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Local measurement of vortex statistics in quantum turbulence
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Abstract – The density fluctuations of quantum vortex lines are measured in a turbulent flow of
superfluid He, at temperatures corresponding to superfluid fractions of 16%, 47% and 81%. The
probe is a micro-fabricated second sound resonator allowing for local and small-scale measurements
in the core of the flow, downstream a grid at a 10-mesh size. Remarkably, all the vortex power
spectra collapse on a single master curve, independently from the superfluid fraction and the
mean velocity. By contrast with previous measurements, we report a peculiar shape of the power
spectra. The vortex density probability distributions are found to be strongly skewed, similarly
to the vorticity distributions observed in classical turbulence. Implications of those results are
discussed.

editor’s  choice Copyright c© 2021 EPLA

Introduction. – In the zero-temperature limit, quan-
tum fluids behave at the macroscopic scale as a single co-
herent quantum state, the superfluid [1]. Compared to
classical fluids, the quantum coherence of superfluids adds
a strong constraint on the velocity field, namely to be ir-
rotational. Rotational motion can only appear when the
macroscopic coherence of the wave function is broken by
topological defects called quantum vortices. In that case,
the velocity circulation around the quantum vortex has
a fixed value (κ ! 10−7 m2s−1 in 4He). Turbulence in
superfluids can be thought of as an intricate process of
distortion, reconnection and breaking of those topologi-
cal singularities [2], but in such a way that the system
seems to mimic the classical turbulence at large scales [3].
This has been particularly obvious in the velocity spectra
probed with a variety of anemometers, in highly turbu-
lent flows [4–7] or in the measurement of vortex bundles
using parietal pressure probes [8]. In some sense, quan-
tum turbulence is an irreducible model, or to say it in
a different way, is a kind of “skeleton” for all types of
turbulence.

At finite temperature, the quantum fluid is not a pure
superfluid: it behaves as if it experienced friction with a
background viscous fluid, called the “normal fluid”. The
relative mass density of the superfluid ρs/ρ (where ρ is
the total mass density) decreases from one at 0K to zero
at the superfluid transition temperature (Tλ ! 2.18K
in 4He). The presence of a finite normal fluid fraction
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allows for propagation of temperature waves —a prop-
erty referred to as “second sound”— which opens the rare
opportunity to directly probe the presence of the quantum
vortices [9].
This is done in the present article, where the statistics

of superfluid vortex lines density L are locally measured
by “second sound tweezer” (see the description in the sec-
tion “Probes”), over one and a half decade in the iner-
tial scales, and over a wide range of ρs/ρ spanning from
0.16 to 0.81. Surprisingly, the result does not corrobo-
rate the widespread idea that the large scales of quan-
tum turbulence reproduce those of classical turbulence:
the measured spectra of L (see fig. 6) differ from classical-
like enstrophy spectra [10,11]. Besides, it also differs from
the only1 previous direct measurement of L with second
sound tweezers [18] at ρs/ρ ! 0.84.
The measurement of the vortex lines density provides

one of the very few constraints for the disputed modeling
of the small scales of quantum turbulence. Even after
intense numerical [19,20] and theoretical [21–23] studies,
the statistics of quantum vortices show that even the large
scales of quantum flows can still be surprising.

Experimental setup. – The experimental setup has
been described in details in a previous publication [7].
In this section, we only review the major modifications.
The setup consists in a wind tunnel inside a cylindrical

1Literature also reports experimental [12] and numerical [13–17]
spectra of the vortex line density spatially integrated across the
whole flow. Still, spectra of such “integral” quantities differ in nature
from the spectra of local quantities, due to strong filtering effects of
spatial fluctuations.
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Fig. 1: Sketch of the flow and the experimental setup with
probes.

cryostat (see fig. 1) filled with He-II. The flow is contin-
uously powered by a centrifugal pump located at the top
of the tunnel. At the bottom, an optimized 3D-printed
conditioner ensures a smooth entry of the fluid, without
boundary layer detachment, inside a Φ = 76mm inner di-
ameter pipe. Spin motion is broken by radial screens built
in the conditioner. The flow is then “cleaned” again by
a 5-cm-long and 3-mm-cell honeycomb. The mean flow
velocity U is measured with a Pitot tube located 130mm
upstream the pipe outlet. We allow a maximal mean ve-
locity U = 1.3m/s inside the pipe to avoid any cavitation
effect with the pump.
The main new element compared to the previous de-

sign is a mono-planar grid located 177mm upstream the
probes, that generates turbulence. The grid has a M =
17mm mesh with square bars of thickness b = 4mm,
which gives a porosity of β = (1− b/M)2 ≈ 0.58.

The choice to position the probes at a distance ∼ 10M
downstream the grid is the result of a compromise be-
tween the aim to have a “large” turbulence intensity, and
the necessity to leave enough space for turbulence to de-
velop between the grid and the probes. According to [24],
this distance is long enough to avoid near-field effects
of the grid. However, we emphasize that our main ex-
perimental results (figs. 6, 7) do not depend on perfect
turbulent isotropy and homogeneity. In situ measure-
ments of the mean vortex line density can be used to
indirectly (via eq. (6)) give a turbulence intensity esti-
mation τ = urms/U ! 12–13% (where urms is the stan-
dard deviation of longitudinal velocity component). We
present the results later in fig. 5. For comparison, Vita
et al. [24] report a turbulence intensity around τ = 9%
at 10M in a classical grid flow of similar porosity. The

Fig. 2: Ring with probes. The inset is a zoom on the heating
and thermometer plates of a second sound tweezers. The Pitot
tube is not used in the present experiment.

difference between both τ values could originate from a
prefactor uncertainty in eq. (6) or from differences in flow
design (e.g., the absence of a contraction behind the hon-
eycomb). This difference has no important consequences
for the measurement of quantum vortex statistics.

The longitudinal integral length scale of the flow H !
5.0mm is assessed by fitting velocity spectra (see bot-
tom panel of fig. 6) with the von Kármán formula (e.g.,
see [24]). For comparison, the integral scale reported for
the similar grid in [24], once rescaled by the grid size, gives
a nearby estimate of 7.4mm.

The Reynolds number Re defined with urmsH and the
liquid He kinematic viscosity 1.8× 10−8 m2s−1 just above
Tλ, is Re = 3.3 × 104 for U = 1m/s. Using the stan-
dard homogeneous isotropic turbulence formula, the Tay-
lor scale Reynolds number is Rλ =

√
15Re ≈ 700 (for

τ = 12% and H = 5mm). This gives an indication of
turbulence intensity below Tλ.

The helium bath temperature is set via pressure reg-
ulation gates. The He-II exceptional thermal conductiv-
ity ensures an homogeneous temperature inside the bath
for T < Tλ. Two Cernox thermometers, one located just
above the pump, the other one on the side of the pipe close
to the probes, allow for direct temperature monitoring.

Probes. – Our probes are micro-fabricated second
sound tweezers of millimeter size, according to the same
principle as described in [18]. As displayed in the inset
of fig. 2, the tweezers are composed of one heating plate
and one thermometer plate facing each other and thus
creating a resonant cavity for thermal waves. The heat-
ing plate generates a stationary thermal wave of the or-
der of 0.1mK between the plates, the amplitude of which
can be recorded by the thermometer plate. Two major
improvements have been done compared to the tweezers
in [18]: first, the arms length supporting the plates has
been increased to 14mm to avoid blockage effects due to
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the stack of silicon wafers (about 1.5mm thick) down-
stream the cavity. Second, two notches are done in the
arms to avoid interference due to additional reflections of
the thermal wave on the arms. Further details will be
given in a future publication.
In the presence of He flow, a variation of thermal wave

amplitude and phase can be observed. This variation is
due to two main physical effects. The presence of quantum
vortex lines inside the cavity causes an attenuation of the
wave [9,25] with a very minor phase shift [26]. This attenu-
ation can be very accurately modeled by a bulk dissipation
coefficient inside the cavity, denoted ξL. The second effect
is a ballistic advection of the wave out of the cavity. It
is related to both an attenuation of the temperature os-
cillation and to an important phase shift. Depending on
the flow mean velocity U , the size of the tweezers, and the
frequency of the wave, one of these two effects can over-
whelm the other. We thus have designed two models of
tweezers: one model to take advantage of the first effect
to measure the vortex lines density (VLD), and the other
one to take advantage of the second effect to measure the
velocity.
The two largest tweezers displayed in fig. 2 are designed

to measure the quantum vortex lines density. The plates
size is l = 1mm and the gaps between the plates are
D = 1.32mm and D = 0.83mm, respectively. The plates
face each other with a few micrometers positioning accu-
racy. The tweezers are oriented parallel to the flow (see
fig. 2, the mean flow being directed from top to bottom)
to minimize the effect of the wave ballistic advection.
The smallest tweezers displayed in fig. 2 are designed to

be mainly sensitive to the velocity fluctuations parallel to
the mean flow. The two plates have a size l = 250µm,
and are separated by a gap D = 0.431mm. The tweez-
ers are oriented perpendicular to the mean flow (see fig. 2)
with an intentional lateral shift of the heater and the ther-
mometer of about l/2. This configuration is expected to
maximize the sensitivity to ballistic advection, and thus
to velocity fluctuations. To second order, however, the
probe still keeps sensitivity to the quantum vortices pro-
duced both by turbulence and by the intense heating of
the plates, that is why we were not able to calibrate it
reliably. The (uncalibrated) spectrum of this probe (see
bottom panel of fig. 6) is only used to estimate the inte-
gral length scale. The role of this probe is also to prove
that the largest tweezers signal statistics are not due to
velocity fluctuations.

Method. – Figure 3 displays a large tweezers resonance
at frequency f0 = 15.2 kHz, for increasing values of the
mean velocity. The temperature oscillation T measured
by the thermometer is demodulated by a lock-in amplifier
NF LI5640. T can be accurately fitted by a classical Fabry-
Perot formula

T =
A

sinh
(

i 2π(f−f0)D
c2

+ ξD
) , (1)
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Fig. 3: Top: second sound resonance of one of the large tweez-
ers around 15.2 kHz. U increases from the top to the bottom
curve. The vertical axis gives the thermal wave amplitude in
K. Bottom: representation of the same resonance in phase and
quadrature.

where i2 = −1, f0 is the resonant frequency for which the
wave locally reaches its maximal amplitude, c2 is the sec-
ond sound velocity, A is a parameter to be fitted, and ξ is
related to the wave energy loss in the cavity. The top panel
of fig. 3 displays the amplitude of the thermal wave (in
mK) as a function of the frequency, and the bottom panel
shows the same signal in phase and quadrature. When
the frequency is swept, the signal follows a curve close to
a circle crossing the point of coordinates (0, 0). Figure 3
clearly shows that the resonant peak shrinks more and
more when U increases, which is interpreted as wave at-
tenuation inside the cavity. The red points display the
signal attenuation at constant value of f . It can be seen
on the bottom panel that the signal variation is close to
a pure attenuation, that is, without phase shift. ξ can be
decomposed as

ξ = ξ0 + ξL, (2)

where ξ0 is the attenuation factor when U = 0m/s and ξL
is the additional attenuation created by the presence of
quantum vortex lines inside the cavity. ξL is the interest-
ing signal as it can be directly related to the vortex lines
density (VLD) using the relations

ξL =
BκL⊥

4c2
, (3)
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Fig. 4: Fluctuations of the thermal wave in phase and quadra-
ture. The colored clouds show the fluctuations of the signal,
for different values of U . The blue curve shows the resonance
for U = 0m/s. The fluctuations tangent to the resonant curve
are created by a variation of the acoustic path. The quantum
vortices are associated to attenuation of the wave and create a
displacement along the attenuation axis.

L⊥ =
1

V

∫

sin2 θ(l)dl, (4)

where B is the first Vinen coefficient, κ ≈ 9.98×10−8 m2/s
is the quantum of circulation, V is the cavity volume, l is
the curvilinear absciss along the vortex line, θ(l) is the an-
gle between the vector tangent to the line and the direction
perpendicular to the plates. We note that the summation
is weighted by the distribution of the second sound nodes
and antinodes inside the cavity and does not exactly cor-
respond to a uniform average but we neglect this effect
in the following. Our aim is to measure both the average
value and the fluctuations of L⊥, as a function of U and
the superfluid fraction.
The method goes as follows: first, we choose a reso-

nant frequency f0 where the signal amplitude has a local
maximum and we fix the heating frequency to this value
f0. Then we vary the mean velocity U and we record
the thermometer plate response in phase and quadrature.
The measurements show that the velocity-induced dis-
placement in the complex plane follows a straight line in
a direction −→e approximately orthogonal to the resonant
curve. Expressions (1), (2) give ξL from the measured
amplitude T by [18]

ξL =
1

D
asinh

(

A

T

)

− ξ0. (5)

The colored dots of fig. 4 illustrate the signal fluctua-
tions in phase and quadrature, for different values of U .
The average signal moves in the direction of the attenu-
ation axis. The figure also shows a part of the resonant
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Fig. 5: Indirect measurement of the turbulence intensity τ =
urms/U as a function of U using eq. (6). The three different
symbols correspond to three mean temperature values.

curve for U = 0. The fluctuations have two components in
the plane, both associated with different physical phenom-
ena. Fluctuations in the direction tangent to the resonant
curve can be interpreted as a variation of the acoustic path
2π(f−f0)D

c2
without wave attenuation. Those fluctuations

can occur for example because the two arms of the tweez-
ers vibrate with submicron amplitude, or because the tem-
perature variations modify the second sound velocity c2.
To isolate only the fluctuations associated to attenuation
by the quantum vortices, we split the signal into a com-
ponent along the attenuation axis, and another one along
the acoustic path axis. We then convert the displacement
along the attenuation axis into vortex line density (VLD)
using expressions (3)–(5).

Results. – As a check of the validity of our approach,
we measured the average response of the second sound
tweezers as a function of the mean velocity U . Accord-
ing to the literature [27], we were expecting the scaling
〈L⊥〉2 ∝ U3, with a prefactor related to the flow main
characteristics. The function 〈L⊥〉 was thus measured for
a range 0.4 < U < 1.25m/s with a time averaging over
300 ms, at the three different temperatures 1.65K, 1.99K
and 2.14K.
An effective superfluid viscosity νeff is customarily de-

fined in quantum turbulence by ε = νeff(κL)2 where ε is
the dissipation and L = 3〈L⊥〉/2 is the averaged VLD
(we assume tangle isotropy) [28]. For large Rλ homoge-
neous isotropic flows, we also have ε ! 0.79U3τ3/H (e.g.,
see [29], p. 245), which entails

τ3 ! 2.85
νeffHκ2〈L⊥〉2

U3
. (6)

Using eq. (6), we compute the turbulence intensity as a
function of U , for the three considered temperatures. The
result is displayed in fig. 5. The figure shows that the
turbulence intensity reaches a plateau of about 12% above
0.8m/s, a value in accordance with the 9% turbulence
intensity reported in [24], for a grid turbulence with similar
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Fig. 6: Top: power spectral density of the projected vortex
line density (VLD) L⊥, obtained with the large second sound
tweezers, for different values of U and temperatures. All mea-
sured spectra collapse using the scaling f/U and PL(f) × U .
The fluctuations have been rescaled by the mean value of the
VLD such that integrating the above curves directly gives the
VLD turbulence intensity. Bottom: power spectral density
of the uncalibrated velocity signal obtained from the second
sound tweezers anemometer, for two values of U at 1.65K.
The spectra collapse using the scaling f/U for the frequency
and PU (f)/U for the spectral density. The straight line dis-
plays the −5/3 slope which is expected for a classical velocity
spectrum in the inertial range of the turbulent cascade. The
dotted line is a fit using the von Kármán expression (see [24])
to find the integral scale H.

characteristics. The figure also confirms that the expected
scaling 〈L⊥〉2 ∝ U3 is reached in our experiment for the
velocity range U > 0.8m/s.

The temperature-dependent viscosity νeff in eq. (6) has
been measured in a number of experiments (e.g., see
in [23,27,30]). Still, the uncertainty on its value exceeds a
factor 2. For the temperatures 1.65K and 1.99K, we used
the average values 0.2κ and 0.25κ. By lack of reference
experimental value of νeff above 2.1K, we determined it
by collapsing the τ(U) datasets obtained at 2.14K with
the other two. We found the value νeff ≈ 0.5κ at 2.14K.

Assuming isotropy of the vortex tangle, the value of L
gives a direct order of magnitude of the inter-vortex spac-
ing δ = 1/

√
L. We find δ ≈ 5µm at 1.65K and a mean

velocity of 1m/s. This shows the large scale separation be-
tween the inter-vortex spacing and the flow integral scale
H, a confirmation of an intense turbulent regime.

Figure 6 presents the main result of this letter. On
the top panel, we display the VLD power spectral den-
sity PL(f) of L⊥/〈L⊥〉. With this definition, the VLD

turbulence intensity Lrms
⊥

/〈L⊥〉 is directly given by the
integral of PL(f). We measured the VLD fluctuations
at the temperatures T = 1.65 K and superfluid fraction
ρS/ρ = 81%, T = 1.99K and ρS/ρ = 47%, T = 2.14K
and ρS/ρ = 16%. At each temperature, the measurement
was done for at least two different mean velocities.
The first striking result is the collapse of all the spectra

independently of the temperature, when properly rescaled
using f/U as coordinate (and PL(f)×U as power spectral
density to keep the integral constant). The VLD spectrum
does not depend on the superfluid fraction even for van-
ishing superfluid fractions, when T comes very close to Tλ.
Only one measurement with one of the large tweezers at
T = 1.650K gave a slight deviation from the VLD spec-
tra master curve: it is displayed as the thin grey curve in
fig. 6. We have no explanation for this deviation but we
did not observe this particular spectrum either with the
second tweezers or at any other temperature.
Second, the VLD spectrum has no characteristic power-

law decay. We only observe that the spectrum follows an
exponential decay approximately above f/U > 100m−1.
This strongly contrasts with the velocity spectrum ob-
tained with the small second sound tweezers anemometer
(see bottom panel), which displays all the major features
expected for a velocity spectrum in classical turbulence:
it has a sharp transition from a plateau at large scale to a
power law scaling close to −5/3 in the turbulent cascade
inertial scales. Actually, it can be seen that the spec-
tral decrease is less steep than −5/3, which can be due
either to non-perfect isotropy and homogeneity, or more
likely to the fact that the signal has some second-order
corrections in addition to its dependence on velocity fluc-
tuations. A fit of the transition using the von Kármán
expression (see [24]) gives the value H = 5mm for the
longitudinal integral scale. As a side remark, the apparent
cut-off above 103 m−1 is an instrumental frequency cut-off
of the tweezers.
We find a VLD turbulent intensity close to 20%, which is

significantly higher than the velocity turbulence intensity.
We also checked that we obtain the same VLD spectrum
using different resonant frequencies f0.
Our measurements are limited by two characteristic fre-

quencies. First, the tweezers average the VLD over a cube
of side l, which means that our resolution cannot exceed
f/U > 1/l. For the large tweezers, this sets a cut-off
scale of 103 m−1, much larger than the range of inertial
scales presented in the top panel of fig. 6. Second, the res-
onator frequency bandwidth decreases when the second
sound resonance quality factor increases. This again sets
a cut-off scale given by f/U = ξ0c2/(2U). The worst con-
figuration corresponds to the data obtained at 2.14K and
U = 1.2m/s where the cut-off scale is about 600m−1. For
this reason, the VLD spectra of fig. 6 are conservatively
restricted to f/U < 300m−1 which allows to resolve about
one and a half decade of inertial scales.
Figure 7 displays some typical PDF of the rescaled VLD

fluctuations L⊥/〈L⊥〉 in semilogarithmic scale, for the
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Fig. 7: Normalized probability distributions of the VLD fluc-
tuations obtained at three temperatures. The PDF have been
shifted by one decade from each other for readability. By com-
parison, the dotted black curve displays a rescaled PDF ob-
tained with the small tweezers measuring velocity.

three considered temperatures. The PDF have been verti-
cally shifted by one decade from each other for readability.
The figure shows a strong asymmetry at all temperatures,
with a nearly Gaussian left wing, and an exponential right
wing. Contrarily to the VLD spectra, the PDF do not
accurately collapse on a single master curve at different
velocities and temperatures: yet, they remain very similar
when the temperature and the mean velocity are changed,
and their strongly asymetric shape seems to be a robust
feature. By contrast, the dotted curve in fig. 7 displays
one PDF of the small tweezers anemometer at 1.65K, for
which the mean has been shifted and the variance rescaled.
It can be seen that the general shape of this latter PDF
is much more symmetric and closer to a Gaussian as ex-
pected for a PDF of velocity fluctuations.

Discussion and conclusion. – In the present paper,
we have investigated the temperature dependence of the
vortex lines density (VLD) local statistics in quantum tur-
bulence. About one and a half decade of turbulent cas-
cade inertial scales was resolved. We measure the VLD
mean value and deduce the turbulence intensity (fig. 5)
from eq. (6). We report the VLD power spectrum (fig. 6),
and the VLD probability distribution (fig. 7). Whereas
the VLD mean value at different temperatures confirms
previous numerical [19,27] and experimental studies [27],
the spectral and PDF studies are completely new. Only
one measurement of the VLD fluctuations had been done
previously around 1.6K [18] but in a wind tunnel with
a very specific geometry and a non-controlled turbulence
production. In the present work, we have used a grid
turbulence, which is recognized as a reference flow with
well-documented turbulence characteristics.

To conclude, we discuss below the three main
findings:

1) A master curve of the VLD spectra, independent of
temperature and mean velocity.

2) The observed master curve does not correspond to
previously reported spectra in the context of highly
turbulent classical flows.

3) A global invariant shape of the strongly skewed
PDF.

The mean VLD gives the inter-vortex spacing, and thus
tells how many quantum vortices are created in the flow,
whereas the PDF and spectra tell how those vortices are
organized in the flow. From 2.14K to 1.65K, our re-
sults confirm that the inter-vortex spacing only weakly
decreases, by less than 23% for a 5-times increase of the
superfluid fraction. In other words, the superfluid frac-
tion has a limited effect on the creation of quantum vor-
tices. The current understanding of the homogeneous
isotropic turbulence in He-II is that the superfluid and
normal fluid are locked together at large and intermedi-
ate scales where they undergo a classical Kolmogorov cas-
cade [3]. The experimental evidences are based on the
observation of classical velocity statistics using anemome-
ters measuring the barycentric velocity of the normal and
superfluid components. Here, the temperature indepen-
dence of (normalized) VLD spectra supports this general
picture, by reminiscence of a similar property of He-II ve-
locity spectra.
In contrast to velocity, the observed VLD master curve

has an unexpected shape in the inertial range, at odd with
the spectra reported as “compatible with” a f−5/3 scal-
ing in [18]. The probe is sensitive to the total amount
of vorticity in the scales smaller than the probe spatial
resolution, and thus keeps track of the small scales fluc-
tuations. A close classical counterpart of VLD is enstro-
phy, because its spectrum is also related to the velocity
spectrum at smaller scales (e.g., see [31]). However,
the experimental [10] and numerical (e.g., [11]) enstrophy
spectra reported so far in three-dimensional classical tur-
bulence strongly differ from the present VLD spectra. We
have no definite explanation for this difference. It could
originate from remanent quantum vortices pinned on the
grid, that cause additional energy injection in the inertial
range. In which case the peculiarity of our spectra would
be specific to the type of forcing. Otherwise, it could be
a more fundamental property associated with the micro-
scopic structure of the vortex tangle that, together with
the observed spectrum temperature independence, would
be very constraining to develop mathematical closures for
the continuous description of He-II (e.g., see [32]).
As a discussion of the third statement, we compare the

PDF with those of numerical simulations done in classi-
cal turbulence. The vorticity absolute value can be seen
as a classical counterpart to the VLD. The work of Iyer
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et al. [33], for example, displays some enstrophy PDF from
high-resolution DNS, that can be compared to the PDF
of fig. 7. At small scale, the enstrophy PDF are strongly
asymmetric and will ultimately converge to a Gaussian
distribution when averaged over larger and larger scales.
Although our tweezers average the VLD over a size much
larger than the inter-vortex spacing, they are small enough
to sense short-life intense vortical events, typical of small
scale phenomenology in classical turbulence. Thus, the
strong asymmetry of the PDF supports the analogy be-
tween VLD and enstrophy (or its square root) and shows
the relevance of VLD statistics to explore the small scales
of quantum turbulence.
A side result of the present work is to obtain the rel-

ative values of the empirical coefficient νeff = ε(κL)−2

at the three considered temperatures. Models and sim-
ulations predict that νeff should steeply increase close
to Tλ (see [23,27,30] and references therein), in appar-
ent contradiction with the only systematic experimental
exploration [34]. We found in fig. 5 that the effective vis-
cosity νeff is twice larger at 2.14K than at 1.99K. To
the best of our knowledge, our estimate νeff(2.14K) !
2 (±0.25) × νeff(1.99K) is the first experimental hint of
such an effective viscosity increase.
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