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ABSTRACT

Thermally driven flows of superfluid 4He display unique features, often related to the presence of quantized vortices—line singularities
embedded in the liquid. Here, we focus on turbulent round jets, experimentally investigated using the flow visualization and second sound
attenuation techniques, at Reynolds numbers exceeding 104. These turbulent flows are driven by releasing heat into a small volume of liquid,
open to the surrounding bath through a cylindrical nozzle, 2mm in diameter. Our measurements reveal in unprecedented detail how the
tangle of quantized vortices associated with the jets arranges itself in space, for distances ranging from 9 to 34 nozzle diameters, at fluid
temperatures between 1.64 and 2.10 K. We specifically find that the vortex tangle spreads in the radial direction, while it dilutes away from
the nozzle. Additionally, the tangle density is found to systematically depend on the flow forcing. Two physical interpretations of the
observed behavior are proposed, which could motivate further investigations of this peculiar flow. One leads us to conjecture a self-similar
functional form of the vortex tangle density across counterflow jets. The other suggests that the position of the superfluid stagnation point—
a characteristic feature of counterflow jets—could depend on the flow forcing as well.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0145058

I. INTRODUCTION

Turbulent jets are typical representatives of boundary-free shear
flows that can be realized not only in classical Newtonian fluids but
also in superfluid 4He, e.g., see Refs. 1 and 2. A jet flow is usually
obtained by driving a fluid stream through a nozzle into a large reser-
voir. The interaction between the injection flow, the nozzle, and the
fluid inside the reservoir results in a distinct, spatially inhomogeneous
structure that can be experimentally studied. In the present work, we
focus on turbulent round jets submerged in superfluid 4He, also
known as He II. This phase of liquid 4He exists only at temperatures
below approximately 2.2K, at the saturated vapor pressure, and its
behavior is appreciably affected by the quantum order that spontane-
ously develops in the fluid. Macroscopic consequences of this order
are, for example, the possible occurrence of inviscid flows and the cou-
pling between temperature and pressure gradients (the fountain
effect)—see Refs. 3 and 4 for reviews on this unique liquid.

At temperatures higher than about 1K, thermal excitations cannot
be neglected and the large-scale hydrodynamics of He II is usually

described by the phenomenological two-fluid model.5,6 The gas of exci-
tations can be seen as a viscous fluid called the normal component,
while the quantum-ordered system behaves as an inviscid, superfluid
component. The two fluid components are fully miscible, and their den-
sity fractions, which depend only on temperature, are plotted in Fig. 1
for the range of temperatures relevant here—note in passing that the
He II density q � 145 kg/m3 depends weakly on temperature.7

Additionally, the circulation of the superfluid component is
quantized.8 Specifically, each circulation quantum j � 10�7 m2/s is
associated with a quantized vortex, which is a line singularity of the
quantum order parameter characterized by a narrow core (approxi-
mately 0.1 nm) and macroscopic length. When superfluid 4He
becomes turbulent, quantized vortices tend to interact and eventually
form a dynamic tangle, which is the key component of turbulence in
He II.3,4 Here, we employ experimental tools to study the quantized
vortices’ tangle associated with steady turbulent jets, in view of under-
standing in what aspects jet flows in superfluid 4He may differ from
their classical analogs. The quantized vortices’ tangle plays an
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important role in this context because it provides the coupling mecha-
nism between the otherwise independent components of He II. At
flow scales larger than the mean distance ‘ between quantized vortices,
the magnitude of this interaction—usually called mutual friction
force—is proportional to the difference between the velocities of the
normal (vn) and superfluid (vs) components.3,4

According to the just outlined model, when heat is dissipated in
He II, two velocity fields pointing in opposite directions are estab-
lished, resulting in the so-called thermal counterflow. The normal
component flows away from the heat source, dispersing heat into the
4He bath, while the superfluid component, which has zero entropy
and therefore cannot transport heat, flows in the opposite direction, to
compensate for the mass flow of the normal component. In the widely
studied case of channel counterflow, a heating power P is dissipated at
the closed end of a channel with cross section S, submerged in a liquid
bath kept at temperature T. In the steady state, the normal component
moves toward the open end of the channel with the average velocity

vn ¼
q

qsT
; (1)

where q ¼ P=S is the dissipated heat flux, q indicates the density of
He II, and s is the fluid specific entropy. In order to satisfy the null
mass flow rate condition just mentioned, the superfluid component
flows toward the heater with the average velocity vs in such a way that
pnvn ¼ �psvs holds (we assume here that vn > 0 and vs < 0). As a
result, the relative velocity of the two components is in general non-
zero. We usually denote this velocity difference as the counterflow
velocity vns, which is then given as

vns ¼ vn � vs ¼
q

qssT
¼ vn

1� pn
; (2)

where qs ¼ psq is the density of the superfluid component.
Here, we take advantage of the just outlined flow regime because

our turbulent jets are driven thermally, by dissipating a constant

heating power in a small enclosed volume open to the He II bath via a
cylindrical nozzle. The resulting flow is usually named thermal coun-
terflow jet—see Ref. 9 for a review on early works—and in the past, it
was mainly regarded as a playground system for the study of the
mutual friction force in the absence of solid boundaries, which signifi-
cantly influence the development of turbulence in He II, as recently
discussed in Refs. 10–13.

Following Ref. 14, we define a Reynolds number relevant for
thermal counterflow jets as

Re ¼ qvnd
ln

; (3)

where d indicates the nozzle diameter, and ln denotes the dynamic
viscosity of He II. As detailed below, the Re values achieved in the pre-
sent work are larger than the critical value of 5� 103 reported in Ref.
14, on the basis of flow visualization experiments. It then follows that
our thermally driven jets are turbulent. Additionally, one expects that
the mutual friction force is significantly enhanced in the nozzle output
region because a dense tangle of quantized vortices develops within
the nozzle itself, partly due to the interaction of the flow with the inner
wall of the nozzle, and partly due to the mutual interaction between
the normal and superfluid components.11 Consequently, the fast-
moving normal component exits the nozzle and interacts with the vor-
tices, which are flushed into the open volume, where their presence
can be probed in various ways, e.g., by negative ion trapping.15

Thermometric measurements carried out along the jet axis—e.g.,
see Refs. 16 and 17—reveal that a temperature difference DT develops
inside the nozzle, i.e., the fluid temperature in the bath is smaller than
that inside the nozzle. For example, the DT / q3 scaling obtained at
heat fluxes higher than about 5 kW/m2—and typical of turbulent
counterflow in channels18—confirms that a dense tangle of quantized
vortices should be present inside the nozzle in these conditions.
However, the temperature gradient seems to disappear about one
diameter away from the nozzle, as reported, e.g., in Ref. 16, at least for
relatively high heat flux values, i.e., within the just mentioned cubic
regime. On the basis of this evidence, it was conjectured that the super-
fluid component might be coupled to the normal one in the free jet
flow, resulting then in a nearly zero counterflow velocity (i.e., coflow
of the normal and superfluid components) in the far field. The
hypothesis was later supported by acoustic attenuation,19 velocity-
sensitive phase,20 and laser Doppler velocimetry measurements, as
close as 0:5d above the nozzle.21,22 Additionally, it was found that the
fluid velocity at the nozzle exit is apparently equal to pnvn, which can
be explained by the transfer of momentum between the normal com-
ponent, which exits the nozzle with a velocity vn, and the surrounding
superfluid one, via a process similar to the turbulent entrainment
known to occur for classical turbulent jets.9,23 It then follows that the
flow field of the superfluid component must have a stagnation point
near the nozzle.9,22 We schematically sketch this velocity field in Fig. 2.

Additionally, following Ref. 24, one can split the flow field of tur-
bulent jets into three regions. The near field region, extending up to
seven nozzle diameters away from the nozzle, can be considered as the
region of flow establishment. Then, some self-similar properties of tur-
bulent jets are expected to emerge in the intermediate field region, and
the flow is said to be fully developed only in the far field region, corre-
sponding to more than 70 nozzle diameters away from the nozzle.
Here, we focus on the intermediate field region of free counterflow

FIG. 1. Left axis: temperature dependence of the density fractions of the normal
(pn, dot-dashed line) and superfluid (ps, dashed line) components of He II. Right
axis: temperature dependence of the second sound speed (solid line). Tk � 2:2 K
denotes the superfluid transition at the saturated vapor pressure. Data from Ref. 7.
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jets, where the resulting single-component flow field of He II already
resembles to some extent the Newtonian one, as shown, for example,
in Ref. 25. Specifically, it was reported that the radial profile of the flow
velocity is nearly Gaussian24,25 and that the profile width grows line-
arly with axial distance, the latter being associated with the similarity
of the flow field.26,27 The vertical component of the fluid velocity can
then be written as

vðr; zÞ ¼ v0ðzÞ exp �
r
bz

� �2
" #

(4)

in the cylindrical coordinates ðr;/; zÞ, where v0 is the centerline veloc-
ity, along the jet axis, and b indicates the jet growth rate. The center-
line velocity was found to be constant for the first one to four nozzle
diameters away from the nozzle,25 and, for larger distances, the classi-
cal v0 / z�1 scaling holds.26,27 Note also that in Ref. 22 the flow devel-
opment region of counterflow jets was reported to be somehow
shorter than that of ordinary turbulent jets.

On the other hand, there is little known about the spatial structure
of the quantized vortices’ tangle in a thermal counterflow jet. In this
work, we aim to fill in this knowledge gap and we present the first

spatially resolved measurements of the vortex line density L(r, z) in this
kind of flow, where L is defined as the total length of quantized vortices
per unit volume. We specifically probe the quantized vortices’ tangle
using the second sound attenuation technique.6,28,29 The latter is based
on detecting temperature waves, which can be observed in flows of
superfluid 4He. Within the two-fluid framework, the second sound
waves consist of anti-phase oscillations of the normal and superfluid
components, while the well-known density (pressure) waves—named
first sound waves in He II—correspond instead to in-phase oscillations
of the components. The speed of the second sound is temperature
dependent—it reaches a flat maximum near 1.65K and steeply decreases
near the superfluid transition temperature, as shown in Fig. 1 (right
axis).

In summary, as detailed below, we find that the quantized vorti-
ces’ tangle spreads in the radial direction, along the jet axis, in a way
similar to that observed for the fluid velocity, while its peak density
decreases away from the flow source. We then discuss, on the basis of
several assumptions, the spatial distribution and the flow forcing
dependence of the tangle density, directly obtained from the experi-
mental data.

II. METHODS

The counterflow jets here investigated are obtained at the bottom
of a standard 4He cryostat by supplying constant heating power to a
resistive heater located inside a purpose-made enclosure, 3D-printed
from copper filled PLA—see Ref. 30 for a detailed description of the
apparatus and for preliminary results that are further discussed in the
following. The enclosure is terminated by a circular nozzle, with the
inner diameter d¼ 2mm, as sketched in Fig. 3—the nozzle is
machined from brass and is 5d high. The thermally driven jets develop
in the open volume above the nozzle—the diameter of this volume is
approximately 75d, and it is at least 350d high.

The vortex line density embedded in the flow is measured with a
miniature second sound sensor29,31,32 consisting of two silicon plates
placed d ¼ ð2:5056 0:002Þ mm apart. The plates support a heater-
thermometer pair, microfabricated at their respective extremities. The
sensor’s cross section in the direction of the flow at the measurement
location is approximately twice 1mm � 20lm, and about 14mm
downstream this measurement location, the sensor’s cross section
enlarges to approximately 2.5� 3.5mm2. The heater is supplied with a
sine-wave voltage signal with frequency f, and, in consequence, second
sound waves with frequency 2f are emitted toward the thermometer,
which in turn develops weak periodic oscillations of its resistance. To

FIG. 2. Sketch of the two-component flow field in a thermal counterflow jet. Red
(blue) arrows: normal (superfluid) component; green point: stagnation point of the
superfluid component. Displayed are also velocity profiles in the near field, i.e., in
the close proximity of the nozzle (bottom) and in the intermediate field (top), see
Eq. (4). Adapted from Ref. 22.

FIG. 3. Sketch of the experimental setup
(not to scale). Brown: 3D-printed heater
enclosure; blue arrows: possible motions
of the mobile shaft; red: sensitive area of
the second sound sensor. Dimensions in
the right panel are in millimeters.
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readout this signal, the thermometer is supplied with a small constant
current and we collect the corresponding voltage oscillations by a
lock-in amplifier.

The two plates of the sensor form an open resonance cavity, and
standing second sound waves are obtained between them when the
driving frequency f equals the resonance frequency fn, which can be
approximated as

fn ¼
nc2
4d

; (5)

where n is a positive integer, and c2 indicates the second sound speed,
whose temperature dependence is plotted in Fig. 1 (right axis). By driv-
ing the device across resonance in quiescent He II, i.e., when the vortex
line density is relatively small, we obtain a nearly Lorentzian resonance
curve typical of harmonic oscillators, with amplitude A0 and half-
width D0. In case the sensor is placed in a flow of He II containing a
substantial vortex tangle, the second sound waves are attenuated by
the action of the mutual friction force and the measured resonance
amplitude A falls behind A0. The ratio A0=A > 1 can then be related
to the vortex line density L. For a homogeneous and isotropic tangle,
the latter can be approximately estimated28,29 as

L ¼ 6pD0

Bj
A0

A
� 1

� �
; (6)

where B denotes the mutual friction parameter, tabulated in Ref. 7. For
a polarized (preferentially oriented) tangle, Eq. (6) is modified by a
constant prefactor,28 i.e., the relation can be used as a qualitative esti-
mate of L also for polarized tangles, assuming that the polarization
does not significantly change over the course of the experiment.
Additionally, in Ref. 28, the uncertainty associated with Eq. (6) is
reported to be of the order of 10%. Still, we find its use in this study
adequate, because such a level of uncertainty is comparable to the sta-
tistical uncertainty of A and to other systematic errors specific to the
employed sensor, which are discussed below.

Note also that the sensitivity of the second sound attenuation
technique is further limited by the fact that it is based on the relative
measurement of the two second sound amplitudes. In practice, solely
amplitudes meeting A=A0 � 0:99 can be distinguished. For the typical
value D0 ¼ 300 Hz, we estimate from Eq. (6) that at 1.95K, the mini-
mum density that can be faithfully detected is Lmin � 6� 108 m�2.
The latter corresponds to approximately 1.5 m of vortex lines localized
between the heater-thermometer pair, i.e., to a mean distance ‘
between quantized vortices of approximately 40lm—the volume
where L is measured is equal to approximately 2.5mm3.

The crucial feature of our sensor is its ability to be displaced
within the experimental volume, thanks to a mobile shaft (see Fig. 3),
without significantly altering the flow, due to its relatively small size
and cross section along the axial direction. Two room-temperature
stepper motors control the shaft motion: One motor moves the shaft
in the vertical direction, and the other rotates it about its axis. In the
latter case, the sensor moves inside the cryostat along a circle inten-
tionally crossing the vertical axis of the setup. The angular deflection
of the shaft a can then be used to obtain the radial coordinate r relative
to the jet axis as

r ¼ 2R sin
a� a0

2

� �
; (7)

where R¼ 73mm ¼ 36:5d is the length of the horizontal mounting
arm (see Fig. 3), and a0 ¼ 1:9�6 0:3� denotes the offset between the
zero position of the sensor, manually set before the experimental cam-
paign, and its actual value, determined from the acquired second sound
signal (see Fig. 4)—this radial coordinate is signed because the sensor is
allowed to move on both sides of the jet axis, i.e., negative values of r
simply denote that the corresponding deflection angle a < a0 (and vice
versa). Additionally, the sensor is mounted asymmetrically on the hori-
zontal arm, and the sensitive areas are located approximately 7d away
from the support (see Fig. 3). As we show below, no significant differ-
ences in the acquired second sound signal are observed between the
strokes on opposite sides of the jet’s axis, which leads us to believe that
possible blockage effects caused by the asymmetry in the mounting are
negligible. Note also that possible blockage effects caused by the sym-
metrical body of the sensor have presumably the same strength, since
both parts have comparable sizes and positions in the flow, i.e., possible
blockage effects from the sensor body are expected to be negligible too.
Finally, the vertical position z of the sensor, relative to the top of the
nozzle, is obtained directly from the corresponding stepper motor, and
it can be determined with the accuracy of approximately 1mm.

To the best of our knowledge, we report here the first use of a
mobile second sound sensor to probe a spatially inhomogeneous tan-
gle of quantized vortices. So far, inhomogeneous tangles were investi-
gated by several static sensors placed along a counterflow channel—
see Ref. 28 for a few examples—or by multiple sensors located in dif-
ferent loci of the experimental setup, as e.g., in Ref. 32.

Before proceeding, we now mention two effects that might poten-
tially bias the second sound measurements. First, in regions far away
from the jet axis, the mean flow encounters the two plates of our sensor
at nonzero angles of attack. The mean flow velocity at the location of
the sensor, which can be up to approximately 0.1m/s, as shown e.g., in
Fig. 5, is significantly smaller than the velocities of the first and second
sound waves—in the investigated temperature range these velocities
reach their minima at 2.10K and are equal to 222 and 13m/s, respec-
tively.7 Thus, no significant supersonic effects are expected to occur
when the mean flow changes its direction due to the sensor.
Nevertheless, a velocity boundary layer is expected to develop along
each plate,11,33 and quantum vortices localized within these layers may
contribute to additional attenuation of the measured signal. Specifically,
boundary layer effects were investigated in turbulent flows of He II for
similar sensors, at zero mean angle of attack.29,31 Their contribution was
found to be negligible, partly due to the small thickness of the sensor
plates, and partly due to the fact that the velocity boundary layer is
expected to be small compared to d (see Ref. 29 for a more detailed dis-
cussion of this effect). Additionally, in comparison with Ref. 32, the
effect of the boundary layer on the measured signal might be larger, due
to the nonzero angles of attack, but, at the same time, the distance
between our sensor plates d is 2.5 times larger than that in the just cited
paper, where d � 1 mm. In consequence, the contribution of boundary
layers to the total signal attenuation is, in our case, reduced by a factor
of roughly 2.5, at the cost of a lower spatial resolution.

The second source of bias is due to the advection of the second
sound waves from the resonance cavity, which also accounts for
increased signal attenuation. This advection effect is present in all
types of the second sound resonators to a greater or lesser degree.29

Specifically, the attenuation attributed to the vortex tangle is more sig-
nificant, and Eq. (6) represents an accurate estimate of L when the
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second sound sensor is operated with a low-order resonant mode. In
our case, as detailed below, we use the 18th harmonic mode, which
means that the second sound beam is more focused and sensitive to
advection by the mean flow than it would be for lower order modes.
From the comparison with other available sensor geometries, we esti-
mate this bias to be as large as a few tens of percent (a more detailed
discussion of this effect is reported in Ref. 29). It is, therefore, more sig-
nificant than the other bias mentioned above, and, consequently, the
additional sensitivity of the employed second sound sensor to the
mean flow velocity should be kept in mind.

Aware of these drawbacks, we consolidate our second sound
measurements using cryogenic flow visualization. The technique—
discussed at length in Ref. 30—is based on following the flow-induced
motions of micrometer-sized particles by a digital camera. We specifi-
cally visualize solid deuterium particles, which are illuminated by a
1mm thick and 10mm high laser sheet crossing the vertical axis of the
jet. The acquired camera images are then processed to obtain particle
trajectories and velocities. These measurements are carried out in an
optical cryostat, with a 12mm (6d) wide and 8mm (4d) high field of
view located approximately 10mm (5d) above the nozzle, along the jet
axis—see again Ref. 30 for experimental details.

III. EXPERIMENTAL RESULTS

Steady counterflow jets are investigated at three temperatures
(approximately 1.65, 1.95, and 2.10K) corresponding to normal compo-
nent density fractions pn of 0.19, 0.48, and 0.74, respectively. Note that
the helium bath was kept at constant temperature by maintaining the
associated helium vapors at constant pressure, i.e., the temperature stan-
dard deviation was less than 12mK at 1.65K, and around 1mK at higher
temperatures. Depending on the employed experimental protocol, we
split the acquired datasets into four categories, labeled A, B, C, and D—
see Table I for relevant experimental conditions.

Datasets A1–A3 were collected near 1.65K because the tempera-
ture dependence of the second sound speed has a plateau here, see Fig.
1 (right axis). The resonance condition given by Eq. (5) then becomes
insensitive to small temperature fluctuations experienced in almost
every cryogenic setup. Therefore, we continuously excite the sensor at
the fixed frequency f¼ 37.22 kHz, which corresponds to the 18th har-
monic mode. By displacing the sensor, we sweep the volume above the
nozzle and we then collect the second sound amplitude A for a set of
positions given by ða; zÞ. In order to increase the signal-to-noise ratio,
multiple (at least 30) sweeps across the jet axis are performed for con-
stant z and the resulting second sound amplitude is calculated as their
average. The vortex-free resonance amplitude A0 and the peak width
D0 are obtained by fitting the full resonance curves, purposely acquired
far away from the jet axis, i.e., far away from the tangle.

An example of the acquired second sound signals is presented in
the top panel of Fig. 4. Here, we show two sets of sweeps obtained near
the extremities of the accessed axial distance, which are 9:0d and
31:5d, respectively. Individual sweeps across the jet axis (points) as
well as their ensemble averages (black lines) show a coherent response,
with most of the attenuation taking place in a narrow region of sen-
sor’s angular deflections. Because this attenuation can be related to the
presence of a quantized vortices’ tangle, we use the obtained data to
calculate the corresponding vortex line density and probe its spatial
structure. Additionally, as shown in the bottom panel of Fig. 4, the
fluctuations of the second sound amplitude introduce a statistical

uncertainty of around 10%, which is comparable to the uncertainty
one can associate with Eq. (6), as mentioned above—a similar level of
fluctuations is observed for other axial distances and datasets A1–A2.
Finally, no systematic error is apparently introduced by the stepper
motor that displaces the sensor back and forth across the signal mini-
mum, thanks to its positioning accuracy.

An approach similar to that used above is not possible for data-
sets in categories B and C because, for the corresponding tempera-
tures, c2 is strongly temperature dependent. Therefore, for each sensor
position, a full frequency sweep across the resonance frequency
(approximately 38.5 kHz) is measured and we estimate the corre-
sponding resonance amplitude from the in-phase (Ax) and quadrature
(Ay) components of the acquired signal,28,29 since the plot of Ay as a
function of Ax can be fitted with a circle having diameter equal to A.
As in the previous case, the values of A0 and D0 are taken from full fits
of the resonance curves measured far away from the jet. Following this
approach, we obtain a single value of A for each position of the second
sound sensor and the statistical fluctuations of the sensor response are,
therefore, not available for these datasets.

While sets B1–B4 probe the jet in both radial and axial directions
and can then be directly compared to A1–A3, the set C1 only captures
the vortex line density along the jet axis, i.e., for a constant angular
deflection equal to a0.

FIG. 4. Top panel: two sets of 30 sweeps (points) across the jet axis, obtained at
1.65 K and 776 mW (dataset A3) for z=d ¼ 9:0 and 31.5, as indicated in the figure.
Solid and dashed black lines: ensemble-averaged data used for the calculation of
the quantized vortices’ density. Dot-dashed black line: deflection offset a0 � 1:9�,
Eq. (7). Bottom panel: residuals (points) and standard deviations (lines) correspond-
ing to the data displayed in the top panel.
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Finally, the dataset D1 refers to the flow visualization study,
whose bath temperature and heating power can be directly compared
with sets A1 and A2. The dataset comprises approximately 1.88 � 106

particle position-velocity pairs, within the above-mentioned two-
dimensional field of view.

For the measured values of T and P, see Table I, one can use Eqs.
(1)–(3) to calculate nominal values of vn, vns, and Re, assuming that the
heat produced in the heater enclosure is transported toward the helium
bath solely through the nozzle. In this idealized case, we obtain normal
fluid and counterflow velocities of the order of 1m/s, corresponding to
Re values of the order of 105. These values are reported in Table I.

However, our 3D-printed enclosure is subjected to heat leaks,
through its plastic walls and the joint between the enclosure and brass
nozzle. The leaks are found to substantially reduce the flow velocity

and the Reynolds number of the jets studied below. This claim can be
directly verified via the visualization dataset, shown in Fig. 5.

In the left panel, we plot the mean particle velocity in the axial
direction (color lines) as a function of the particle horizontal position
in the field of view, corresponding to the radial direction. The depen-
dence on the axial coordinate is specifically expressed by five offset
lines, i.e., the 4d high field of view is split into five horizontal stripes,
0:8d high. At first glance, we can already say that the particle motions
capture a spatially constrained flow structure. Outside the structure,
the particles are practically still, while, inside it, they reach peak veloci-
ties of the order of 0.1m/s. This value is in sharp contrast with the
nominal values of vn reported in Table I, which are about one order of
magnitude larger than the experimental observation. Therefore, the
actual normal fluid and counterflow velocities are at least one order of
magnitude smaller than the maximum values estimated with
Eqs. (1)–(3).

Heat leaks can be taken into account by assuming a finite effi-
ciency g � 0:1 of the heat transfer through the nozzle. In particular,
the heat flux through the nozzle q in Eq. (1) should become gq, which
means that the effective heating power is reduced to gP in comparison
with the values reported in Table I. However, providing a clear esti-
mate of g based on the current data is not straightforward, also consid-
ering that the visualized region is not directly located above the nozzle,
but approximately 5d away from it—note that in a previous study34 it
was found that, for an analogous setup, g � 1=30. We can neverthe-
less use the upper limits of vn, vns, and Re reported in Table I to com-
pare individual datasets, if we assume that g does not significantly
change over the course of the experiment.

In order to investigate heat leaks in more detail, we placed a small
germanium thermometer inside the enclosure and measured the tem-
perature difference that develops between the enclosure and the bath
after the heater is switched on. Time traces of the recorded tempera-
ture are presented in the left panel of Fig. 6 for a constant bath temper-
ature of 1.30K (note that the temperature difference is more

TABLE I. Summary of experimental conditions. T: temperature; P: heating power;
vn=g: normal fluid velocity inside the nozzle, Eq. (1); vns=g: counterflow velocity
inside the nozzle, Eq. (2); Re/g: Reynolds number, Eq. (3). Note that the calculated
values for the velocity and the Reynolds number can be seen as maximal theoretical
values, obtained by assuming no heat leaks from the heater enclosure. In reality, the
efficiency of the heat transfer through the nozzle is g � 0:1, as specified in the text.

Label T (K) P (mW) vn=g (m/s) vns=g (m/s) Re=g (103)

A1 1.65 194 0.78 0.97 175
A2 1.65 381 1.51 1.97 338
A3 1.64 776 3.24 3.98 726
B1 1.95 194 0.26 0.50 55
B2 1.95 381 0.52 0.99 108
B3 1.95 776 1.03 2.00 215
B4 2.10 776 0.65 2.40 107
C1 2.10 775 0.65 2.40 106
D1 1.66 240 0.92 1.15 206

FIG. 5. Left panel: mean axial velocity of our solid particles, visualized in five regions, 0:8d high, crossing the jet axis (the curves are offset by 40mm/s relative to each other).
The distance separating each region center from the nozzle is specified next to each curve. A positive velocity indicates that the particles move, on average, away from the
nozzle. Color lines: experimental data; pale color areas: one standard deviation intervals; black lines: Gaussian fits, Eq. (9); see also Sec. III A. Right panels: centerline velocity
v0 (top panel) and jet width wv (bottom panel) as a function of the distance z from the nozzle, obtained from the Gaussian fits. Note that the quantities x, wv, and z are normal-
ized by the nozzle diameter d.
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prominent at lower temperatures because the heat capacity of He II is
roughly proportional to pn in the investigated temperature range).
Specifically, for a set of rising heating powers, we observe that the
heater enclosure warms up and reaches a steady state within a few sec-
onds after the heater is powered. Once the heater is switched off, the
enclosure quickly thermalizes with the surrounding bath.

First of all, it is apparent that the steady temperature differ-
ence DT between the enclosure and the 4He bath is significant, of
the order of 0.1 K. Additionally, the right panel of Fig. 6 displays
DT as a function of the heating power P. We observe a neat linear
dependence between these quantities, similar to Ref. 17, where it
was also reported that, for counterflow jets, DT / q3 for q� 5
kW/m2. The latter is consistent with the data reported in Table I if
we take into account the above-mentioned heat leaks, i.e., the

results plotted in the right panel of Fig. 6 confirm that g � 0:1 in
the range of investigated parameters because, otherwise, we
should also see here the cubic scaling typical of turbulent counter-
flow in channels.18 Nevertheless, the observed temperature differ-
ence leads to the formation of a prominent jet that features a
dense tangle of quantized vortices. We now investigate this tangle
using the second sound sensor as described above.

A. Spatial structure of the quantized vortices’ tangle

The observed decrease in the second sound amplitude, indicating
the presence of quantized vortices in the flow, depends on the radial
and axial positions of the sensor, revealing the spatial structure of the
quantized vortices’ tangle associated with the counterflow jet. Figure 7

FIG. 6. Left panel: temperature inside the heater enclosure as a function of time. The bath temperature is kept constant at 1.30 K, and the heater is supplied by a constant
heating power (specified near each curve) from approximately zero time. Right panel: steady temperature difference DT between the enclosure and the 4He bath as a function
of the heating power P.

FIG. 7. Radial profiles of the vortex line density for P � 776 mW and different temperatures. The colors correspond to different axial positions of the sensor, from 9d above
the nozzle (dark blue) to 31:5d, 29d, and 34d (dark red) for the left, middle, and right panels, respectively, with steps of 2:5d. The curves are offset by 3� 109 m�2 for the
sake of clarity. Positive and negative values of the radial coordinate r, here normalized by the nozzle diameter d, denote the corresponding angular deflection (r=d < 0 means
a < a0 and vice versa).
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displays the vortex line density L, also named VLD below, calculated
from Eq. (6), for datasets A3, B3, and B4. These datasets are character-
ized by the same heating power (P � 776 mW) and different tempera-
tures. The individual curves correspond to different axial distances,
starting from 9d (dark blue) above the nozzle, up to 31:5d, 29d, and
34d (dark red), for sets A3, B3, and B4, respectively—the curves are
vertically offset for clarity. These radial VLD profiles map the quan-
tized vortices’ tangle in unprecedented detail, and we specifically
observe the tangle to be spatially confined and growing in the radial
direction—considering the errors discussed above, we remind that
individual L values are here given with relative uncertainty equal to
approximately 10%.

Moreover, the highest L values are obtained for the smallest axial
distances and for the lowest temperature. A similar temperature
dependence is displayed by the normal fluid velocity vn for a constant
heating power, i.e., vn increases as T decreases—see Eq. (1). On the
other hand, vns is not a monotonous function of temperature and, for
the displayed data, the smallest vns is obtained for 1.95K—see Eq. (2)
and Table I. Specifically, this discrepancy between the temperature
dependencies of VLD and vns tells us that the physical mechanisms
resulting in the formation of counterflow jets are different from
those taking place in ordinary channel counterflow, where the scaling
L / v2ns was consistently observed for a rather wide range of tempera-
tures and counterflow velocities.35 In other words, our data support
the picture that the quantized vortices’ tangle associated with the jet is
not simply generated in the nozzle, where channel counterflow takes
place, and subsequently ejected into the volume above it. In particular,
as discussed below, we find the quantized vortices’ tangle to possess
properties that are usually attributed to turbulent coflow of He II, i.e.,
to a configuration where the two fluid components are locked together
in a single velocity field.

The obtained VLD profiles can be fitted with a Gaussian peak of
the form

LðrÞ ¼ L0 exp �
r
w

� �2
" #

; (8)

where the peak amplitude L0 and width w are taken as fitting parame-
ters to match the experimental data. The Gaussian-like shape of our
VLD profiles is reminiscent of the bell-shaped profile of the vorticity
magnitude inferred in a classical round jet using the particle imaging
velocimetry technique,36 and it is equally reminiscent of the bell-
shaped profile of the energy dissipation inferred from hot wire ane-
mometry measurements in a similar flow.37 Note in passing that,
under the assumption of homogeneous and isotropic turbulence,
energy dissipation and squared vorticity are proportional to each
other,38 but, at the same time, one should keep in mind that quantities
having similar Gaussian-like statistical distributions are not necessarily
related from a physical point of view.

It is now useful to mention that the profiles of the axial velocity,
presented in the left panel of Fig. 5, display a spatial structure similar
to that of the VLD profiles. In direct analogy with Eq. (8), we then fit
individual velocity profiles using

vðxÞ ¼ v0 exp �
x
wv

� �2
" #

; (9)

where the fitting parameters are the centerline velocity v0 and the jet
widthwv. Specifically, the left panel of Fig. 5 shows the close agreement
between the experimental data (color lines) and the fitting function
(black lines), and the axial dependence of both fitting parameters is
displayed in the two panels on the right.

Additionally, to highlight the effect of our sensor motion on the
investigated flow, we compare in Fig. 8 the L0 values obtained by fit-
ting the full VLD profiles of dataset B4 (red crosses) with the directly
measured peak values of dataset C1 (points) as a function of z/d—note
that dataset C1 includes two axial strokes of the sensor. The L0 values
detected by the sensor that gradually moves toward the nozzle are
marked by cyan points, and the magenta points denote data taken by
the sensor that moves in the opposite direction. The curves closely
overlap within the full range of investigated distances and within the
accuracy of the experimental technique, which neatly illustrates that
our observations are fully reproducible.

B. Scaling of the vortex line density

We now analyze how the peak amplitude L0 and width w of indi-
vidual VLD profiles scale with the axial distance z. First of all, the rela-
tion between L0 and z/d is presented in Fig. 9 for datasets A1–A3 and
B1–B4, marked by open symbols (we also use this notation in the fol-
lowing figures). Here, no artificial vertical shift is imposed, and the ver-
tical distribution of data lines is given by different experimental
conditions, listed in Table I.

The observed L0ðzÞ dependencies are compatible with power
laws, with exponents ranging from �2 to �3=2, as indicated by the
black lines in the figure. Specifically, the former exponent is found to
match relatively small peak densities, while the latter one fits relatively
dense tangles. Since the centerline velocity v0 / z�1 holds for both
classical and counterflow jets,23,25 it apparently follows that L0 / v3=20
for the largest line densities, while the L0 / v20 dependence holds for

FIG. 8. Peak vortex line density (i.e., density along the jet axis) L0 as a function of
the axial distance z, normalized by the nozzle diameter d, for datasets B4 (red
crosses) and C1 (cyan and magenta points). Color arrows denote the direction of
the sensor stroke (receding from or approaching toward the nozzle).
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the smallest ones observed in our experiment. Two alternative inter-
pretations of this puzzling behavior are discussed in Sec. IV.

Note in passing that our visualization data (see the top right
panel of Fig. 5) do not seem to reproduce the expected scaling of the
centerline velocity, although the latter does show the tendency to
decrease as the axial distance increases. The mismatch can be attrib-
uted to the fact that the jet flow was visualized in the near field region,
extending up to approximately 7d away from the nozzle,24 where the
mentioned scaling law is actually not expected to hold.

The axial dependence of the peak width w is plotted in
Fig. 10. The data points characterized by a relatively large VLD
amplitude display a neat linear dependence of w with z, which is also
independent of experimental parameters, see colored points in
Fig. 10. We identify these well-resolved VLD peaks by setting a thresh-
old Lt ¼ 2:2� 109 m�2. This value is chosen so that Lmin=Lt � 0:05,
i.e., it holds that the profiles meeting this threshold density display
VLD values larger than Lmin, at least within the interval ½�2w; 2w�,
which is required for a well-converged Gaussian fit and a reliable esti-
mation of the fitting parameters. Additionally, the errors associated
with the w estimates, which are computed from 95% confidence
bounds of the fit, range from 2% to 6% for the well-resolved data, and
the similarly obtained errors of L0 are between 1% and 5%. For the
datasets that fail to meet the threshold value Lt, the relative errors of
w estimates are as high as 33%—and those of L0 are as high as 22%. In
the following, for the sake of brevity, the colored points in Fig. 10, those
with L0 > Lt , are named high (data) set, while the others are called low
(data) set, because, as already noted, they can be, respectively, associ-
ated with high and low values of peak density—see again Fig. 9.

We fit the widths corresponding to the high set together using

wðzÞ ¼ bL z � z0ð Þ; (10)

where we find that the virtual origin z0 � �0:9d and that the growth
rate bL ¼ dw=dz of the vortex tangle is equal to approximately 0.14
(see the solid black line overlaying the experimental data in Fig. 10).
Similar values are reported for the velocity field of classical round jets.

For example, the jet’s virtual origin is found to be rather close to the
nozzle also in Ref. 37. Additionally, Ref. 1 reports a linear growth of
the velocity profile, with a rate b ¼ 0:11, for Re � 105, and in Ref. 39,
a similar value is given for Re � 104. For the sake of comparison, it
is also useful to estimate the full width at half maximum (FWHM)
of the VLD profile, and, for a Gaussian peak, we obtain bFWHM

L
¼ 2

ffiffiffiffiffiffiffiffiffiffi
log 2

p
bL � 0:23, which, once more, is a value comparable to the

FWHM-based growth rate of approximately 0.21, reported in Ref. 27.
However, one should keep in mind that velocity and vortex line den-
sity profiles are expected to be different in nature, e.g., the widths of
velocity and VLD profiles are not expected in general to grow at the
same rate, and, on top of this, counterflow and classical jets are charac-
terized by different production mechanisms, which should shift the
virtual origins. Note, finally, that the bottom right panel of Fig. 5
presents the width of the velocity profiles vs the axial distance z/d,
obtained from our flow visualization measurements in He II. Here
again, we find an affine growth of the velocity profile width, consistent
with that of classical jets.

In summary, the emergence of approximately Gaussian profiles
for the vortex line density, alongside with the scaling laws outlined
above, suggests that the quantized vortices’ tangle develops a structure
that is tightly coupled to the associated velocity field, at least within the
intermediate field region of the jet. In other words, the quantized vorti-
ces’ tangle grows in size, while decreasing its peak density with z, simi-
larly as the peak flow velocity that decreases with z, due to turbulent
entrainment and momentum conservation.

IV. DISCUSSION

In the following, we outline two interpretations of the just pre-
sented experimental results. The first one, detailed in Sec. IVA and
proposed by P. �Svančara and P.-E. Roche, leads us to conjecture a self-

FIG. 9. Peak vortex line density L0 as a function of the normalized axial distance
z/d. Dataset labels are indicated to the left of each curve. Note the log –log scale.

FIG. 10. Peak width w as a function of the axial distance z (both quantities are nor-
malized by the nozzle diameter d). Color symbols: points with L0 > Lt , i.e., data-
sets A2 (in part), A3, B3, and B4, collectively named high set; gray symbols:
remaining points, with L0 � Lt , i.e., datasets A1, A2 (in part), B1, and B2, collec-
tively named low set. Note that the symbols are as in Fig. 9, regardless of their
color; black line: linear fit, Eq. (10).
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similar functional form of the vortex tangle density across counterflow
jets. The other, detailed in Sec. IVB and proposed by M. La Mantia,
suggests that the position of the superfluid stagnation point could
depend on the flow forcing as well. Both interpretations can be used to
explain in part the obtained results.

A. Self-similar jet model

It is apparent from Figs. 9 and 10 that the curves associated with
the smallest peak densities, corresponding to the low set, defined in
Sec. III B, are characterized by a larger scatter in comparison with the
other curves. This can be attributed to the less accurate fit of Eq. (8) to
weakly attenuated second sound signals, i.e., to relatively low values of
L, especially in the off-axis region. In view of improving the statistical
convergence, we introduce here an alternative, dimensionless quantity,
Lz , which aggregates a larger set of measurements. Specifically, if we
assume that the distribution of quantized vortices in the jet is axially
symmetric, i.e., that L is independent of the azimuthal coordinate /,
we calculate this quantity, the cumulative length of quantized vortices
per unit height, as

LzðzÞ ¼
ð1
0

ð2p
0

Lðr; zÞrdrd/ ¼
ð1
0

2prLðr; zÞdr: (11)

Additionally, we note from Fig. 10 that the VLD profiles associ-
ated with the high set are self-similar, at least in the range of investi-
gated parameters. This self-preserving property of jets far away from
the nozzle is well known for classical jets,38 and it was also invoked to
interpret previous experiments on counterflow jets.9 This implies that
the (high set) VLD profiles can be modeled as

Lðr; zÞ ¼ G r
z � z0

� �
L0ðzÞ ¼ GðxÞL0ðzÞ; (12)

where the dimensionless profile shape GðxÞ can be approximated, for
example, by a Gaussian peak, ensuring that Gð0Þ ¼ 1. Equations (11)
and (12) then lead to the scaling relation

LzðzÞ ¼ ðz � z0Þ2L0ðzÞ
ð1
0

2pxGðxÞdx / z2L0ðzÞ; (13)

where we assume that the integral is finite and that z0 � z. Equation
(13) shows us how Lz and L0 are related under the self-similarity
hypothesis.

The cumulative vortex length Lz can be estimated from the
experimental data in two different ways. The first one consists in using
the full VLD profiles, e.g., those presented in Fig. 7. We can then
numerically estimate the right-hand side of Eq. (11) within the limits
ðrmin; 0Þ or ð0; rmaxÞ, where rmin (rmax) is the minimum (maximum)
radial coordinate probed by the sensor. Since the obtained radial pro-
files fully capture the region occupied by the quantized vortices’ tangle,
as shown, e.g., in Fig. 7, these integrals adequately approximate Eq.
(11)—note that, to reduce error, we take as the final estimate of Lz for
this first method the average value of the integrals with rmin and rmax.
The second approach relies on the explicit form of G introduced above
to model the high set profiles. In agreement with Eqs. (8) and (10),
we set

G r
z � z0

� �
¼ exp � r

bL z � z0ð Þ

� �2( )
¼ exp � r

w

� �2
" #

(14)

and evaluate the integral on the right-hand side of Eq. (11) as

Lz ¼ 2pL0

ð1
0

exp � r
w

� �2
" #

rdr ¼ pL0w
2: (15)

Both estimates of Lz are presented in Fig. 11 as a function of the
axial distance z. The left panel represents the right-hand side of Eq.

FIG. 11. Cumulative length Lz of quantized vortices per unit height as a function of the normalized axial distance z/d. Left panel: right-hand side of Eq. (15), computed using
the experimentally obtained values of L0 and w. Right panel: result of the numerical integration of the right-hand side of Eq. (11) as discussed in the text. Colors as in Fig. 9.
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(15), and the right panel displays the result of the numerical integra-
tion of the right-hand side of Eq. (11) using the trapezoidal rule. The
two methods yield comparable results except for dataset A1 (open
blue circles, right panel), where the nonphysical, negative values of Lz
most likely result from the poor signal-to-noise ratio (a negative vortex
line density is obtained from Eq. (6) when A > A0). Note again that
Eq. (15) is derived assuming that the studied flows are self-similar.

It is apparent from Fig. 11 that, for a given heating power P and
helium bath temperature T, i.e., for a given dataset, the cumulative
length Lz does not depend on z within the experimental uncertainty
and for all datasets but one. Taking Eq. (13) into account, we can
therefore say that L0ðzÞ / z�2 in the range of investigated parameters,
excluding dataset A3 (yellow triangles). In this case, Lz grows with the
axial distance z, which is an unexplained exception. Nevertheless, leav-
ing this dataset aside for the moment, it now seems that the variations
of the power-law exponents apparent in Fig. 9 are compensated by
suitable changes in the growth of the measured VLD profile width,
presented in Fig. 10. This compensation could be explained, at least in
part, by stochastic fluctuations of the jet direction. The latter could sys-
tematically decrease the measured centerline density of quantized vor-
tices and simultaneously increase the measured jet width. Apparently,
the use of the cumulative vortex length allows us to largely discard the
data scatter observed in Figs. 9 and 10.

The inverse quadratic scaling of L0ðzÞ has a straightforward
interpretation using a heuristic relation tested by numerical simula-
tions and experiments in steady, nearly homogeneous coflow of turbu-
lent He II.40,41 These works relate Lc, the mean density of the
quantized vortices’ tangle in coflow, and the energy dissipation rate e
as

L2c / e / v3rms

H
; (16)

where vrms is the root mean square velocity of the coflow being investi-
gated, and H indicates a velocity correlation distance usually called the
integral length scale.

Turbulence along the axis of classical round jets can be locally
approximated as homogeneous and isotropic,38 and some local prop-
erties of turbulence can be inferred from the local values of vrms and
H, as shown, for example, in Refs. 42–44. Specifically, following this
reasoning, one can estimate along the jet axis the vorticity magnitude
and the energy dissipation rate, appearing in the classical relation anal-
ogous to Eq. (16). In other words, we assume here that Eq. (16) holds
locally on the counterflow jet axis, with Lc 	 L0 (note that in Ref. 9
the assumptions of local homogeneity and isotropy have been already
used to interpret measurements of the second sound waves crossing a
counterflow jet).

In particular, for a given dataset, and taking into account the
empirical scaling relations vrms / v0 andH / w / z, Eq. (16) becomes

L20 /
v30
w
/ z�3

z
/ z�4; (17)

which fully accounts for the observed inverse quadratic scaling of L0
with z. Additionally, for a fixed temperature, we can write that

L0ðz;PÞ � z�2FðPÞ; (18)

whereF is an unknown function of the heating power.

Now, in view of further reducing our data scatter, we take
advantage of the conjectured invariance of Lz along the jet axis and
we calculate its average value—the averaging operator is denoted as
h 
 iz and the average value is, therefore, hLziz . Figure 12 shows
hLziz , computed from the data displayed in the left panel of Fig. 11,
as a function of the heating power—the dotted lines connect points
corresponding to the same bath temperature. Although the data
scatter—likely due to experimental errors and temperature
dependence—is not negligible, we find that hLziz roughly follows a
P3=2 scaling (black line) that ought to be interpreted. Assuming that
the dimensionless VLD profile shape G is independent of P, we find
from Eqs. (13) and (18) that

hLziz / hz2L0ðz;PÞiz � FðPÞ: (19)

What now remains is to understand why F / P3=2. At any given
z, it results from the proportionality between L20 and v30 in turbulent
coflows,40,41 which is apparent from Eq. (17). Due to the counterflow
generation mechanism, Eq. (1), the centerline velocity v0 scales linearly
with P (or gP to account for heat losses). We, therefore, obtain
F / L0 / v3=20 / P3=2, consistently with the outcome of Fig. 12.

It is now useful to mention Ref. 19, where an elongated counter-
flow jet of He II was investigated at a distance of approximately 10
nozzle widths from the flow source using a second sound beam travel-
ing across the jet. For temperature (1.6–2.1K) and heat flux
(3–50 kW/m2) ranges comparable to those of the present work, the
attenuation factor, which is proportional to the vortex line density,
was reported to scale as Pk with k¼ 1.3–1.6. The outcome was later
explained using geometrical acoustics, assuming that the counterflow
jet is turbulent and that the normal and superfluid components are
locked in a single velocity field.9

To summarize, excluding dataset A3 that remains to be under-
stood, our results are consistent with a self-similar spatial distribution
of the quantized vortex tangle, whose density L can be written as

FIG. 12. Mean cumulative length hLziz as a function of the heating power P. Colors
as in Fig. 9; error bars correspond to one standard deviation interval. Black dotted
lines connect data points collected at the same temperature of the helium bath.
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Lðr; z;PÞ / P3=2

z2
G r

z � z0

� �
; (20)

where G is a Gaussian-like function. If we substitute for G the
employed Gaussian fit, we obtain an explicit functional form, i.e.,

Lðr; z; PÞ / P3=2

z2
exp � r

bL z � z0ð Þ

� �2( )
; (21)

where the z�2 factor accounts for the linear development of the inte-
gral scale along the jet, far away from the nozzle. Now, for consistency
with the exponential term, the jet virtual origin can be reintroduced in
this factor, to better account for smaller z, see Eq. (13).

Additionally, although the determination of the temperature
dependence is not possible on the basis of the present data, three phys-
ical arguments suggest how to make it explicit. First of all, the spread-
ing rate of classical jets is due to the balance between mixing and axial
entrainment, and these processes should remain equally efficient in He
II when both components are flowing together. Therefore, we expect
that bL will have a weak dependence on T and P. On the contrary, the
virtual origin z0 can be associated with the crossover from the counter-
flow to the coflow regime, and we then expect it to explicitly depend
on T and P. Finally, the amount of quantized vortex lines generated in
a given He II coflow depends on temperature, because the vortex
dynamics depends on the normal fluid fraction,19 which is strongly
temperature dependent, see again Fig. 1—one can then embed the lat-
ter consideration into an unknown function of temperature, T .

Following the previous reasoning, we can consequently write a
generalized version of Eq. (21), i.e.,

Lðr; z; P;TÞ � P3=2

z � z0ðP;TÞ½ �2
exp � r

bL z � z0ðP;TÞ½ �

� �2( )
T ðTÞ;

(22)

where z is large compared to z0, to meet the self-similarity condition,
bL � 0:14, and z0 � �0:9d, as reported above. We remind, however,
that the numerical values might be biased by the response of the sec-
ond sound sensor to the flow velocity; that is, we assume in this work
that the contribution of the fluid velocity to second sound attenuation
is not significant. More generally, further studies are required to quan-
titatively validate the proposed model, e.g., to understand why the Lz
vs z scaling differs for dataset A3 compared to the others.

B. Moving stagnation point interpretation

In Sec. III B, we reported that the L0ðzÞ dependencies plotted in
Fig. 9 are compatible with power laws, with exponents ranging from
�2 to �3=2. Specifically, the former exponent can be associated with
relatively small peak densities, i.e., to the low set, while the latter one is
more suitable for relatively denser tangles, i.e., for the high set.
Considering that v0 / z�1 is expected to hold for self-similar round

jets, one can then derive L0 / v3=20 for the largest line densities, while
the L0 / v20 scaling is more adequate for the smallest ones.

As already mentioned, the 3/2-power scaling was reported in pre-
vious studies—see, e.g., Refs. 9 and 35—and can be associated with
turbulent coflow of He II. More precisely, one can derive it from Eq.
(16) assuming that the integral length scale H does not depend locally
on other flow scales. This could happen in the region where the

hypothesis of locally homogeneous and isotropic flow is expected to
hold, i.e., along the jet axis, where no information on the jet width
w should be accessible, if the typical size of this region is smaller than
w—note again that H / w for self-similar jets. In other words, the
assumption made in this section is that the integral length scale H is
constant in the region where Eq. (16) holds.

The 2-power scaling is instead often associated with channel
counterflow, i.e., L / v2ns, as discussed, e.g., in Ref. 35. However, as
already noted in Sec. IIIA, the normal fluid and counterflow velocities
are in general not directly proportional to each other, but this is only
true at liquid temperatures higher than approximately 2K (Ref. 7). It
then follows that, at lower temperatures, vn / vns. Additionally, con-
sidering that, as reported in Sec. IVA, v0 should be proportional to vn,
we find that L0 / v20 for our more dilute tangles, i.e., for the low set,
collected at temperatures lower than 2K.

From this discussion, one can then say that, at sufficiently low
values of heating power, channel counterflow features could also be
observed in counterflow jets. The physical reason could be related to
the mutual friction force, which can be seen as an energy sink.
Specifically, this dissipation mechanism could become inefficient for
counterflow jets at sufficiently high values of heating power. In other
words, the position of the stagnation point depicted in Fig. 2 could be
a function of the heating power and move closer to the nozzle as the
power increases.

The suggestion appears a bit less adventurous if one considers
that counterflow jets at relatively low heating power have yet to the
thoroughly investigated or at least they have received to date less atten-
tion than those at higher heating power. Indeed, we reported in Sec.
III that, on the basis of Ref. 17, we expect DT to be linearly propor-
tional to q in the range of parameters probed here, while this is not the
case of other studies on counterflow jets, such as Refs. 14 and 16,
where a neat cubic scaling was observed at larger values of heat flux.
Specifically, Refs. 17 and 21 are apparently the only works where some
attention is given to the just mentioned linear regime and, more
importantly, the claim that the superfluid stagnation point is located
in the close proximity of the nozzle is solely based on data collected in
the cubic regime, i.e., at relatively high values of heating power.

Finally, it is useful to mention that, from the right-hand side of
Eq. (15) and the L0 / v3=20 scaling, one can get that Lz should be pro-
portional to z1=2, at least for the high set. However, in Fig. 11, we
observe that Lz grows with the axial distance z only for dataset A3,
corresponding to the largest Reynolds number, while this is not the
case for the other datasets displaying the proportionality between
w and z. Once more, further experiments are required to assess the
validity of the physical interpretations presented here.

V. CONCLUSIONS

The intermediate field region of round counterflow jets, repre-
senting a unique type of thermally driven flow of He II, was studied in
the turbulent regime, for Reynolds numbers of the order of 104, using
the second sound attenuation and flow visualization techniques.
Specifically, a miniature second sound sensor was employed to detect
the vortex line density across the jet axis, with a spatial resolution
slightly larger than the nozzle diameter, at fluid temperatures between
1.64 and 2.10K—note, however, that the measured density is biased
by an additional sensitivity of the employed second sound sensor to
the flow velocity, which cannot be precisely quantified at the moment.
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Nevertheless, within the range of investigated axial distances,
from 9 to 34 nozzle diameters, we observe a highly inhomogeneous
tangle of quantized vortices. In particular, the vortex line density dis-
plays a Gaussian-like profile in the radial direction and, for the highest
density values, its width w grows linearly with the axial distance z at a
rate dw=dz � 0:14, which is comparable but not equal to the radial
growth rate observed for the classical velocity field—similar remarks
apply to the jet virtual origin. Additionally, as shown in Fig. 9, the
peak density of the quantized vortices’ tangle appears to follow, as a
function of the axial distance, power laws with exponents ranging
approximately between�2 and �3=2. Two physical interpretations of
the observed scaling behavior are proposed, and none of them account
for all the measured datasets. One interpretation conjectures a general
functional form of the vortex line density in counterflow jets, which
depends on spatial coordinates and heating power. The other suggests
that the position of the superfluid stagnation point along the jet axis
could depend on the heating power as well.

In summary, the present work indicates that future studies on
counterflow jets should be devoted to extend the ranges of experimen-
tal parameters accessed to date, e.g., in order to quantitatively identify
the conditions in which jet flows of superfluid 4He are appreciably dif-
ferent from their classical analogs.
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