frequency fp of the heat
transfer measurement reported above in Sec. VI C? In other
words, could cooling glitches be triggered by the shedding of
vortices in the wake of the heater?

Qualitatively, the absence of the spectral bump at zero
velocity is consistent with this hypothesis. The profile of
typical individual cooling glitches, illustrated in Fig. 10(b),
is also consistent with emergence of a nonclassical boundary
layer, attached to the heater (in the form of either the He I
shell, or/and the superfluid vortex tangle around it), which

undergoes a re-formation once the velocity perturbations are
advected away.

More quantitatively, the vortex shedding frequency pre-
dicted by the Strouhal formula can be compared with the
measured frequency of the “bump.” U = v∞ is a natural
choice for the characteristic velocity of the flow. For now,
the effective transverse length scale of the bluff body will
be denoted D(T, v∞). The vortical patterns emitted behind
a symmetrical bluff body have vorticity of alternating signs,
and the frequency given by the Strouhal number corresponds
to the frequency of emission of a vortex-antivortex pair. Both
vortices from one pair can trigger a glitch so that their char-
acteristic frequency fp would then be twice the Strouhal
frequency, fp = 2 × StU/D. This leads to the following pre-
diction for the frequency of the spectral bump:

fp = 2Stv∞
D(T, v∞)

. (41)

For numerical estimates, we arbitrarily take an intermediate
Strouhal number between the two values cited above: St =
0.23.

Measurements reported in Fig. 11(b) are consistent with
a linear velocity dependence of fp(v∞), suggesting a weak
velocity dependence of D. The spectra of Fig. 7 are consis-
tent with a spectral bump frequency increasing by at most
few tens of percents from 1.74 K to 2.05 K, suggesting also
a weak temperature dependence of D over this range. This
leads to a preliminary estimate within 1.74 K–2.05 K and
v∞ < 0.4 m/s:

D(T, v∞) � 75μm. (42)

This length scale is significantly larger than the wire diam-
eter. As shown in Sec. VI B, we can rule out other geometrical
features of the wire, such as its length, since the spectral
peaking above 1 kHz associated with this length scale is
also observed with the geometrically dissimilar film probe.
Moreover, we can reasonably exclude that a fixed length scale
smaller than 100 microns is present in the incoming flow,
since the smallest (nearly) velocity-independent flow scale is
expected to be the integral scale, which is about two decades
larger. We show below that a correct order of magnitude for D
can be obtained from the naive hypothesis that the thickness Ls

of the destabilizing trailing edge plays the role of the obstacle
transverse length scale. Indeed, this leads to

fp ∼ 2Stv∞
Ls

= Stv2
∞

π�

ρs

ρn
ρST . (43)

This equation corresponds to the dashed line in Fig. 11(b).
Strikingly, this naive estimate gives the correct order of mag-
nitude for the frequency.

The nearly quadratic fp ∼ v2
∞ scaling [neglecting the

�(v∞) dependence] contrasts with the apparent scalings fp ∼
v∞ or fp ∼ v1.4

∞ of experimental data [see Fig. 11(b) and its
inset], indicating that this simple model does not fully account
for the phenomenology at play. Two corrections could possi-
bly reduce the disagreement. First, the hypothesis of a 2D flow
is not accurate since the wire length (450 microns) is not much
larger than Ls. The scaling of Ls(v∞) could therefore slightly
tends toward the scaling of the axisymmetric thermal flows
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expected for point heaters, that is Ls ∼ v
−1/2
∞ , which could

contribute to explain the subquadratic dependence of fp(v∞).
Second, a measurement bias may also contribute to this appar-
ent disagreement: an underestimate of the true experimental
bump frequency at the largest velocities due to some spectral
cutoff.

Over the range 1.74 K–2.05 K, Eq. (43) predicts a 38%
decrease of fp, not compatible with measurements. This sug-
gests that a model for the effective length scale D depending
both on Ls and Ln would be more relevant [47]. Further ex-
perimental studies in the range 2.05 K–2.13 K and numerical
simulations would be interesting to complete and underpin
this vortex shedding model.

G. The peak as a filtered high frequency noise

We present here an alternative explanation of the observed
spectral bump at high frequency. Instead of characterizing the
bump by the frequency of its maximum, as could have been
justified by the resonant or instability mechanisms, the bump
can a priori be seen as the result of a competition between two
opposite processes: a forcing emerging above some frequency
fleft < fp (left side of the bump) and a cutoff mechanism at
higher frequencies (right side of the bump). For instance, the
left side of the bump could be linked to the onset of processes
triggering the cooling glitches, and the right side to a cutoff
associated with a recovery mechanism bounding the lowest
time interval between glitches. It could also be associated with
a finite response time of the heater material and/or the thermal
boundary layer.

Figure 15 present spectra in semilogarithmic axis, with
frequency on the x axis compensated by some power of the
mean velocity. On the y axis, the power spectral density P ( f )
is multiplied by f so that the surface under the “curve” is
proportional to energy E despite the use of logarithmic scale;
indeed, for any frequency interval � f we have

E (� f ) =
∫

� f
Pdf ∝

∫
� f

fPd (log10 f ). (44)

In Fig. 15, the best collapse of the left [Fig. 15(a)] and right
[Fig. 15(b)] hand sides of the bump on single curves is ob-
tained by compensating the x-axis frequency by vα

∞ with,
respectively, α = 1.2 ± 0.2 and α = 0.5 ± 0.05.

As discussed previously, in the outer flow region the two
components of He II are expected to become decoupled
at scales proportional to the intervortex spacing, δ ∝ v

−3/4
∞ .

Below this decoupling scale, it has been predicted that the
kinetic energy of the superfluid component, cascading from
larger length scales, will pile up, a phenomenon sometimes
referred to as “bottlenecking” or a trend to equipartition [48].
At mesoscales this manifests itself as an enhancement of the
superfluid velocity fluctuations. If, by some mechanism yet to
be determined, the cooling glitches are triggered by those fluc-
tuations, then we could expect the formation of the left side of
the peak for frequencies that scale like fleft ∝ v∞/δ ∝ v

7/4
∞ .

As for the right part of the spectrum, the v
1/2
∞ scaling could

be associated with the thermal response time of the boundary
layer: As the velocity increases, the He I thermal boundary
layer thickness is expected to scale as v

−1/2
∞ , and so does the

(a)

(b)

FIG. 15. Rescaled power spectral density fP ( f ) of the wire
signal at 1.74 K for various external velocities as a function of the
frequency compensated by vα

∞ with α = 1.2 (a) and α = 0.5 (b). To
better illustrate on the left and right single curves [panels (a) and (b),
respectively] the amplitude of the rescaled PSD was normalized for
all maxima.

thermal response time. This yields a cutoff frequency fright ∝
v

1/2
∞ .

VIII. SUMMARY AND CONCLUDING REMARKS

Making use of miniature heaters, we have explored the
forced heat transfer in a subsonic flow of superfluid helium
at velocities up to 3 m/s. Our experimental results yield the
following four main properties of the heat transfer in He II
flows:

(i) In the case of a sufficiently large overheating of the
heater, some velocity dependence of the heat transfer rate
emerges when the fluid in contact with—and in close vicinity
of—the heater loses its superfluidity.
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(ii) Two metastable heat transfer regimes exist at large su-
perfluid fraction and low velocity. As the velocity is increased,
the state of lower conduction progressively supersedes the
higher conduction state hence leading to a depletion of the
mean heat transfer.

(iii) Short-lived cooling enhancements, named cooling
glitches, occur quasiperiodically with a velocity-dependent
characteristic frequency fp. Their signature in the spectral
domain is a broad spectral peak.

(iv) Heat transfer sensitivity to velocity reaches a maxi-
mum for a fluid temperature of 2.0 ± 0.1 K.

An analytical model is proposed to describe these obser-
vations. At zero velocity, it accounts quantitatively for the
heat transfer, including its temperature dependence. At finite
velocity, the velocity dependence is also accounted for, but the
maximum, observed at temperatures around 2 K, of sensitivity
of the heat transfer rate to velocity remains yet unexplained,
as well as the observation of metastable states at low velocity
and low temperature.

A semiquantitative analysis of the flow around the wire
heater is proposed, distinguishing the superfluid and normal
fluid components of the quantum fluid. We predict the for-
mation, around the heater, of flow patterns in the superfluid
and the normal components whose characteristic scales, re-
spectively Ls and Ln, are two decades larger than the heater
diameter in our experimental configuration. The superfluid
(resp. normal fluid) pattern is reminiscent of the flow over
the trailing (resp. leading) edge of a symmetrical wing. It
is argued that the dense quantum vortex tangle sustained by
the heater couples the superfluid and normal fluid patterns,
resulting in the formation of a strongly turbulent wake with
locked superfluid and normal fluid components.

The characteristic frequency fp revealed by heat transfer
measurements is quantitatively consistent with the formation
of a von Kármán vortex street in the wake of the heater.
Still, a precise dependence on the velocity and temperature
is not fully accounted for by the model, calling for further
investigations on the relation between the effective transverse
length scale of the obstacle and the size of the virtual wings
Ls and Ln. We thus discuss an alternative explanation for the
appearance of a broad spectral peak (the so-called “bump”)
at some characteristic frequency fp in connection with an
existing prediction of a piling up (or “bottlenecking”) of the
superfluid kinetic energy at small scales [34]. We argued
that such a peak may result from the competition between
instabilities (cooling glitches) triggered at frequencies above
fleft < fp and a cutoff mechanism at higher frequencies.

Numerical studies are certainly needed to better understand
the mutual coupling of the superfluid and normal components
in the region of local counterflow generated by the heater, and
the relation between Ln, Ls, and the velocity Veff perceived by
the He I boundary layer. For instance, it would be interesting
to see if the resulting flow is controlled by the largest or
smallest of the two scales Ls and Ln, which could explain why
the maximum sensitivity to velocity is reached near 2 K, that
is when Ls ≈ Ln.

To conclude, although the heat transfer mechanisms at
play are not yet fully understood and deserve further inves-
tigations, two applications of the present study can already
be suggested. First, the miniature heater within the quantum

flow can be seen as an obstacle with a tunable length scale.
Indeed, the length scales Ls and Ln depend on the amount of
heating and not on the external flow velocity. Hence, a three-
or two-dimensional network of miniature heaters positioned
across a flow can be seen as a bluff body with a remotely
controllable shape. This opens an interesting perspective in
the studies of turbulence generated by an active grid or an
active wing.

Second, a successful operation of the hot wire anemometer
in superfluid has been previously reported [6]. The present
study confirms the analysis and conclusions of the cited work
but also allows us to identify the following limitation of the
hot-wire anemometry in a quantum flow: The space-time res-
olution is spoiled by the formation of the outer flow scales (Ls

and Ln) and the associated time scales (Ls/v∞ and Ln/v∞).
In particular, the broad peak in the spectral response cannot
be interpreted directly as a feature of the external flow, and
it would be hazardous to identify it with the predicted bottle-
necking of the velocity spectra in superfluid helium at finite
temperature [34,49].
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APPENDIX: CHARACTERIZATION OF THE
GRID FLOW

In the Appendix we shall use local velocity measurements
performed by means of the wire heater in He I to compute
the integral length scale L f and the turbulent intensity I of the
flow. There is a wealth of evidence that these large scale flow
properties should remain largely unaffected by the transition
from classical turbulence in He I to the He II quantum turbu-
lent flow [18,19]. With these primary quantities, we shall then
estimate the Reynolds number and the so-called Kolmogorov
dissipative length scale under the assumption of homogeneous
and isotropic turbulence.

(a) Calibration of the wire heater. In He I the wire heater
behaves as a conventional hot wire anemometer: As explained
in Sec. VII B, the King’s law is then very well suited to fit the
electrical power dissipated in the wire heater as a function of
the velocity. Here we use the raw King’s law for calibration:

e2 = C + Dv0.5
∞ , (A1)

where the calibration constants C and D are determined using
a polynomial fit of the mean voltage against the mean velocity
in the tunnel.

(b) Turbulence intensity. Here we compute the turbulence
intensity I = v′/v∞ where v′ is the standard deviation of the
velocity. The raw voltage records, and thus the velocity data,
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FIG. 16. Power spectral density of velocity time series as a func-
tion of the frequency at flow velocities v∞ ranging from 0 m.s−1

(dark red) to 0.51 m.s−1 (light red).

are affected by an uncorrelated base noise. Therefore, at low
velocity, in which case the signal to noise ratio is small, the
evaluation of the standard deviation of the velocity is not reli-
able. It is thus reasonable to use, for the turbulence intensity,
the value found at the highest velocities:

I = v′/v∞ ≈ 2.6%.

(c) Integral length scale. The longitudinal integral length
scale is defined as follows:

L f =
∫ ∞

0
Rxxdδx, (A2)

where Rxx is the autocorrelation coefficient of the longitudinal
component of the fluctuating velocity v′ along the longitudinal
axis x

Rxx(δx ) = 〈v′(x)v′(x + δx )〉/〈v′2〉. (A3)

Since we have access to the time series of the velocity, we use
the Taylor hypothesis of frozen turbulence in order to trans-
form temporal to spacial data through x = 〈v〉t . The integral
(A2) converges to

L f = 5.0 ± 0.2 mm

after a length scale δx that ranges between 2000L f and
10 000L f .

(d) Reynolds number and Kolmogorov dissipative length
scale. As the hot wire only gives access to one component of
the velocity (streamwise), in order to compute the Reynolds
number we first need to make an assumption on the isotropy
and homogeneity of the flow. Then we can rely on the relation
Rλ = √

15ReL f where ReL f = I〈v〉L f /ν (see, e.g., Ref. [50]).
For the largest velocities, this yields

Rλ ≈ 230.

We can also evaluate the Kolmogorov dissipative length scale
lη based on the definition lη/L f = Re−3/4

L f
which leads to

lη ≈ 10 μm.

(e) General comments on spectral data in He I. In order
to make general comments on the quality of the acquired
fluctuating velocity time series, we can look at their power
spectral density [PSD or P ( f ) hereafter] which has a very
well known spectral signature in the considered grid flow.

As can be seen from Fig. 16, at all available velocities v∞
the PSD scales with the frequency reasonably well as f −5/3.
The extent of the inertial range in the frequency domain is
about one decade, which is quite good considering that the
length of the wire is only 10 times smaller than the large scale
of the flow L f . Finally we note that for nonzero velocities
there appears a noise at frequencies above 200 Hz. We did not
manage to determine the source of this noise, but as it only
introduces a small amount of energy at high frequency, we do
not expect it to affect the conclusions of this paper.
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