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We report hot-wire measurements performed in two very different, co- and counterrotat-
ing flows, in normal and superfluid helium at 1.6 K, 2 K, and 2.3 K. As recently reported,
the power spectrum of the hot-wire signal in superfluid flows exhibits a significant bump
at high frequency [Diribarne et al., Phys. Rev. B 103, 144509 (2021)]. We confirm that the
bump frequency does not depend significantly on the temperature and further extend the
previous analysis of the velocity dependence of the bump, over more than one decade of
velocity. The main result is that the bump frequency depends on the turbulence intensity of
the flow, and that using the turbulent Reynolds number rather than the velocity as a control
parameter collapses results from both co- and counterrotating flows. The vortex shedding
model previously proposed, in its current form, does not account for this observation.
This suggests that the physical origin of the bump is related to the small scale turbulence
properties of the flow. We finally propose some qualitative physical mechanism by which
the smallest structures of the flow, at intervortex distance, could affect the heat flux of the
hot wire.
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I. INTRODUCTION

One of the main questions in the theory of turbulence is how energy is distributed over length
scales, i.e., what is, in the k space, the energy spectrum E (k). It is generally believed that for
mechanically driven quantum turbulence, the quantization of vortex circulation is unimportant at
scales greater than the mean distance between the superfluid vortex lines, δ, simply called intervor-
tex distance hereafter. Thus, the kinetic energy spectrum at such scales is distributed similarly to
the one in classical turbulence. For example, in homogeneous isotropic fully developed turbulence
one expects classical Kolmogorov-1941 (K41) spectrum EK41(k) ∝ k−5/3 and this is actually what
measurements in turbulent superfluid flows show [1,2].

In inertially driven flows, the main differences between the quantum and classical turbulence is
expected to arise at scales smaller than δ. However, accessing both the large and the small scale
parts of the spectrum simultaneously is an experimental challenge. Large devices, such as SHREK
[3], help solving part of the problem by providing a way to have both developed turbulence and still
reasonably large inter-vortex length scales, of the order of a hundred micron at the smallest Reynolds
number. Still, in those conditions, the proven Eulerian velocity and vorticity sensors operating in He
II are in resolution limits.

For example, in a recent paper, Salort et al. [4] have analyzed velocity spectra, obtained in the
SHREK von Kármán apparatus [3], based on cantilever and “Pitot tube” signals. They reported two
different kinds of behavior associated to normal and superfluid conditions, in the limit of very low
velocities, where the sensors had a sufficient temporal and spacial resolution to resolve the high k
end of the Kolmogorov spectrum. They used a hot wire as a reference anemometer in He I, where
its behavior is perfectly understood. Hot wires can be designed to have suitable temporal and spatial
resolution, (see, e.g., Refs. [5–8]), but the interpretation of their signal in He II is a challenge [9,10].
The main stumbling block is the apparition of a spectral bump at high frequency. Diribarne et al.
[9] have shown that the bump in the spectral domain is in fact the result of quasi-periodic enhanced
heat flux events, called “glitches.” The physical origin of those glitches is still not understood but
the authors proposed two main leads: (i) the shedding of large scale structures associated to the
destabilization of the thermal pattern that forms around the wire, and (ii) the interaction between
the thermal boundary layer and the enhanced velocity fluctuations at scales comparable to the
intervortex distance. The former is only related, at first order, to the surrounding flow mean velocity,
while the latter is expected to depend on the turbulent properties of the flow.

In the present paper, we analyze the signal obtained from a hot wire in He II and compare
it to the velocity measurements performed with a dynamic pressure anemometer (named “Pitot
tube” hereafter) to arbitrate between those leads and eventually propose alternatives to under-
stand the physical origin of the glitches. We take advantage of the versatility of the SHREK
apparatus to submit the hot wire to two main flow configurations, with very different turbulent
properties.

The paper is organized as follows: after a presentation of the experimental setup and the different
flow configurations in Sec. II, we show the typical shape of the spectra obtained in He I and He
II in Sec. III and finally the velocity dependence of the spectral bump frequency is discussed in
Sec. IV.

II. EXPERIMENT DESCRIPTION

A. Experimental apparatus

The SHREK facility [3], see Fig. 1, is a superfluid implementation of the Von Karman flow in
a cylindrical container of inner diameter Rs = 39 cm with two propellers of diameter R = 38 cm
equipped with blades. The distance between the turbine base disks is h ≈ 70 cm.

The rotation frequencies f1 and f2 of the bottom and top turbine, respectively, can be varied inde-
pendently in the range 0–2 Hz, which allows to produce a variety of flows from the counterrotating
case ( f1 × f2 < 0) to the corotating flow ( f1 × f2 > 0). See Fig. 1 for the + rotation direction.
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FIG. 1. Schematic view of the SHREK experimental setup [3]. The dashed line marks the equatorial plane,
where the sensors are located.

In the present paper, we focus on two kinds of flows: (i) the corotating flow that has the bottom
and the top propellers rotating in the same + direction at f1 = f 2, (ii) the counterrotating flow that
has f1 > 0 and −2.5 < f1/ f2 � −1.1.

For both flows we explore three different temperatures: T = 2.3 K, 2.0 K. and 1.6 K.
To operate hot wires, the pressure P = 2.5 ± 0.1 bar is maintained above the critical pressure.

B. The probes

Here, we describe the two sensors that are used to derive turbulent energy spectra: the pitot tube
and the hot wire. Both are placed in the equatorial plane (see dashed line in Fig. 1) at about 4 cm
from the wall.

The sensors are oriented in the azimuthal direction, targeting measurements of the θ component
of the velocity. However, it is likely that both sensors are also sensitive to the z component of the
velocity.

The acquisition frequency is nominally 30 kHz, and data sets are acquired over times of the order
of 104 large eddy turnover times, allowing for a good statistical convergence.

We would like to emphasize that these two types of sensors were originally proposed for
measuring the velocity in classical fluids, mostly at room temperature. Using them in cryogenic
conditions, even in the normal fluid, poses new challenges. This is even more problematic in the
superfluid regimes. However, using the two types of sensors simultaneously gives a degree of
confidence about the consistency of the results at least in the large-scale range, where the normal
and superfluid components motions are mostly synchronized by the mutual friction.

In the present paper, we have chosen not to present the results obtained with yet another probe,
a cantilever, because this probe was located at a different distance from the wall with potentially
different flow properties.

1. The hot wire

The hot wire is prepared from a commercial so-called “Wollaston wire” (see Ref. [10] for details).
The sensitive part, made of a 90% Platinum 10% Rhodium alloy, is 1.3 μm in diameter and 300 μm
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in length. It is etched by electro-erosion in a 35% nitric acid solution. The whole wire is soldered
on a DANTEC 55P01 hot-wire support.

We operate the sensor using a commercial DISA 55-M10 constant temperature anemometer. This
allows us to monitor the power needed to overheat the wire at a fixed temperature Tw ≈ 25 K.

In He I, as in standard fluids, the measurement principle is based on the enhancement of heat
transfer with forced convection. The velocity fluctuations at length scales larger than the length of
the wire can be directly deduced from the power signal, by means of a standard King’s calibration
law:

e2 = a + bv1/2, (1)

where e is the anemometer voltage and v is the velocity of the liquid He I flowing around the wire.
However, in He II, the interpretation of the power signal is trickier. The efficiency of the heat

transfer is also enhanced by forced convection and the large scale velocity fluctuations, at small
frequency, can still be deduced from the signal [10]. At higher frequency though, the signal is
marked by a spectral bump which cannot directly be attributed to velocity fluctuations in the
flow but rather to short-lived intense cooling events, called “glitches,” lasting typically less than a
millisecond [9].

Since the hot-wire temperature is larger than Tλ, it is surrounded by a thin boundary layer of He
I. Actually it is the presence of this He I layer that allows for the sensitivity to velocity [9]. Out of
this layer, in He II, the heat flux drives an intense counterflow which, in turn, generates additional
small-scale turbulence in the form of a dense tangle of quantized vortex lines.

2. The Pitot tube

In classical fluid, the Pitot tube gives access to the dynamic pressure s(t ) = ρv(t )2/2, where
ρ is the density of the liquid and v is velocity, by measuring the pressure difference between the
stagnation pressure, at the nozzle facing the flow, and the static pressure at an opening perpendicular
to the flow (see Ref. [4] for technical details). Below the superfluid transition, this sensing principle
remains valid at flow scales resolved by the present sensor, because the superfluid and the normal
fluid have a common velocity at these scales. A new “all sensor and no neck” design is used
[11,12], increasing the mechanical resonance of the sensor to about 500 Hz. This upper frequency
resolution could be further but it would be at the expense of sacrificing the sensitivity. The readout
was capacitive and cross-band spectral averaging [13] was implemented.

C. Flow properties

In this section we first describe the topology of the two flow configurations that we used, namely
the corotating and counterrotating flows. Then the hot-wire measurements performed in He I at
2.3 K are used to assess the integral length scale and turbulence intensity in both configurations.

1. Topology

Prior to any measurements in helium, we have explored the flow topology and properties in a
scale 1:4 experiment (denoted SPHYNX hereafter), filled with water, using a two components laser
Doppler velocimetry (LDV) apparatus. The mean z and θ components of the velocity measured
in water are shown in Fig. 2. The radial vr component (not shown) is deduced from the other
two components using the incompressibility condition. Besides a large scale global rotation, in the
direction of the impeller rotation, one also observes a vertical circulation, resulting from the blades
curvature that induce a pumping. The vertical circulation is descending in the core of the cylinder,
and ascending (by incompressibility) at the wall, resulting in a inhomogeneous large vertical shear.
In the region where the hot-wire and Pitot measurements are performed, at r/R ≈ 0.9, the ratio
between the azimuthal and vertical components is vz/vθ � 4%.
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FIG. 2. Azimuthal velocity vθ of the corotation flow obtained in the SPHYNX water experiment using
LDV measurements: (a) Color map of vθ in the (r, z) plane. Black and gray areas represent the turbines disk
and blades, respectively. Arrows indicate the amplitude of the vertical velocity vz, of which the maximum is
approximately 4% of vθ (r/R = 1). (b) vθ normalized by the velocity at the tip of the turbines (2πR f ) averaged
over the height of the flow. The error bars show the standard deviation of the azimuthal velocity.

In the counterrotation case, the flow is divided into two toric cells separated by an azimuthal shear
layer, in which the mean azimuthal velocities are zero. The position of the shear layer depends on
the ratio | f1|/| f2|: it is at equidistance from the two impellers if | f1| = | f2|, and shifted upwards
(respectively, downwards) if | f1| > | f2| (respectively, | f1| < | f2|) [14–18]. Therefore, in this paper,
we only explore situations where the rotation frequencies of the impellers are shifted (| f1| > | f2|)
to make sure that the average θ component of the velocity is non null. Otherwise, the interpretation
of the Pitot and hot-wire signals would not be possible.

Figure 3 shows the calibration of the hot-wire voltage ewire in the corotation and counterrotation
cases. In absence of a reference velocity measurement in SHREK, we assumed in both cases that
the azimuthal velocity was of the form

vθ = α2πR f1. (2)

In corotation, previous measurement in SPHYNX [see Fig. 2(b)] suggest that using α ≈ 0.75 is a
reasonable assumption. We thus choose to take α = 0.75 for the corotation case and search the value
of α in the counterrotating case that leads to the best match of the mean hot-wire voltage for a given
velocity. We find that, in counterrotation, α ≈ 0.45, i.e., that the velocity at the sensors location is
45% the velocity at the tip of the fastest turbine.
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FIG. 3. Mean voltage of the hot-wire anemometer as a function of the velocity vθ defined as vθ = α2πR f1

where α = 0.75 in the corotation case and α = 0.45 in the counterrotation case. The solid line is a fit of the
corotation data using the King’s law; see Eq. (1).

2. Turbulence properties

The turbulence properties of the flow are estimated both in the SPHYNX experiment using LDV
and in SHREK using the hot-wire measurements in He I.

a. Turbulence intensity. The turbulence intensity τ defined as the ratio

τ = σv/|v|,
where v = vθeθ + vzez and σv =

√
〈v′2〉 is the standard deviation of the module of the velocity v.

At a distance of order 4 cm from the wall, i.e., at coordinate r/R ≈ 0.9 in Fig. 2(b), the turbulence
intensity is found to be in the range 5–10%. This order of magnitude is confirmed by hot-wire
measurements in corotating He I, where the inferred value is τ ≈ 5.2% [4]. Using the same
technique, and the calibration from Fig. 3 one finds τ ≈ 22% in counterrotation, i.e., a turbulence
intensity which is 4–5 times larger than in corotation.

b. Integral length scale. We used the hot-wire velocity signal to compute the longitudinal integral
length scale Ll defined as

Ll =
∫ +∞

0

〈v′(0)v′(r)〉
〈v′2〉 d (δr).

As shown in Ref. [4] this leads to Ll ≈ 2.9 cm in corotation, while we find Ll ≈ 3.7 cm in the
counterrotation case.

III. LOCAL ENERGY SPECTRA

In this section we present power spectral density of the hot-wire signal in both co- and counter-
rotating flows.
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FIG. 4. (a) Power spectral density of the hot-wire signal in He I at 2.3 K. Amplitudes are shifted arbitrarily
for better readability. The dotted lines show a f −5/3 power law. (b) Same spectra compensated by f 5/3.

Since the large scale behavior of those flows is not expected to be affected by the transition to
superfluid phase [1,17], we first present measurements in He I where the hot wire is expected to
behave as a standard anemometer. Those spectra are further used as references and compared to
those obtained in He II.

A. Normal fluid

Figure 4(a) shows the power spectral density (PSD hereafter) of the hot-wire signal in corotation
and in counterrotation at two comparable azimuthal velocities. To make sense out of those spectra
we assume the Taylor hypothesis of frozen turbulence, so that we can translate a given frequency f
to a length scale l through the relation l = 〈vθ 〉/ f . Note though that this hypothesis is probably not
justified in the case of counterrotation, where the turbulence intensity is very high, but this should
only matter at the highest frequencies.

The spectra are flat at low frequency and then tend to follow a power law at higher frequency,
where the inertial range of length scales is expected to lie. At even higher frequency a cutoff is
observed. The compensated spectra in Fig. 4(b) show that the power law in the inertial range
is compatible with a Kolmogorov f −5/3 energy cascade in both flows. The transition from the
low-frequency uncorrelated flat spectrum to the power law is quite different in corotation and in
counterrotation though. Since the integral length scales are comparable in both flows, we expect
that the transition happens at comparable frequency for a given azimuthal velocity. Even though the
transition from flat to power law behavior actually seems to happen at comparable frequencies, in
counterrotation it is much more steep than in corotation where the slope evolves gradually from 0
to −5/3 over a decade of frequencies.

The interpretation of the cutoff at large frequency calls for caution. At low velocity, it happens at
lower frequency in the corotating than in the counterrotating case. If the cutoff marks the beginning
of the dissipative length scales, this is expected since the turbulence intensity of the latter is much
higher than the former. At high velocity though, we can hardly distinguish the cutoff frequencies
and it is likely that it should be attributed to a finite size effect.

B. Superfluid

Figure 5(a) compares the PSD of the hot-wire raw signal in He I (2.3 K) and in He II (2 K) in
corotation at low velocity. In He II, we see that a large spectral bump appears at high frequencies,
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FIG. 5. (a) Power spectral density of the hot-wire signal in He I (2.3 K) and in He II (2 K) in corotation
at 0.07 m/s. Amplitudes are shifted so that the spectra match at low frequency. (b) Series of spectra in He II
(2 K) in corotation at velocities varying in the range 0.04–0.45 m/s (colored solid lines) and at 0 m/s (black
dash dotted). The black dots mark the inflection point in the high-frequency bump.

where, in He I, the PSD is already damped by the viscous cutoff. This spectral bump is actually
associated with short-lived heat flux enhancement events that account for a significant, velocity
dependent, portion of the variance of the hot-wire signal. Thus velocity fluctuations cannot be
directly inferred from the hot-wire raw signal.

In Fig. 5(b) we show PSD obtained in He II (2 K) at increasing azimuthal velocities, in corotation
flow. It is clear that the frequency at which the spectral bump appears increases with the flow
velocity. In quiescent helium, no bump is observed, down to the lowest resolved frequencies. Those
features have also been reported in Ref. [9] but within a more limited range of velocities and in a
grid flow where the turbulence intensity is very low (less than 2%). Note that, contrary to previous
observations, while at low velocity a local maximum is observed, at high velocity the bump takes
the form of departure from the low-frequency power-law behavior with no clear extremum.

C. Comparison with Pitot-velocity spectra

While the Pitot tube has a lower spatial resolution, the interpretation of its signal is more
straightforward. Especially in the case of the corotation flow, where the turbulence intensity is low,
the Pitot signal fluctuations can be shown to be linearly related to velocity fluctuations in the flow.

Figure 6 shows a comparison of the Pitot and hot-wire signal PSD in corotation. In He I, the shape
of the PSD of the two sensors are very similar at low frequencies: after a nonuniversal shallower
spectrum at low frequencies, the PSD shows a f −5/3 power law from f ≈ 5 Hz up to f ≈ 20 Hz
where the spectrum reaches a noise plateau. The latter can be explained by the low sensitivity of
the Pitot sensor at low velocity. The peak in the Pitot spectrum at f ≈ 540 Hz is due to the probe
mechanical resonance.

As shown by Salort et al. [4], in He II at the same velocity, the PSD of the Pitot remains
unchanged up to f ≈ 3 Hz where a departure is observed: instead of tending to a f −5/3 power
law like in He I, the PSD amplitude keeps decreasing like ∼ f −1 until it reaches the tail of the probe
mechanical peak, at f ≈ 200 Hz.

A departure from the He I PSD is also observed at approximately the same frequency (around
3 Hz) but it is not as pronounced as for the hot wire.
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FIG. 6. Comparison of the Pitot and hot-wire signal spectra, E , at 2.3 K (cyan and orange, respectively)
and 2 K (blue and red, respectively) in corotation at 0.09 m/s. The solid black lines shows a f −5/3 power law.
An arbitrary scaling factor is applied so that the amplitudes match at 1 Hz.

This departure in the Pitot spectrum is attributed to the pile-up of kinetic energy in the superfluid
component in the near dissipative range of length scales [4,19].

IV. DISCUSSION

In this section we will to try explain the shape of the hot-wire spectra and underpin the origin of
the high-frequency bump in the hot-wire signal.

A. Velocity dependence

To analyze the velocity dependence of the high-frequency bump in the hot-wire signal, we define
the representative frequency fbump as the local inflection point between the low-frequency power
law and the high-frequency spectral departure [see the black dots in Fig. 5(b)]. Contrary to previous
studies, the bump here does not always feature a maximum, and this definition guaranties that we
can always find a representative frequency for the bump. Qualitatively, fbump can be viewed as the
lowest frequency at which the bump starts.

The inflection point is located automatically by first fitting the PSD at intermediate frequencies
with a third order polynomial and looking for a local maximum in the derivative dE/df .

Figure 7(a) shows fbump as a function of the azimuthal velocity vθ for both corotation and coun-
terrotation cases at 2 and 1.6 K. The representative frequency is extracted either from experiments
at steady or at very slowly (≈1 × 10−5 Hz s−1) varying turbine frequency. In the case of varying
frequency, each point is extracted from a spectrum averaged over ten consecutive datasets lasting
≈54 s each (about 800 integral times at the smallest rotation frequency). Only points for which the
turbine frequency varies of 15% at most between the first and the last dataset are shown.

From this figure, one already notices two striking features:
(i) the bump appears at higher frequency in counterrotation (round markers) than in corotation

(square markers) for a given azimuthal velocity,
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FIG. 7. Representative frequency of the spectral bump fbump as a function of the azimuthal velocity vθ

in counterrotation (square symbols) and corotation (round symbols) at 2 K (red) and 1.6 K (blue). The solid
and dash-dotted black lines show the best fit of the form fbump ∝ v

γ

θ for the counterrotating and corotating
cases, respectively. The dashed lines correspond to f turb

δ computed from Eq. (7) for both kinds of flows, while
the dotted line corresponds to f lam

δ , Eq. (5). (a) Raw frequency. (b) Frequency divided by v
3/2
θ . (c) Frequency

divided by v
7/4
θ .

(ii) the bump frequency does not significantly depend on the temperature (red versus blue
markers).

The bump is not visible in quiescent fluid at the resolved frequencies [see Fig. 5(b)]. It is therefore
reasonable to assume that fbump tends to 0 Hz when the velocity tends to 0 m/s. The investigation of
the emergence of the bump in the low velocity limit would require a dedicated campaign with very
large acquisition times, and is beyond the scope of this paper. In the range of velocities investigated
here, the velocity dependence of the bump frequency can be represented as a simple power law. The
solid and dash-dotted black lines in Fig. 7 indicate, in counterrotation and in corotation, respectively,
the best fits of the form

fbump ∝ v
γ

θ . (3)

The exponent γ is higher in counterrotation (γ = 1.74) than in corotation (γ = 1.56). Note that
since the estimated azimuthal velocity in counterrotation is calibrated against that in corotation, the
observed difference cannot be attributed to a wrong value for α in Eq. (2). Anyway, the velocity
range here is about 1.5 decades, much larger than in previous studies [9], which strongly supports
the view that the bump frequency dependence with the velocity is steeper than a simple linear
dependence.

We identify below some of the relevant characteristic frequencies that can emerge in a rotating
turbulent flow and we detail their respective velocity dependence.

a. Vortex-streets emanating from the wire. Diribarne et al. [9] have shown that the normal and
superfluid components form two well defined “winglike” patterns in the vicinity of the wire. The
characteristic size of the patterns, was shown to be typically hundred times the diameter of the wire
in their working conditions. They further argue that this flow pattern should be unstable and could
lead to Kármán vortex streets in the wake of the “wing.” Assuming the hot-wire heat flux is affected
by this vortex shedding, this would lead to a frequency:

fKármán = 2Stvθ

D(T, vθ )
, (4)
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where St is the Strouhal number [20] of the order 0.1–0.3, and D(T, vθ ) is the temperature- and
velocity-dependent characteristic size of the thermal wing pattern. The dependence of D on the
velocity has been shown to be of the order ∝v−1

θ in cylindrical approximation, and to tend toward
∝v

−1/2
θ when D becomes large as compared to the length of the wire. It thus predicts a vortex

shedding frequency fKármán ∝ v
β

θ with 1.5 � β � 2.
b. Frequency corresponding to intervortex distance. Because turbulence in SHREK is inhomo-

geneous, the intervortex distance is expected to vary depending on the position in the flow. We
can derive two limiting formulas for the frequency corresponding to the intervortex distance fδ ,
assuming that we are in a corotating laminar flow or a fully turbulent regime. In the first case, we
can take as a reference the distance between the vortex neighbors in a laminar superfluid uniformly
rotating with frequency fr , which is likely to be the lower bound since the mean vorticity of the
turbulent flow is larger than the one in the laminar flow. In this case, the vortex line density is given
by L = 4π fr/κ (see, e.g., Refs. [21,22]) and the intervortex distance by δ = L−1/2 = (4π fr/κ )−1/2.
Assuming that the vortex array is advected at the same velocity as the mean flow, we consequently
find that the typical frequency f lam

δ corresponding to such a reference scale is vθ /δ, hence

f lam
δ =

(
2

κR

)1/2

v
3/2
θ . (5)

Let us now consider turbulence when estimating the intervortex scale. It has been shown that
in the hypothesis of homogeneous and isotropic turbulence (HIT hereafter), the intervortex spacing
scales like the Kolmogorov dissipative length scale [19,23]:

δ

Ll
=

(νeff

κ

)1/4
Re−3/4

κ , (6)

where νeff is determined experimentally (see, e.g., Refs. [23–25]) and Reκ = σvLl/κ is the turbulent
Reynolds number. Using the Taylor hypothesis, Eq. (6) translates to a frequency in the Eulerian
frame

f turb
δ =

(
τ 3

νeffLκ2

)1/4

v
7/4
θ . (7)

The vortex shedding model [Eq. (4)] predicts a velocity dependence of the shedding frequency
compatible with the data for fbump. However, in this basic model, the amplitude of the velocity
fluctuations relative to the mean velocity, i.e., the turbulence intensity, do not play any role and this
is in contradiction with the fact fbump is found to have notably different values in the corotating
and counterrotating situations for a given mean velocity. Additionally, we expect that in this
model, including some fluctuations around the mean velocity would probably increase the standard
deviation of the shedding frequency rather than changing its mean value. Moreover, it was shown
[9] that due to the temperature dependence of the characteristic thermal pattern size D in Eq. (4),
the spectral bump frequency should depend noticeably on the temperature. For those reasons, the
shedding model, in its current basic form, seems unable to account for the present measurements.

The frequency associated to the intervortex distance, is expected to scale as v
3/2
θ or v

7/4
θ for the

laminar and turbulent cases, respectively. The compensated plots in Figs. 7(b) and 7(c) show that
both exponents are good candidates, even though counterrotation data seem to have a slightly steeper
slope, as seen from the fits (solid and dashed-dotted line in Fig. 7). The expected frequency fbump for
the laminar (dotted line in Fig. 7) and the turbulent (dashed lines in Fig. 7) show that the estimated
frequencies, are in qualitative agreement in both cases. The true motion is clearly neither purely
laminar nor statistically isotropic: it consists of both (an anisotropic) turbulence and a rotational
mean flow. Therefore, the scaling of fbump should be somewhere in between of the purely laminar
and the purely turbulent scalings. However, since the latter two scalings are very close to each other,
we believe that our conclusion that fbump is associated with the intervortex spacing is robust.
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FIG. 8. Characteristic length lbump = vθ / fbump normalized by the corresponding flow integral length scale
Ll as a function of the turbulent Reynolds number. The black line represents Eq. (6) multiplied by an arbitrary
factor 15.

In Fig. 8 we show the characteristic length lbump = vθ / fbump, normalized by the integral length
scale Ll , as a function of the turbulent Reynolds number Reκ = τvθLl/κ . This representation
collapses the data from both kinds of flows onto a reasonably well defined single power law. For
comparison, the black line represents the intervortex distance normalized by the integral length
scale, Eq. (6), multiplied by an arbitrary factor 15. In the range of temperatures between 1.6 and
2 K, the effective viscosity νeff has been shown to not depend significantly on the temperature (see,
e.g., the compilation of experimental and numerical data from Ref. [23]) and we consequently used
the average reported value νeff ≈ κ/5 [23]. As a guide to the eye, the gray area shows the region
around this line into which the data are scattered by at most a factor of two.

Even though the data are still scattered, it is reasonable to assume that we should search the
origin of the spectral bump in phenomena that are prominent at length scales proportional to the
intervortex spacing.

B. Interpretation

In the superfluid thermal boundary layer, the very intense counterflow heat flux results in a dense
vortex tangle. The intervortex distance varies radially through the thermal (He II) boundary layer:
the heat flux decreases as one gets further from the wire, due to the cylindrical geometry, and so
does the vortex line density. So no single length scale can be identified in the thermal boundary
layer, but close to the wire, where the temperature gradient is significant, the intervortex distance is
orders of magnitude smaller (see Ref. [10]) than that of the bulk surrounding turbulent flow.

Diribarne et al. [9] have shown that the spectral bump is actually the result of short-lived
intense cooling events named “glitches.” They did not devise a mechanism by which those sudden
enhancements of the heat transfer could be triggered but envisaged two possible leads: (i) the
shedding of vortices passed the wire, (ii) the destabilization of the vortex tangle around the wire due
to the bottlenecking, or pile-up of kinetic energy, in the superfluid component at scales comparable
with the intervortex distance, as predicted in Ref. [19].
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As shown in the previous section, we now have arguments to eliminate (i), due to the dependence
of the bump frequency on the turbulence intensity. The apparent independence of the bump fre-
quency on the temperature is another argument against this explanation, as already noted in Ref. [9].
However, we can certainly settle on the fact that the process triggering those glitches should occur
at small scales. Lead (ii) is appealing, because the hot-wire bump seems to happen at frequencies
comparable with those at which a pile-up of kinetic energy happens, as measured by the Pitot tube
(see Fig. 6). This is only qualitative: due to the very limited set of velocities where the Pitot tube has
a sufficient spacial resolution to show the pile-up, we cannot prove that there is an actual correlation
with the appearance of the spectral bump in the wire signal.

Following lead (ii), a mechanism explaining the influence of the hot-wire signal to quantum
intervortex distance in the outerflow is as follows: in a mechanically driven quantum turbulence, the
mutual friction between the normal and superfluid components couples their turbulent fluctuations:
un(r, t ) ≈ us(r, t ) at all scales larger than the intervortex scale δ. The resulting turbulent energy
spectra of the mechanically driven quantum turbulence for the scales much greater than δ are close to
those of the classical hydrodynamic turbulence [1,2,26–30]. However, un(r, t ) and us(r, t ) decouple
at scales of the order of δ. Roughly, such relative motion of the normal fluid and the superfluid
vortex tangle can be viewed as a normal flow past an irregular “grid” made of the quantized vortex
lines. Naturally, such a flow produces extra turbulence at the “grid spacing” scale, i.e., at the scales
comparable to δ. More precisely, on a microscopic level, the normal fluid is a field of acoustic
phonons which scatter off the quantized vortices and thereby acquire spatial inhomogeneity with a
characteristic scale of the order of the mean distance between such vortex scatterers. Obviously, the
energy of the bump cannot come from “nowhere”; i.e., it could only appear as a result of transfer
from the mean relative motion at larger scales. A good candidate for such a mean motion is the
thermal counterflow produced by the wire. In this case, the bump is indeed a product of the intrusive
nature of the hot wire and, at the same time, its properties are affected by the surrounding turbulent
flow. This is a simple and robust qualitative mechanism of the spectral bump creation near the
intervortex scale. However, for completeness let us mention another possible mechanism for the
spectral bump generation.

A third mechanism could explain the heat flux glitches experienced by the hot wire at frequencies
corresponding to the small length scales of the external turbulence: The presence of intense vorticity
and pressure structures associated with bundles of quantum vortices. Those objects are the counter-
part in quantum turbulence of “vorticity worms” well known in classical turbulence (see, e.g., the
pioneering numerical and experimental works Refs. [31,32]). The existence of vortex bundles have
been reported in quantum turbulence, both numerically [33] and experimentally [34]. Their typical
associated length scale (diameter) was reported to be around two times the intervortex distance in
superfluid [33] or four times the Kolmogorov viscous length scale [35]. The pressure signature of
superfluid vortex bundles was measured in the SHREK apparatus [34], and the authors evidenced
that, here again, no real difference could be made between classical and quantum turbulence. When
such a vortical structure impinges the wire, we expect it to polarize the vortex tangle constituting
the thermal boundary layer, leading to a change in its effective thermal conductivity. Indeed, it
was shown that heat transfer can be modeled by standard counterflow phenomenology. In this
framework, the mutual friction force per unit volume between the counterflowing normal and
superfluid components, is the key ingredient in the definition of a local conduction function. The
latter relates the local temperature gradient ∇T in the He II boundary layer with the heat flux ϕ

and in some way it can be seen as an effective thermal conductivity. A theoretical expression of the
conduction function f (T ) can be obtained at heat fluxes well above the critical heat flux at which
the counterflow becomes turbulent [36,37]:

f (T ) = C
2ρρ3

s s4T 3

γ 2Bρnκ
, (8)

where f (T ) = |ϕ|3/|∇T | is the conduction function, ρn and ρs are the normal and superfluid
density, respectively, s is the entropy per unit mass, B is a constant of order unity (see, e.g.,
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Ref. [38]), γ is defined as L = γ 2(vn − vs)2 where L is the local vortex line density of the
counterflow (see Ref. [39]), and C depends on the average angle between the vortex lines and
the heat flux. For an isotropic vortex tangle, C = 3/2, while this constant tends towards infinity
when the vortices are polarized and oriented parallel to the counterflow velocity (vn − vs). This
continuous approach proved efficient in modeling heat transfer from heat wire down to micron
scales [9,10]. Knowing the collision frequency of the vortical structures on the wire would help to
confirm or invalidate this mechanism. Although we have not been able to find previous studies on
this specific question, it seems reasonable to assume that the typical collision timescales are linearly
related to the timescales of the smallest flow structures, such as the intervortex one. This would be
consistent with the scaling reported in Fig. 8.

V. CONCLUSIONS

In this paper, we report experimental measurements in liquid helium using a hot-wire probe and a
pitot tube. These measurements are done in the SHREK facility in both He I and He II, for different
levels of corotation or counterrotation. In normal fluid, we use the hot wire to devise the integral
length scale and turbulence intensity of both flows. This allows us to compute the turbulent Reynolds
number in each case.

In He II the hot-wire signal exhibits a spectral bump at high frequency, of which the represen-
tative frequency increases with the velocity vθ , as previously reported, but also with the turbulence
intensity of the flow. We show that the latter cannot be explained satisfactorily by the model of
vortex shedding as proposed in Ref. [9].

The velocity dependence is compatible with a power law v
γ

θ over more than one decade of
frequencies, with γ in the range 1.5 � γ � 1.8. Assuming that the frequency of the quantum bump
can be translated to a length scale of the flow by use of the Taylor hypothesis, we have presented the
resulting length lbump as a function of the turbulent Reynolds number. This representation collapses
data from both corotating and counterrotating flows onto a single power law compatible with
lbump ∝ δ.

Thus the phenomenon that triggers the quantum bump must happen at scales proportional to the
intervortex distance. We recall that the spectral bump is actually the result of thermal “glitches,”
short lived heat transfer improvement events, in the time domain. We propose two possible qualita-
tive scenarios that end up destabilizing the wire’s thermal boundary layer, leading to fluctuations of
its overall thermal resistance:

(i) the interaction between the wire’s counterflow and the enhanced velocity fluctuations of the
flow,

(ii) the polarization of the vortex tangle of the wire by the vortical structures associated to
turbulence.

Those explanations are of course qualitative, and some further numerical and experimental
studies are needed to understand the quantitative aspects of the quantum bump generation.
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