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ABSTRACT
An analytical model of open-cavity second sound resonators is presented and validated against simulations and experiments in superfluid
helium using a new resonator design that achieves unprecedented resolution. The model incorporates diffraction, geometrical misalignments,
and flow through the cavity and is validated using cavities operated up to their 20th resonance in superfluid helium. An important finding is
that resonators can be optimized to selectively sense either the quantum vortex density carried by the throughflow—as typically done in the
literature—or the mean velocity of the throughflow. We propose two velocity probing methods: one that takes advantage of misalignments
between the tweezers’ plates and other that drives the resonator non-linearly, beyond a threshold that results in the self-sustainment of a vortex
tangle within the cavity. A new mathematical treatment of the resonant signal is proposed to adequately filter out parasitic signals, such as
temperature and pressure drift, and accurately separate the quantum vorticity signal. This elliptic method consists in a geometrical projection
of the resonance in the inverse complex plane. Its effectiveness is demonstrated over a wide range of operating conditions. The resonator
model and elliptic method are being utilized to characterize a new design of resonators with high resolution, thanks to miniaturization and
design optimization. These second-sound tweezers are capable of providing time-space resolved information similar to classical local probes
in turbulence, down to sub-millimeter and sub-millisecond scales. The principle, design, and microfabrication of second sound tweezers are
being presented, along with their potential for exploring quantum turbulence.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0152091

I. INTRODUCTION TO SECOND SOUND RESONATORS
A. Quantum fluids and second sound

Below the so-called lambda transition, liquid 4He under-
goes a quantum state change to He II. This transition occurs at
around Tλ ≃ 2.18 K under saturated vapor conditions. According
to Tisza and Landau’s two-fluid model, the hydrodynamics of He
II can be described as the hydrodynamics of two interpenetrat-
ing fluids, namely, the superfluid component and the normal fluid
component.1,2

The superfluid density ρs vanishes immediately below the tran-
sition and increases as temperature decreases, while the normal fluid
density ρn exhibits the opposite behavior and vanishes in the zero-
temperature limit. The properties of the two fluids differ markedly.
The superfluid has zero viscosity and entropy, and the circulation of

its velocity field is quantized in units of κ = h/m ≃ 0.997 × 10−7 m2/s,
where h is the Planck constant and m is the atomic mass of 4He. This
quantization constraint results in the formation of filamentary vor-
tices with Ångström-scale diameters, later referred to as superfluid
or quantum vortices.3 In contrast, the normal fluid follows classical
viscous dynamics and carries all the entropy of He II.4,5

The presence of two distinct velocity fields vs and vn in the
superfluid and normal fluid, respectively, leads to the existence of
two independent sound modes in He II. This can be demonstrated
by linearizing the equations of motion.4–6 The “first sound” mode
corresponds to a standard acoustic wave, where both fluids oscillate
in phase (vs = vn), resulting in oscillations of the local pressure and
density ρ = ρs + ρn. On the other hand, the “second sound” mode
corresponds to both fluids oscillating in antiphase with no net mass
flow, i.e., (ρsvs = −ρnvn). As a result, the relative densities of the
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superfluid and normal fluid locally oscillate along with the entropy
and temperature.

B. Generation and detection of second sound waves
Experimentally, two techniques are commonly used for gener-

ating and detecting second sound in He II: mechanical and thermal.
In principle, they could be combined for generating and detecting,
although we are not aware of any composite configuration reported
in the literature. Other techniques, such as optical scattering and
acoustic detection above the liquid–vapor interface or within the
flow itself, have been occasionally used but will not be discussed here
(e.g., Refs. 7–9).

The mechanical technique involves the excitation and sensing of
one component of He II exclusively at the transducer surface, which
can be either its superfluid component or the normal fluid com-
ponent. This boundary condition involves first and second sound
simultaneously, and their combination produces an exact compen-
sation of the motion of the component that remains static at the
transducer surface. Given that the velocity of first sound is typi-
cally an order of magnitude larger than that of second sound,10 their
effects can be distinguished, and the entanglement of both sounds is
generally not considered an issue in second sound probes. In prac-
tice, the selective displacement of the superfluid component at the
transducer surface is achieved using Peshkov transducers, which con-
sist of a standard acoustic transducer and a fixed porous membrane-
filter. The tiny pores of the membrane act as viscous dampers for the
normal fluid but are transparent to the superfluid (“superleaks”).11,12

Alternatively, selective displacement of the normal fluid component
is achieved using oscillating superleak transducers. These are based
on a vibrating porous membrane that is coupled to the motion of
the normal fluid through viscous forces but decoupled from the
inviscid superfluid. They can be made by replacing the membrane
of a loudspeaker or microphone with a millipore or nucleopore
sheet.13–15

The thermal technique for generating and detecting second
sound involves inducing second sound by the Joule effect and detect-
ing it with a thermometer. Depending on the temperature range and
practical considerations, various types of thermometers may be suit-
able for detecting second sound waves. Given the vast literature, we
only list a few thermistor materials and bibliographic entry points.
Positive temperature coefficient thermometers have also been used
in the early days,16 but they are rarely used nowadays. Materials with
negative temperature coefficients include carbon in various forms
(aquadag paint, fiber, pencil graphite, etc.),17 doped Ge,18 RuOx,19

ZrNx/Cernox,20,21 and Ge-on-GaAs.22,23 Transition edge supercon-
ductor thermometers are preferred when large sensitivity or low
resistivity is important, for instance, Au2Bi,24 PbSn,25,26 granular
Al,27,28 and AuSn.24,29,30 The second sound tweezers presented in
this study utilize this thermal technique, with a AuSn thermometer.
More information will be provided on this paper in Sec. II B 1

C. From macroscopic second sound sensors
to microscopic tweezers

In the presence of superfluid vortices, there is mutual coupling
between the superfluid and normal fluid, leading to the damping
of second sound waves.3 This attenuation has been extensively uti-
lized as a tool for exploring the properties of He II flows over

the past 60 years,31 especially in the field of quantum turbulence
(see, for example, Ref. 32). Mechanical second sound transduc-
ers have been successfully employed to sense the turbulence of
He II in the wake of a grid by groups in Eugene, Prague, and
Tallahassee.33–35 Meanwhile, thermal second sound transducers suc-
cessfully used to sense turbulence of He II flows have been described,
for instance, by groups from Paris, Tallahassee, Grenoble, and
Gainesville.19,36–38

A specific type of probe allows for very sensitive probing of
the density of quantum vortices in He II flow: standing-wave sec-
ond sound resonators. Such resonators consist of two parallel plates
facing each other, with one plate functioning as a second sound
emitter and the other as a receiver. The emitter excites the cavity at
resonance to benefit from the amplification of the cavity. The charac-
teristics of the standing wave between the plates provide information
on the properties of the fluid and the flow between the plates, partic-
ularly the density of vortex lines, which affects the amplitude of the
standing wave. In addition to vortex density measurements, second
sound can also provide information on the fluid temperature, as the
second sound velocity depends on it, and on the velocity of the flow
when it induces a phase shift or Doppler effect on the second sound
(see, for example, Refs. 36, 39, and 40).

The characteristics of standard (macroscopic) second sound
resonators listed above also apply to their miniaturized counter-
parts, named second sound tweezers. In addition to their smaller
size, a key feature of tweezers is their minimal impact on the flow
when positioned in its core. This is illustrated in Fig. 1, which high-
lights the differences between standard resonators and tweezers.
Standard resonators provide information on the averaged prop-
erties of the flow, while tweezers enable space and time-resolved
measurements. As such, tweezers function as local probes, simi-
lar to hot-wire anemometers or cold-wire thermometers used in
turbulence studies.

The present design for tweezers utilizes thermal actuation,
which is preferred over mechanical actuation due to its compatibility
with the constraints of miniaturization and reduced flow blockage.

D. Overview of the manuscript
The following sections cover distinct topics.
In Sec. II, we report on the design, clean-room fabrication, and

operation of miniaturized second-sound resonators. These tweezers
allow us to probe the throughflow of helium with unprecedented
spatial and time resolution.

In Sec. III, we present a comprehensive model of second-sound
resonators that accounts for plate misalignment, advection, finite
size, and near-field diffraction. Diffraction, which was previously
neglected in quantitative models, is shown to be a significant source
of degradation of the quality factor in our case studies. We also
consider applications of this model for the measurement of vortex
concentration and velocity.

In Sec. IV, we discuss existing methods for processing the
signal from second-sound resonators and their limitations. To over-
come these limitations, we introduce a new general approach, called
the elliptic method, based on mathematical properties of resonance.
This method enables us to dynamically separate the amplitude
variations of the standing wave due to variations of vortex den-
sity or velocity from the phase variations, such as those resulting
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FIG. 1. Left: A macroscopic second sound resonator, embedded in the sidewall, is used to sense the averaged flow properties in the shaded region. Right: Second sound
tweezers. In contrast to the macroscopic design of the left schematic, this miniaturized resonator, positioned within the flow, allows for space and time resolution of the flow
variations.

from variations of the second sound velocity due to a temperature
drift.

In Sec. V, this study’s results and limitations are summa-
rized, and several perspectives are presented. Additionally, some
unexpected results are discussed.

To ensure clarity, we present the second-sound tweezers first to
illustrate the topics on modeling and methods with a practical case.
However, we emphasize that the modeling and methods introduced
in this article are general and relevant to second-sound resonators,
regardless of their size, including the macroscopic sensors embedded
in parallel walls that are encountered in the literature.

II. DESIGN, FABRICATION, AND MODE OF OPERATION
OF SECOND SOUND TWEEZERS

The basic component of second sound tweezers consists of a
stack comprising a heating cantilever and a thermometer cantilever,
separated by a spacer. Additionally, two Kapton films with golden
copper tracks are inserted in contact with the tracks of the heater
and thermometer (see Fig. 2). The heaters and thermometer can-
tilevers are composed of a baseplate, an elongated arm, and a tip
(see Fig. 3). The baseplate is the thickest part, while the tip is the
thinnest. The active areas, which are the emitter and receiver plates,
are located on the tips. The distance between the plates is set by
the spacer, composed of one or several micro-machined silicon ele-
ments. For a given device, the heater and thermometer have identical
mechanical structures, with the only difference being the chemical
elements used in the serpentine electrical path deposited on the tip.
Three cantilever types were fabricated to allow the assembly of res-
onators with three different tip sizes (see Fig. 3). The tip widths are
1000, 500, and 250 μm. The resulting assembly is clamped with a
standard picture clip, which was downsized in width by electro-wire
erosion, and soldered to the head of a mounting screw. An improve-
ment compared to the clamping technique introduced in Ref. 38 is
the possibility to insert a temporary “joystick” through the entire
assembly to allow for precise alignment (or offsetting) of the cavity
plates under a microscope.

Section II A presents the considerations that have prevailed in
the mechanical design of the second sound tweezers. Section II B

discusses the detection (thermometry) and generation (heating) of
second sound by the tweezers. Sections II C and II D present
the microfabrication techniques and the electrical circuitry used to
operate the probes, respectively.

A. Mechanical design
1. Resolution

The space resolution of the tweezers, denoted as Lres, is deter-
mined by the largest dimension of its cavity, which can be either the
inter-plates distance D, also known as the “gap,” or the side length L
of the plates that are assumed to be square-shaped. This study mostly
focuses on cavities with an aspect ratio of order 1, which allows for
optimal space-averaging of the signal at a given space resolution. The
time resolution of the tweezers, denoted as τres, is set by the decay
time of a wave bouncing between the plates. In Sec. III B, we intro-
duce and validate a simple model that accounts for dissipation in the
cavity due to diffraction loss and residual inclination of the plates.
An upper bound for τres is obtained from the diffraction loss term:
τres ≃ L2 f /(b c2

2), where b ≈ 0.38, c2 is the second sound velocity,
and f is the wave frequency, which can be approximated as n c2/2D
for the nth mode of resonance [see Eq. (6)]. Thus, the tweezers’ time
resolution due to diffraction loss can be estimated as

τres. ≃
L2 f
bc2

2
≃ n

L2

Dc2
.

The ratio Lres/τres of the space resolution and time resolution
defines a characteristic velocity for which the probe optimally aver-
ages the space–time fluctuations. For instance, in a cavity of aspect
ratio one (D = L) operated on its nth resonance, the nominal veloc-
ity is estimated as c2/n. These estimates show that cavities with
an aspect ratio of order unity are appropriately sized for second-
sound-subsonic flow, with a mean velocity of a few meters per
second.

2. Blocking effect
The aforementioned considerations regarding space resolution

are pertinent only if the flow being measured is not disturbed by
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FIG. 2. Second sound tweezers, pictured from two angular perspectives. Center: The probe is seen in the direction of the mean flow (or nearly so). The second sound cavity
is localized at the end of the probe tip in the rightmost encircled areas. The bent copper wire passing through the probe is a temporary joystick used for precise alignment
of the cavity plates under the microscope. The two coaxial cables for heating and thermometry are visible in the lower left corner of the picture. Top left: Magnified detail of
the stack. Right: The picture inset shows the same probe after rotation and with the joystick removed, revealing the through-hole across the silicon stack. The two staggered
notches used for thermal confinement of the standing wave in the cavity are clearly visible.

the probe support. The current design adheres to the empirical 10×
rule, which mandates that components of the support that impede
the flow on a length scale X must be situated at least 10X away
from the measurement region. Accordingly, the cavity is located at
the end of elongated arms, and the cantilevers exhibit decreasing
widths and thicknesses along their length of 25 mm, as depicted
in Fig. 2. The thickness successive values are around 520, 170, and
20 μm, while the width decreases from 2.5 mm to 145 μm in the
narrowest zone (respectively, 275 and 500 μm) for cavities with L =
250 μm (respectively, L = 500 μm and L = 1000 μm).

3. Wave confinement
The spatial resolution of the tweezers would be degraded if the

second sound standing wave spreads out of the L × L ×D cavity due
to reflections between the supporting arms. To confine the standing
wave in the cavity region, a design trick was implemented by break-
ing the mirror symmetry between the two cantilevers. As shown in
Fig. 2, anti-symmetric notches in the tips prevent the second sound
from escaping by bouncing away from the cavity, at least in the
geometric-optic approximation where diffraction is neglected.

FIG. 3. Top view of the three cantilever types. The tip widths are 1000, 500, and
250 μm, respectively. Left: Mechanical structures, all parts are silicon made, differ-
ent thicknesses are represented by different colors. The baseplate width is 2.5 mm
for all types. Right: Electrical path on each tip type. Yellow areas are a deposition
of TiPt for heaters and AuSn for thermometers. Orange areas are a thick AuPt
deposition for current leads.

4. Mechanical resonances
In addition to the×10 rule, these dimensions are chosen to push

the mechanical vibrations of the arm to around 1 kHz or higher. The
fundamental resonance frequency of the trapezoidal-shaped arm
in vacuum was estimated using the analytical formula in Ref. 41
(Sec. 1.3.1.1),

f0 =
8.367

2π
e
t2

¿
ÁÁÀ ESi(3w2 +w1)

ρSi(49w2 + 215w1)
.

We obtain f0 = 2195 Hz (respectively, 1889 and 1569 Hz) using
the material properties ESi = 140 GPa, ρSi = 2330 kg/m3, and the
dimensions of the intermediate section of the arm having thick-
ness e = 172 μm, length t = 12.5 mm, and width decreasing from
w2 = 1.5 mm to w1 = 250 μm (respectively, to 500 and 1000 μm).
An experimental validation was conducted at room temperature in
air with an arm having w1 = 1000 μm. Its mechanical vibration fre-
quency spectrum was measured using a photoreceptor that detected
a laser beam reflecting off the arm. The mechanical excitation was
provided either by tapping the table supporting the setup with a
small hammer or by directing a jet of compressed air toward the arm.
In both cases, the fundamental mechanical resonance frequency was
found to be 1215 Hz, in reasonable agreement with the predicted
value of 1569 Hz, given the uncertainty in the Young’s modu-
lus ESi and deviations from the trapezoidal shape. As discussed in
Sec. IV D 3, indirect measurements of the resonance frequency were
conducted in a superfluid flow with a velocity of 1.2 m/s and gave f ≈
825 Hz, f ≈ 1050 Hz, and an amplitude of vibration smaller than
1 μm. The decrease in frequency compared to the room-temperature
measurement is interpreted as being mostly due to a fluidic added
mass effect.42

5. Deflection of the tips’ ends
The thicknesses of the tweezers’ parts are chosen such that the

mechanical deflection at the tip endpoint remains significantly lower
than the inter-plate distance under typical operating conditions.
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The deflection at the tip endpoint can be estimated by consid-
ering separately the arm deflection (with thickness 172 μm) and the
tip deflection (with thickness 20 μm). As a first approximation, both
arm and tip are considered as cantilever beams of uniform width
submitted to a uniformly distributed load and having one embedded
end and one free end. This geometrical approximation overesti-
mates the deflection of the arm, as its endpoint is narrower than its
base, and it underestimates the deflection of the tip, as the notch is
ignored. Nevertheless, this approach provides order-of-magnitude
estimates. The load is estimated as the dynamic pressure of a liquid
helium flow impinging the tweezers in the transverse direction at a
velocity U = 0.1 m/s, which is 10% of the typical longitudinal flow
velocity of 1 m/s. The dynamic pressure P is given by

P = 1
2

ρU2,

where the liquid helium density is ρ ≃ 140 kg/m3. According to
Euler–Bernoulli beam theory, the free end deflection δmax of the
cantilever is given by

δmax =
3
2

Pt4

e3ESi
.

The total deflection of the tweezers (arm and tip) can be upper-
bounded by considering the sum of the deflection of a 2.5 mm long
tip and a 15 mm (not 12.5 mm) long arm. This takes into account the
small angle generated on the tip by the arm deflection. Using the val-
ues t = 15 mm (length), e = 172 μm (thickness), and ESi = 140 GPa
(Young’s modulus), the deflection of the arm endpoint is found to
be 75 nm, while the deflection of the tip endpoint with t = 2.5 mm
and e = 20 μm gives a deflection of 37 nm. Thus, the total mechan-
ical deflection of the tweezers’ tip due to a steady lateral flow of
0.1 m/s is a fraction of a micrometer, which is decades smaller than
the inter-plate distance.

The mechanical resonance of the tweezers’ arm and tip dis-
cussed above could lead to deflections larger than those due to steady
forcing. The amplitude of these mechanical oscillations was mea-
sured in a turbulent He II flow, up to velocities exceeding 1 m/s,
taking advantage of the dependence of the second sound resonance
with respect to the cavity gap. The measured signal will be presented
to illustrate the efficiency of the elliptic projection method in sep-
arating the fluctuations of the acoustical path of the cavity and the
fluctuations of the bulk attenuation of second sound between the
plates. The mechanical oscillations of the cavity gap are found to be
typically 0.5 μm (around 1 kHz). As expected, such a deflection is
decades lower than the inter-plate distance (1.3 mm in this case) and
the second sound wavelength.

6. Boundary layer
In the presence of a net mass flow through the cavity, a velocity

boundary layer will develop along the tweezers’ plates. In princi-
ple, this boundary layer could contribute to the measured signal
and alter the measurement of the incoming flow. For instance, it
could increase the density of superfluid vortices in the cavity and,
therefore, affect second sound attenuation. However, as illustrated
later, the second sound standing wave that settles between the plates
has nodes of velocity near the plates, while the sensitivity of second
sound to vortices arises in antinodal regions of velocity. As long as

the boundary layer thickness is thin enough, say within a fraction of
λ/4 (λ = c2/ f is the second sound wavelength), it is not expected to
significantly alter the measured signal.

A first requirement for this condition is that the mean flow
direction is parallel to the plates so that the flow penetrates through
the cavity with minimal deflection. A consequence of this is that
the plates should be widely separated when operated in flows with
undefined or zero mean velocity, such as the core of a mixing layer.

A second requirement is that the plate thickness is much
thinner than λ/4. The current plates are 20 μm thin, which is
much smaller than λ/4 ≃ D/2n for the nth mode of resonance. For
instance, with D = 500 μm and n = 3, condition 20≪ λ/4 ≃ 83 μm is
indeed satisfied.

A third condition pertains to the downstream development
of the boundary layer thickness, which should also remain within
λ/4. The physics of boundary layers in He II is not yet well-
understood,43 but existing experiments (e.g., Ref. 44) suggest that
classical hydrodynamic phenomenology could remain valid in the
high-temperature limit. In classical hydrodynamics, the so-called
displacement thickness of a laminar Blasius boundary layer at a
distance L from its origin is given by

δbl = 1.73

√
Lν
U

,

where U is the mean velocity far from the boundary layer and ν is the
kinematic viscosity of the fluid. In He II, several diffusive coefficients
could arguably play the role of ν, including the quantum of circula-
tion around a quantum vortex and the kinematic viscosity associated
with the dynamics viscosity of the normal fluid normalized either by
the normal fluid density or by the total density. In the temperature
range of interest, all these diffusive coefficients are within one order
of magnitude, typically 10−8 to 10−7 m2/s. Taking ν = 3 × 10−8 m2/s,
L = 1000 μm, and U = 0.5 m/s, one finds δbl = 13 μm and a bound-
ary layer Reynolds number δblU/ν = 217 consistent with the laminar
picture. This thickness estimate, similar in magnitude to the plate
thickness, satisfies the third requirement δbl ≪ λ/4.

B. Second sound detection and generation
1. Thermometry

The temperature-sensitive material used in the present study
is AuSn, which fulfills two requirements: (1) it is compatible with
the microfabrication process and (2) it can be tuned to become
temperature-sensitive over a range of interest to quantum turbu-
lence studies,40 from 1.5 K up to the superfluid transition tempera-
ture Tλ ≃ 2.18 K in saturated vapor conditions. Other materials may
be more suitable for other conditions; for example, Al was previously
used for tweezers operated around 1.5 K in Ref. 38.

The gold-tin AuSn thermometer is a metal-superconductor
composite material, with superconducting Sn islands electrically
connected by a gold layer. This granular structure is shown by
electron microscopy in Fig. 4 (right). The temperature dependence
phenomenology can be interpreted simply. Indeed, by proximity
effect, the gold in contact with tin behaves as a superconductor over
a spatial extent that depends on temperature. By adjusting the char-
acteristic length scales and thicknesses of the granular pattern, the
temperature response of the material can be tuned.

Rev. Sci. Instrum. 94, 105109 (2023); doi: 10.1063/5.0152091 94, 105109-5

Published under an exclusive license by AIP Publishing

 11 O
ctober 2023 12:34:07

https://pubs.aip.org/aip/rsi


Review of
Scientific Instruments

ARTICLE pubs.aip.org/aip/rsi

FIG. 4. Scanning electron microscope view of a tip. Left: Tip frontside view. The
overlaps between the serpentine path material and the current leads are visible on
the lower part of the picture. Right: Detail of the AuSn layer showing its granular
aspect. Depending on tweezers’ models (see Fig. 3), the width of the AuSn track
is 4, 11, or 24 μm.

As a preliminary study, the temperature dependence of the
resistance of a 100-square-long AuSn track was measured for three
different tin thicknesses, as shown in the top plot of Fig. 5. The
track resistance is directly proportional to its number of squares
(length-to-width ratio of the track) with the sheet resistance as a
multiplying factor. A description of the conduction mechanism in
AuSn is presented in Ref. 30.

In the present study, the total resistance at superfluid tempera-
tures does not exceed a few hundred ohms. This value was chosen to
be much larger than the resistance of the leads, but small enough to
prevent parasitic effects from the leads’ capacitance (typically a few
hundred pF) up to the highest frequencies of operation.

To achieve resistance values in this range, the meander length
was fixed at around 700 squares for all tip sizes. Depending on the
tip size, the track width was adjusted so that the serpentine shape
occupies the entire available area on the tip. At room temperature,
the AuSn layer resistance was found to drift from low values to a
final value over the course of a few days (less than one week) after
deposition. After this period, the resistance was found to be stable
for at least a few years.

Figure 5 (bottom plot) shows a typical resistance-temperature
curve R(T0) for an AuSn thermometer at different direct currents
I. Regarding the temperature dependence of resistance, the cur-
rent density is a more significant parameter than the total current.
Thus, the comparison between the top and bottom plots of Fig. 5
should be made at constant values of the ratio of current to track
width. At low current densities (I ≤ 10 μA), the sensitivity exceeds
1 Ω mK−1. At larger current densities, the current-induced mag-
netic field significantly shifts the superconducting-metal transition
to lower temperature and broadens it, allowing the measurement
range to be extended down to 1.6 K and below. In the range of
currents explored in Fig. 5, the reduction in sensitivity in Ω K−1 at
larger currents I is more than compensated by the larger sensitivity
in V K−1 units across the thermistor. Most measurements presented
hereafter are performed with a measuring current I ≃ 27 μA.

2. Heating
The heater has the same meander length as the thermometer,

which is close to 700 squares for all tip sizes.

As shown in Figs. 3 and 4, a buffer zone was designed between
the gold tracks and the meander. In this zone, the electrical path
is wide, but the material is the same as in the meander (platinum
for the heater). The buffer zone’s length is ∼20 squares, aiming to
provide some thermal insulation between the meander and the gold
track.

Numerous resistive materials are suitable for this purpose. For
instance, chrome was used for the tweezers in Ref. 38, and platinum
was used in Ref. 40. The present data were obtained with plat-
inum to benefit from the temperature-independence of its resistivity
at superfluid temperatures45 and also allow reusing these minia-
ture heaters as miniature thermometers or hot-film anemometers
in experiments conducted at higher temperatures where Pt regains
temperature dependence.46 A 5 nm titanium layer was deposited
before platinum as an adhesion layer.

The thickness of the Pt layer, around 80 nm, was chosen to
ensure that the electrical resistance of the heater at superfluid tem-
peratures is on the order of a few hundred ohms, similar to the
maximum resistance of the thermometer and for the same reasons.

The heater is driven with a sinusoidal current at a frequency
of f /2. The resulting Joule effect can be separated into a constant
mean heating and a sinusoidal heat flux at frequency f , which drives
the second sound resonance. One advantage of this f /2 excitation is
that the signal detected by the thermometer, centered around f , is
not affected by spurious electromagnetic coupling at f /2 from the
excitation circuitry. Thus, no special care is needed to minimize the
electromagnetic crosstalk between the electrical tracks of the heater
and the electrical tracks of the thermometer, despite their proximity.

The non-zero mean heating results in a net thermal flux in He
II, with the corresponding entropy carried away from the heater in
the form of steady normal fluid flow. This outgoing normal flow
is balanced by an opposite flow of superfluid toward the heater.
Such cross-flows are referred to as counterflows in the quantum fluid
literature.47,48 This steady counterflow adds up to the pure second
sound generated by the heater, but, in contrast, its effects are not
amplified by resonance in the cavity.

a. Quasi-linear vs non-linear regimes. The second sound res-
onators are operated with standing waves of low amplitude, typically
around ∼100 μK. In this regime, the amplitude T of the tempera-
ture standing wave responds nearly linearly to the heating power P.
However, for larger heating power, the ratio T/P decreases with P,
indicating a turbulent transition within the tweezers that leads to
a dense tangle of quantum vortices dissipating the second sound
wave.49 The crossover from the quasi-linear to non-linear response
of T(P) is shown in Fig. 6 (left plot) for tweezers at 1.6 K in the
absence of external flow. In these conditions and for these tweezers,
the transition occurs around P ≃ 1 W/cm2, where P is the total Joule
power normalized by the heating surface. In other conditions, the
transition was observed at smaller power densities, but no systematic
study has been carried out to determine the threshold value.

3. Digression on operation in the non-linear
heating regime

The current study primarily focuses on the linear regime of
heating, but a brief investigation of higher powers reveals an inter-
esting property of non-linear operation and supports the above
interpretations of the nature of the non-linear regime. Figure 6 right
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FIG. 5. Top: Example of temperature and current dependence of AuSn layers with different Sn thicknesses deposited on a track of width 50 μm. The current setpoint spans
from 1 μA up to 1 mA. Bottom: Temperature response of the AuSn track of small tweezers for different electrical currents. The thickness of the tin layer is 100 nm, and the
width of the track is 4 μm. The small difference between both plots—when compared at similar current densities—is compatible with the uncertainty on the layer thicknesses.
This good agreement indicates that AuSn properties are robust to the full fabrication process of the tweezers.
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FIG. 6. Left: The normalized amplitude T/P of the temperature standing wave vs heating power P is shown for second sound tweezers in quiescent He II around 1.6 K.
The transition around P = 1 W/cm2 is interpreted as the development of a self-sustained vortex tangle within the probe. The inset shows the amplitude of the temperature
standing waves in the complex plane for a subset of frequencies belonging to the same second sound resonance. In this representation, the extra-dissipation associated with
the self-sustained vortex tangle results in a curvature of the iso-frequency radial “lines,” revealing the broadening of the resonance. Right: The same quantity is shown for
second sound tweezers swept by turbulent flows of different mean velocities but similar turbulence intensity. In the linear regime P ≲ 1 W/cm2, the velocity dependence is
opposite to that in the non-linear regime, P ≳ 2 W/cm2, demonstrating vortex and velocity sensing by the probe, respectively.

displays the amplitude of the normalized temperature standing wave
T/P vs P in flows with different mean velocities U and turbulence
intensity of a few percent. In the linear regime (P ≲ 1 W/cm2 in the
conditions of Fig. 6), the plateaus of T/P decrease as U increases,
in accordance with the classical interpretation (discussed later) that
the standing wave T is damped by the vortices present in the exter-
nal flow, whose concentration increases with U. Interestingly, in
the non-linear regime (around P ≳ 2 W/cm2 in Fig. 6), the depen-
dence of T/P on U is in the opposite direction. The interpretation
is that the extra damping of the standing wave T is mainly due to
the vortices generated within the tweezers by the heating itself. This
vortex density decreases at higher U because vortices are more effec-
tively swept out of the tweezers. Thus, in the non-linear regime,
the second-sound tweezers behave as local anemometers. In the lin-
ear regime, we will demonstrate that second-sound tweezers can
not only act as vortex probes (as shown in Fig. 6 right) but also as
anemometers through a mechanism to be discussed later.

4. Thermal load of the tip on the fluid
The specific heat of the cantilever tip, mostly made of sili-

con,50 is much smaller than the specific heat of a similar volume
of liquid helium at the temperature of interest. For instance, at
the intermediate temperature of 1.8 K, they differ by more than 5
orders of magnitude10,51 with CSi

p ≃ 3.5 J K−1 m−3, while CLHe
p ≃ 4.3

× 105 J K−1 m−3.
The thermal resistance of the interface between the tip and the

fluid can be estimated from the literature on the Kapitza resistance
(Refs. 52 and 53 and references within). At a given temperature,
this resistance depends on the tip surface material (Pt, AuSn, SiO2,
or Si), on the surface roughness and cleanliness, and on the nor-
mal/superconducting state of the material. Based on values reported
in Refs. 51, 52, and 54, the tip-helium thermal resistance at 1.8 K is
estimated to be within 1–6 cm2 K W−1 on each side.

The characteristic response frequency can be estimated as
(2πRC)−1, where R = 3 cm2 K W−1 is the typical Kapitza resistance
and C = e ⋅ CSi

p , where e = 20 μm is the thermal inertia of the can-
tilever tip per surface unit. This response frequency exceeds 7 MHz
at 1.8 K, so it is significantly larger than the largest frequencies of
the second sound considered here. As the Kapitza resistance roughly
scales as T−3 and the tip inertia as T3, this characteristic frequency
does not strongly depend on temperature.

The estimates above illustrate the negligible thermal load of the
probe compared to the surrounding fluid and its ability to respond
to rapid environmental fluctuations. Previous studies have reported
measurements extending over a bandwidth of 1 MHz or higher,
not only in superfluids (e.g., see Ref. 55) where helium’s high ther-
mal conductivity benefits the fluid-probe system’s dynamics but
also in gaseous helium,56–58 where the system’s thermal inertia is
determined by the fluidic boundary layer.59

Deriving the full transfer functions for the coupling between
the second sound standing wave and the probe would require a
detailed thermal analysis beyond the scope of this paper. Instead, our
approach was to assume an ideal response of the probe and to show
that the resulting analytical predictions closely match experimental
measurements.

C. Microfabrication and assembling
The mechanical structures of the cantilevers and spacers are

made of silicon. The cantilevers were fabricated by processing SOI
(Silicon On Insulator) wafers by microelectronic techniques. SOI
wafers consist of a thin silicon layer (known as the device layer) sep-
arated from a thick silicon substrate by an insulator layer, which in
this case is a buried oxide with a thickness of 1 μm. The device layer
has a thickness of 20 μm, while the silicon substrate layer is 500 μm
thick. Standard photolithography was used to create the metal and
silicon shapes. The diameter of the wafers was 100 mm. As shown in

Rev. Sci. Instrum. 94, 105109 (2023); doi: 10.1063/5.0152091 94, 105109-8

Published under an exclusive license by AIP Publishing

 11 O
ctober 2023 12:34:07

https://pubs.aip.org/aip/rsi


Review of
Scientific Instruments

ARTICLE pubs.aip.org/aip/rsi

FIG. 7. Overview of mask design. The disk diameter is 100 mm.

Fig. 7, the patterns for the 46 cantilevers on each wafer were arranged
radially, with the cantilever tips positioned close to the wafer cen-
ter to ensure higher reproducibility of the tip properties. The wafers
were double-side polished and oxidized to create a 100 nm thick
SiO2 layer on both sides.

A simplified version of the cantilever fabrication process is pre-
sented in Table I, with full details provided in the Appendix. The
serpentine electrical path (colored red) was deposited first on the
frontside of the SOI wafer. For heaters, the evaporation sequence
Ti 5 nm + Pt 80 nm was used, while for thermometers (assuming
a hypothetical thickness for a planar—not granular—tin layer), Au

25 nm + Sn 100 nm was used. During a second sequence, current
leads (colored orange) were deposited, with an evaporation sequence
of Ti 5 nm + Au 200 nm + Ti 5 nm + Pt 50 nm. The use of a plat-
inum layer was found to facilitate lift-off and may also be useful for
brazing purposes.

The cantilevers’ 3D shape was achieved through the use of an
STS HRM deep reactive ion etching (DRIE) tool, employing recipes
based on the technology known as “Bosch process.” This tool is capa-
ble of etching silicon to a depth of several hundred micrometers
with perpendicular sidewalls. Non-etched regions were protected
by resist or aluminum layers. By using various etching recipes and
protecting layers (resist, aluminum, and silicon oxide), the sili-
con was initially etched from the backside with two different mask
shapes, followed by the frontside to achieve silicon plate piercing.
The resulting pieces had tip areas made up of the original 20 μm
thick SOI device layer, with the 1 μm thick oxide removed from
the tip backside to avoid bending due to oxide mechanical stress.
While some spacers were fabricated together with the cantilevers,
most of them were made separately from two silicon wafers with
thicknesses of 300 and 525 μm, coated by thin dielectric layers on
both sides.

D. Electric circuit
Figure 8 depicts the circuit utilized for time-resolved measure-

ments using second-sound tweezers, including example values for
resistances and gain. The time-resolved data presented in this paper
were obtained using this circuit and the following equipment. The
front-end pre-amplifier is either the Celian EPC1-B model or the
NF SA-400F3 model when exploring frequencies above 100 kHz.

TABLE I. Cantilever fabrication process.
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FIG. 8. Example of circuitry for measurements with a high dynamical reserve.

The lock-in amplifier is the NF LI-5640 model or the SignalRecov-
ery Model 7280 above 100 kHz. In most cases, the lock-in amplifier’s
built-in internal generator provides both the drive for the tweezers’
heater (at frequency f /2) and the reference frequency to detect the
temperature signal (at frequency f ). The acquisition system is based
on the National Instrument PXI-4462 analog input cards, and it
records both the in-phase (X) and quadrature (Y) signals from the
lock-in amplifier’s analog outputs.

In certain situations, the temperature signal at the lock-in input
is overwhelmed by a much larger electromagnetic parasitic signal
at f /2, and it cannot be accurately resolved by the limited volt-
age dynamic range of the lock-in amplifier. This can happen when
the tweezers are operating far from resonance, where the second-
sound signal is small, or when the tweezers are operating at very high
frequencies (e.g., >100 kHz) as electromagnetic parasitic coupling
increases with frequency. The magnitude of this parasitic coupling
is determined by the tweezers and cable’s geometrical and electrical
characteristics. Within the range of parameters investigated in this
study, the order of magnitude of the parasitic voltage induced across
the thermometer resistor, normalized by the voltage applied across
the heating resistor, is given by

0.5% × f /2
100 kHz

.

Such situations are handled, thanks to the differential input of
the lock-in amplifier, which removes a signal mimicking the para-
sitic one. In such cases, a two-channel waveform generator is used:
one channel drives the heater (at frequency f /2) and the other chan-
nel mimics the parasitic signal (at frequency f /2, with manually
tuned amplitude and phase shift), and the “sync” output of the gen-
erator synchronizes the lock-in demodulation (at frequency f ). The
Agilent 33612A generator is used for this purpose. Alternatively,
the compensation signal can be generated directly from the lock-in
internal generator, completed with a simple RC phase shifter and,
eventually, a ratio transformer.

In principle, any thermistor with a positive temperature coef-
ficient, such as an transition-edge thermometer, that is not well
thermalized with the fluid can become unstable when driven by a

current source. An infinitesimal thermistor fluctuation from T0 to
T0 + δT0 leads to a resistance variation of δR = ∂R

∂T0
⋅ δT0 > 0, result-

ing in an excess of Joule dissipation δR.I2 for a constant current drive
I. Let Rth be the thermal resistance of the thermistor–fluid inter-
face, then this extra-Joule dissipation results in an overheating of
Rth ⋅ δR ⋅ I2, which could lead to a thermal instability. The stability
condition is difficult to predict for a spatially distributed thermistor
deposited on a Si crystal and immersed in superfluid. Thus, initial
tests were done with a voltage drive before empirically validating the
stability of our current drive.

The frequency bandwidth of the measurements is arbitrarily set
by the integration time constant of the lock-in amplifier. In practice,
the circuit’s performance is limited by the input voltage noise of the
EPC1-B pre-amplifier, which is 0.65 nV/

√
Hz. For a current drive

of 27 μA, a thermometer sensitivity of 0.5 Ω m K−1, and a demodu-
lation bandwidth of 10 or 1000 Hz, the temperature resolution Trms
is given by

Trms =
√

10.0.65
0.5 × 27

μ K ≃ 150 nK

for a 10 Hz measurement bandwidth or

Trms =
√

1000.0.65
0.5 × 27

μ K ≃ 1.5 μ K

for a 1 kHz measurement bandwidth.
These resolutions are sufficient under standard conditions.

They are three and two orders of magnitude smaller, respectively,
than the typical amplitude of second sound at resonance. Reaching
the same temperature resolution at a significantly larger bandwidth
would be futile, given the spatiotemporal resolution of the probe
itself. If necessary, better resolution could be achieved with a larger
current across the thermometer or by using a cryogenic amplifier
(e.g., see Ref. 60 and http://cryohemt.com) before being limited by
the thermal noise floor of the thermistor (typically 0.15 nV/

√
Hz

for 200 Ω at 2 K).

III. MODELS OF SECOND SOUND RESONATORS
The second sound equations within the linear approximation

can be written4 in terms of the temperature fluctuations T and the
velocity of the normal component vn as

∂tvn +
σρs

ρn
∇T = 0,

∂tT +
σT0

cp
∇.vn = 0,

(1)

with σ being the entropy per unit of mass, cp being the heat capacity,
and ρs, ρn being the densities of the superfluid and normal compo-
nents, respectively. All along the present section, T0 is the notation
for bath temperature far away from the tweezers. T denotes the
local temperature fluctuations that depend both on space and time.
From this definition, we obviously have ⟨T⟩ = 0, where ⟨⟩ is the time
average.
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We introduce the second sound velocity c2 defined by the
relation4

c2
2 =

ρs

ρn

σ2T0

cp
. (2)

It can be deduced from Eq. (1) that both the temperature T and the
normal velocity vn follow the wave equation,

∂2
t T − c2

2ΔT = 0. (3)

We explain in the present section how Eqs. (1)–(3) can be used to
build quantitative models of second sound resonators. We first focus
on phenomenological aspects in Sec. III A. Then, we give analytical
approximations in Sec. III B and an accurate numerical model in
Sec. III C based on the exact solution of the wave equation (3). The
numerical scheme can be adapted for various types of planar second
sound resonators. We finally give quantitative predictions specifi-
cally for the response of second sound tweezers without and in the
presence of a flow in Sec. III D and a summary of the main results in
Sec. III E.

A. Resonant spectrum of second sound resonator:
Phenomenological aspects

The basic idea of second sound resonators is to create a second
sound resonance between two parallel plates facing each other. A
second sound wave is excited with a first plate, while the magnitude
and phase of the temperature oscillation is recorded with the second
plate, used as a thermometer. For simplicity, we assume from now
on that the second sound wave is excited by heating, but the whole
discussion can be straightforwardly extended to nucleopore mecha-
nized resonators. The temperature oscillations within the cavity are
coupled to normal fluid velocity oscillations according to the second
sound equations (1).

We note jQ = j0e2iπft , the periodic component of the heat flux
emitted from the heater. Equation (1) are solved with the geometry
displayed in Fig. (10), with one tweezer plate located at z = 0 and
the other one located at z = D. We assume infinitely thin tweezers
plates. In the case of Sec. III C 1 when the tweezers plates are in open
space, we add the vanishing boundary condition at infinity T → 0
when r→∞. We assume throughout the present article perfectly
insulating plates, which means that the boundary conditions at the
plates surface for the second sound wave are

vn.n =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 for z = D,
jQ

ρσT0
for z = 0,

(4)

where n is the unit vector directed inward the cavity and normal to
the plates. The second equation in Eq. (4) reflects the fact that the
normal component carries all the entropy in the fluid. According to
the first relation in Eq. (1), the boundary conditions Eq. (4) for the
normal velocity translate into the following boundary conditions for
the temperature field:

∇T.n =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 for z = D.

− ρn∂tjQ

ρρsσ2T0
for z = 0.

(5)

We display in Fig. 9 a typical experimental spectrum of sec-
ond sound tweezers, that is, the temperature magnitude averaged
over the thermometer plate, as a function of the heating frequency
f . The spectrum is reminiscent of that of a Fabry–Perot resonator:
it displays very clear resonant peaks that are almost equally spaced
and a stable non-zero minimum at non-resonant frequencies. How-
ever, the spectrum of Fig. 9 displays three major characteristics that
can be observed for every tweezer’s spectrum. First, the locations of
the resonant frequencies are slightly shifted compared to the stan-
dard values fn given by 2π fnD

c2
= nπ, (n ∈ N) expected for an ideal

Fabry–Perot resonator. Only for large mode numbers do the res-
onant peaks again coincide with the expected values. Second, the
temperature magnitude vanishes in the zero frequency limit, and the
first modes of the spectrum roughly grow linearly with f . In between,
the resonant amplitudes saturate and then slowly decrease at high
frequency.

These latter peculiarities of the frequency response were not
described in previous references about second sound resonators.
This prompted us to study different models for second sound res-
onators, including the finite size effects and near-field diffraction
phenomena.

B. Analytical approximations
The starting point to build our model of second sound tweezers

is to assume that all zeroth order physical effects observed with the
tweezers are geometrical effects of diffraction. This means, in partic-
ular, that we assume perfectly reflecting resonator plates, and we also
neglect bulk attenuation of second sound waves when the fluid is at
rest.25,61 These assumptions turns out to be self-consistent because
the predictions of the model developed in Sec. III C reproduce the
main features observed in experiments.

FIG. 9. Experimental spectrum of second sound tweezers of lateral size
L = 1 mm and gap D ≈ 1.435 mm. f is the heating frequency and T is the thermal
wave magnitude. This figure displays the main characteristics of tweezers’ typical
spectrum: first, the resonant frequencies are not located at the values fn given by
2π fnD

c2
= nπ, (n ∈ N), displayed by the gray vertical lines. The amplitudes of the

resonant modes first increases linearly with f until they saturate and eventually
decrease at high frequency. The baseline level only weakly depends on f .
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1. Second sound resonators embedded
in infinite walls

We first consider a finite-size heater and a thermometer of size
L embedded in two parallel and infinite walls facing each other. This
geometry is most commonly encountered in the literature. With
such a configuration, the thermal wave is not a plane wave anymore
because it is emitted by a finite size heater. The model thus contains
diffraction effects. An illustration of the model setup is displayed in
Fig. 10. An exact solution of the wave equation (3) can be found
using the technique of image source points. Let Σ1 be the heating
plate and Σ2 be the thermometer plate, and we assume that the ther-
mometer is sensitive to the average temperature over Σ2. Then, the
response of the tweezers is given by T(t) = Re(Te2iπ f t), with

T = ikj0

2πρcpc2

1
L2∬Σ2

d2r2∬
Σ1

d2r1G(r2 − r1),

with the Green function G(r) defined for every vector r in the (x, y)
plane,62

G(r) = 2
+∞

∑
n=0

1
∣(2n + 1)Dez + r∣ e

−ik∣(2n+1)Dez+r∣.

Such a model correctly predicts that the tweezers’ spectrum vanishes
when the heating frequency f goes to zero. Yet, it does not reproduce
a linear increase in the resonant magnitude of the first modes nor the
decrease in the resonant peaks at large frequency observed in exper-
iments with second sound tweezers. This means that other effects
have to be taken into account to model a fully immersed open reso-
nant cavity, such as non-perfect alignment of the plates and energy
loss by diffraction outside the cavity when the latter is not embedded
in infinite walls.

2. Empirically modified Fabry–Perot model
The Fabry–Perot model corresponds to a one-dimensional res-

onator composed of two infinite parallel plates separated by a gap D.
In that case, the wave equation (3) together with the boundary con-
ditions Eq. (5) can be solved exactly for a periodic heating jQ = j0e2iπft

to find the (complex) temperature T at the thermometer plate,63

T = A

sinh (i 2π f D
c2
+ ξD)

, (6)

FIG. 10. Representation of the wave dispersion. The left picture is a top view
parallel to the plates, and the right figure represents a front view of a tweezer’s
plate. The energy loss is controlled by the non-dimensional number λ

L
, according

to standard diffraction theory. In this section, we discuss both the case of tweezers
embedded in walls and the case of free tweezers in open space.

where ξ (in m−1) is an empirical dissipation coefficient and
A = − j0

ρcpc2
. An illustration of a Fabry–Perot spectrum is displayed

in gray in Fig. 12, with ξD = 0.15 and A = 1. We introduce the wave
number k = 2π f

c2
. For the simple Fabry–Perot model of Eq. (6), all

the resonant peaks have equal height and are uniformly separated.
Therefore, some main features of experimental spectra are miss-
ing, an indication that important other physical effects have to be
included in the model.

In contrast to a Fabry–Perot resonator composed of infinite
plates, second-sound resonators are built with plates of finite size
L, approximately of the same order as the gap D between them.
Those finite size effects are important as they introduce a frequency-
dependent energy diffracted outside the cavity. This mechanism is
sketched in Fig. 10. According to standard diffraction theory, a finite
wave initially of size L with a wavelength λ = c2

f spreads with a typ-
ical opening angle given by λ

L . By this geometrical effect, a part of
the wave energy is lost as the wave reaches the other side of the
cavity. The energy loss is roughly proportional to the surface of the
wave cross section that “misses” the reflector (see the right panel of
Fig. 10). Therefore, the fraction of energy lost at the wave reflection
is controlled by the ratio,

(L + 2λD
L )

2 − L2

(L + 2λD
L )

2 ≈ 4
λD
L2 ,

≈ 4
NF

, (7)

where we have introduced the Fresnel number,

NF =
L2

λD
. (8)

The tweezers’ plates are mounted at the top of arms of a few
millimeters. The perfect parallelism of the plates is not reached
for our tweezers, but a small inclination γ of the order of a few
degrees can be observed instead. A relative inclination γ—even
small—of both plates creates an additional energy loss mechanism
(see Fig. 11). Intuitively, this second mechanism is controlled by the
non-dimensional number,

Ni =
λ

γL
. (9)

We assume that the Fabry–Perot model Eq. (6) can be cor-
rected using the two non-dimensional numbers NF = L2 f

c2D in Eq. (7)
and Ni = c2

γ f L in Eq. (9). More precisely, based on empirical observa-
tions, we find that second-sound tweezers’ spectra can be accurately
represented by the formula

T = A

sinh(i( 2π f D
c2
− a c2D

L2 f ) + b c2D
L2 f + c( γ f L

c2
)

2
)

, (10)

where a, b and c are empirical coefficients. Based on comparison
with the full numerical model, we find that the values a ≈ 0.95,
b ≈ 0.38, and c ≈ 1.3 give accurate spectra predictions. An illustra-
tion of a modified Fabry–Perot spectrum with Eq. (10) is given in
Fig. 12. The linear amplitude growth of the first resonant peaks can
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FIG. 11. Effect of the plates’ inclination γ. Inclination creates an additional energy
loss mechanism controlled by the second non-dimensional number λ

γL
.

be interpreted as a progressive focalization of the wave and is thus
controlled by the Fresnel diffraction number NF in Eq. (10). The
shift proportional to 1

f in peak frequency positions, observed in the
experimental spectra, is also controlled by NF . The decrease in res-
onant magnitude for large mode numbers can be interpreted as a
wave deflection outside the cavity, after back and forth propaga-
tion between the plates. This latter effect is controlled by the second
non-dimensional number N i in Eq. (9).

The major interest of the Fabry–Perot model is to offer an ana-
lytical expression to fit locally a resonant peak of a second sound
resonator spectrum. The local fit of a peak is of particular interest to
interpret the experimental data, as will be explained in Sec. IV. Based
on Eq. (10), given a measured resonant frequency f0, we will look for
a fitting expression,

T = A

sinh (i 2π( f − f0)D
c2

+ ξ0D)
, (11)

valid for second sound frequencies f close to f0. In that expression,
ξ0 encapsulates the different geometrical mechanisms responsible

FIG. 12. Analytical models of second-sound tweezers. The gray curve represents
the standard Fabry–Perot spectrum. The blue curve represents the empirical cor-
rection of the Fabry–Perot formula using the two non-dimensional numbers λ

L

and λ
γL

. The modified spectrum displays the characteristic features of a tweezers’

experimental spectrum, as displayed in Fig. 9.

for energy loss when the fluid is at rest. A and ξ0 are thus fitting para-
meters that can be found easily with the experimental data obtained
by varying f in the vicinity of f0.

C. Numerical algorithm
We develop in the present section a numerical algorithm, based

on the exact resolution of the wave equations with the particular
tweezers’ geometry, with and without flow. The algorithm could be
extended to any second sound resonator with a planar geometry. As
will become clear in the following, this numerical model allows going
far beyond the approximate models of Sec. III B.

1. For a background medium at rest
The aim of the present section is to build a numerical algorithm

to solve the wave equation (3) for a periodic heating jQ = j0e2iπft . We
look for a solution with the ansatz T(r, t) = Re(T(r)e2iπ f t). Then,
the wave equation for T is

ΔT + k2T = 0,

where we have introduced the wave number k = 2π f
c2

. The boundary
conditions are

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∇T(r).n1 = −
ikj0

ρcpc2
for r ∈ Σ1,

∇T(r).n2 = 0 for r ∈ Σ2,
(12)

where Σ1 is the heater plate and Σ2 is the thermometer plate. The
temperature fluctuations have to vanish far away from the tweez-
ers, which implies T → 0 when r→∞. The notations are given
in Fig. 13. We propose the method described below, based on the
Huyggens–Fresnel principle. The principle states that every point
of the wave emitter can be considered as a point source. The lin-
earity of the wave equation can then be used to reconstruct the
entire wave by summation of all point source contributions. The
Huygens–Fresnel principle has been widely used in the context
of electromagnetism, for example, to compute diffraction patterns
produced by small apertures or interference patterns. The major dif-
ficulty in the context of second sound tweezers is that none of the
standard approximations of electromagnetism can be done, neither
the far-field approximation nor the small wavelength approxima-
tion. This explains why numerical resolution is very useful in this
context.

We neglect the tweezer arms, which means that both plates are
considered as freestanding, infinitely thin and perfectly insulating
plates. We allow a relative inclination γ around the x-axis and a pos-
sible relative lateral shift Xsh of one plate with respect to the other
along the x-axis. We assume that the thermometer is sensitive to the
temperature averaged over Σ2.

Let us introduce the Green function

G(r) = 1
∣r∣ e
−ik∣r∣, (13)

which is the fundamental solution of the wave equation

ΔG + k2G = 4πδ(r). (14)
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FIG. 13. Left: Geometrical setup of the numerical algorithm and notations. Right: Representation of an incoming and outcoming wave at the nth reflection.

Let Σ be one of our two square plates and U(r′) be a smooth function
defined over Σ. We introduce the wave defined by

T(r) = −1
2π∬Σ

G(r − r′)U(r′) d2r′. (15)

By linearity, T is a solution of Eq. (3), for all r ∉ Σ, because G is a
solution. An asymptotic calculation in the vicinity of Σ then shows
that T satisfies the boundary condition

∇T(r).nÐÐÐÐ→
r→r0∈Σ

U(r0), (16)

where n is the unit vector normal to Σ and directed inward the cav-
ity (see Fig. 13). We are going to use Eqs. (15) and (16) as the two
fundamental relations to build our algorithm. We will compute the
solution of the wave equation as an infinite summation of all the
emitted and reflected waves in the cavity.

The first wave T1 is emitted by the heating plate Σ1 and satisfies
the first relation in Eq. (12),

∇T1(r).n1 = −
ikj0

ρcpc2
for r ∈ Σ1.

Given Eqs. (15) and (16), it is clear that the first wave is given by

T1(r) =
ikj0

2πρcpc2
∬

Σ1

G(r − r′) d2r1. (17)

Then, each time a wave denoted Tn hits a plate Σ (Σ1 or Σ2), it
produces a reflected wave Tn+1 to satisfy the boundary condition

∇(Tn(r) + Tn+1(r)).n = 0. (18)

The situation is sketched in the left panel of Fig. 13. If we choose for
Tn+1 the expression

Tn+1(r) =
1

2π∬Σ
G(r − r′)[∇Tn(r′).n] d2r′, (19)

then Eq. (16) shows that Tn+1 satisfies the boundary condition

∇Tn+1(r).nÐÐÐÐ→
r→r0∈Σ

−∇Tn(r0).n,

which is exactly Eq. (18). Equations (17) and (19) define our recur-
sive algorithm. Equation (19) shows that the reflected wave is gen-
erated by the gradient of the incident wave. Practically, the recursive
computation of all forth and back reflected waves thus requires at
each step n the computation of ∇Tn only on the plates, rather than
Tn. For a reflection at (say) Σ1, we have

∇Tn+1(r).n2 =
−1
2π∬Σ1

G(r − r1)[
1

∣r − r1∣
+ ik]n2

× r − r1

∣r − r1∣
[∇Tn(r1).n1] d2r1. (20)

The solution of the wave equation is finally given by the
superposition of all waves Tn, that is,

T(r) =
+∞

∑
n=1

Tn(r),

= 1
2π∬Σ1

G(r − r1)
+∞

∑
n=0
[∇T2n+1(r1).n1] d2r1

+ 1
2π∬Σ2

G(r − r2)
+∞

∑
n=1
[∇T2n(r2).n2] d2r2,

and the thermometer response is given by

⟨T⟩Σ2
= 1

L2∬Σ2

T(r) d2r.

A simulation of the temperature field at t = 0 of the fifth reso-
nant mode of second sound tweezers with aspect ratio L

D = 0.4, with-
out lateral shift nor inclination of the plates, is displayed in Fig. 14.
It can be clearly seen, in particular, that the amplitude of the tem-
perature field decreases along the z-axis, contrary to a Fabry–Perot
resonator. This symmetry breaking is due to the diffraction effects
associated with the finite size of the plates.

A bulk dissipation can be included in the algorithm, for exam-
ple, to account for quantum vortex lines inside the cavity. In that
case, let ξ be the second-sound attenuation coefficient (in m−1):
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FIG. 14. Left: Temperature field fluctuations of the fifth resonant mode of second
sound tweezers with aspect ratio L

D
= 0.4 and heating power jQ = 0.185 W/cm2

at the bath temperature T0 = 2 K. Right: Temperature field fluctuations for the
same conditions with an additional flow of velocity U

c2
= 0.18 directed upward. The

nodes of the temperature standing wave correspond to antinodes of second sound
velocity, and vice versa.

the wave number k = 2π f
c2

of the Green function Eq. (13) should be
replaced by

k = 2π f
c2
− iξ. (21)

2. In the presence of a turbulent flow
One of the aims of second-sound resonator modeling is to

understand their response in the present of a flow U sweeping the
cavity. One effect of the flow is to advect the second sound wave.
In the present section, we explain how the algorithm of Sec. III C 1
should be modified to account for this effect. We assume in the fol-
lowing that the inequality ∣U∣ < c2 is strictly satisfied, which means
that the flow is not supersonic for second sound waves.

In the presence of a non-zero flow U, the Green function (13)
becomes

G(r, t) = e−2iπ f t∗

∣r −Ut∗∣(1 + U
c2

. r−Ut∗

∣r−Ut∗∣)
, (22)

where t∗ is the time shift corresponding to the signal propagation
from the source,

∣r −Ut∗∣ = c2t∗. (23)

In practice, the flow velocity range reached in quantum turbulence
experiments is most often much lower than the second sound veloc-
ity, with ∣U∣ hardly reaching a few m/s. Most experiments are done
in the temperature range where 10 < c2 < 20 m/s. We thus introduce
the small parameter β = ∣U∣c2

≪ 1. Similarly to the standard approxi-
mations of electromagnetism, we assume that the effect of β is mostly
concentrated in the phase shift e−2iπ f t∗ of Eq. (22). We use the

approximation ∣r −Ut∗∣(1 + U
c2

. r−Ut∗

∣r−Ut∗∣) ≈ ∣r∣, and we solve Eq. (23)

to obtain t∗ to leading order in β. The Green function then becomes

G(r, t) = e−ik∣r∣Γ(r,U)

∣r∣ , (24)

where as previously k = 2π f
c2

and

Γ(r, U) = 1 − U
c2

.
r
∣r∣ .

The algorithm detailed in Sec. III C 1 can be applied straightfor-
wardly with the Green function [Eq. (24)]. In particular, Eq. (20)
becomes

∇Tn+1(r).n2 =
−1
2π∬Σ1

G(r − r1, U)

× [( 1
∣r − r1∣

+ ik) r − r1

∣r − r1∣
.n2 − ik

U
c2

.n2]

× [∇Tn.n1](r1) d2r1. (25)

A simulation of the temperature field at t = 0 of the fifth resonant
mode of second sound tweezers with aspect ratio L

D = 0.4, without
lateral shift nor inclination, and with a flow of velocity U

c2
= 0.18 is

displayed in the right panel of Fig. 14. The effect of the flow can
be clearly seen with the upward distortion of the antinodes of the
wave, compared to the reference temperature profile without flow
displayed in the left panel.

D. Quantitative predictions
We present in this section the quantitative results obtained with

the algorithm of Sec. III C. The algorithm is specifically run in the
configuration of second sound tweezers, but most predictions are
relevant for other types of second sound resonators. We first show
that the algorithm can quantitatively account for the experimental
spectra. We then use it to predict the response in the presence of a
flow and a bulk dissipation in the cavity. The predictions are system-
atically compared to experimental results for second sound tweezers.
We eventually display some experimental observations that illustrate
the limits of our model.

1. Spectral response of second sound resonators
Given a resonator lateral size L, the model of Sec. III C has three

geometrical parameters: the gap D, the inclination γ, and the lateral
shift Xsh (see notations in Fig. 13). We first qualitatively sketch the
importance of those three parameters.

The gap D is the main parameter: it sets the location of the res-
onant frequencies and the quality factor of the resonances at low
mode numbers. For second sound tweezers, the value of D can be
usually obtained within a precision of a few micrometers (D is of the
order of 1 mm). The relative inclination of the plates γ is responsible
for the saturation of the resonant magnitude and its decrease at large
mode numbers. It is typically smaller than a few degrees. Unlike the
case the gap, only the order of magnitude of γ, not its precise value,
can be determined from the tweezers’ spectrum. The lateral shift Xsh
has very little impact on the spectrum if the value Xsh

L remains small
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enough (we can typically reach Xsh
L < 0.1 in the tweezers’ fabrication).

However, the effect of this parameter is of paramount importance to
understand open cavity resonators response in a flow (such as sec-
ond sound tweezers) and will be investigated in Sec. III D 2. We
consider the case Xsh = 0 in the present section. The tweezers’ size
L is known from the probe fabrication process.

The method goes as follows: we first find a gap rough estimate
D̃, for example, from the average spacing between the experimen-
tal resonant peaks. Then, we can run a simulation for parallel plates
(γ = 0), unit gap D = 1, and aspect ratio L

D̃ , in the range 0 < k∗ < nπ
(where n is the number of modes to be fitted and k∗ = kD is the
non-dimensional wave number). This gives a function fL/D̃(k∗).
The experimental spectrum can then be fitted with the function
T( f ) = A fL/D̃(

2π f D
c2
), where A and D are the two free parameters

to be fitted, provided the experimental value of c2 is known. The
high sensitivity of the location of the resonant frequencies makes this
method very accurate to obtain the gap D.

Once D has been found, new simulations have to be run to find
the order of magnitude of γ. As was previously said, γ controls the
saturation and the decrease of the resonant magnitudes for large
mode numbers. Its value can thus be approximated from a fit of
the resonant modes with the largest magnitude. A fit of an exper-
imental tweezers’ spectrum is displayed in Fig. 15. The values of
the fitting parameters for this spectrum are D = 1.435 ± 0.003 mm
and γ = 4.2○ ± 0.5○. Given the simplicity of the model assumptions,
in particular, the assumptions of perfectly insulating and infinitely
thin plates without support arms, the agreement with experimental
results is very good.

Interestingly, the resonators can also be used in some condi-
tions as thermometers. Once the gap D is known with high enough
precision, the spectrum can be fitted using c2 as a fitting parameter
instead of D. Away from the second sound plateau of the curve
c2(T0) located around 1.65 K, the value of c2 obtained from the spec-
trum gives access to the average temperature with a typical accuracy
of 1 mK, simply by inverting the function c2(T0).

FIG. 15. The second sound tweezers’ experimental spectrum of Fig. 9 (blue
curve) and the result of the numerical algorithm (red curve). The remaining fit-
ting parameters of the model are the gap D, the inclination γ, and the total heating
power.

2. Response with a flow
Once the characteristics of the resonator have been determined

in a background medium at rest, their response in a flow can be
studied using the modified algorithm presented in Sec. III C 2. We
experimentally observe that the tweezers’ response is attenuated in
the presence of a superfluid helium flow. This attenuation is related
to two physical mechanisms, illustrated in Fig. 16: first, the ther-
mal wave crossing the cavity is damped by the quantum vortices
carried by the flow. This type of damping is usually considered as
being proportional to the density of quantum vortex lines between
the plates. Secondly, the flow mean velocity is responsible for a bal-
listic advection of the thermal wave outside the cavity. The thermal
wave emitted by the heater partly “misses” the thermometer plate,
and even if the wave is not attenuated, a decrease in the tweezers’
response will be observed. Both mechanisms described above exist
in experimental superfluid flows and cannot be observed indepen-
dently: the density of quantum vortices increases in tandem with the
mean velocity. One key objective is to be able to separate the atten-
uation of the experimental signal due to bulk attenuation inside the
cavity from the attenuation due to ballistic advection of the wave
outside the cavity. We will introduce a mathematical procedure to
perform such a separation for a fluctuating signal.

What cannot be experimentally achieved can be simulated with
the tweezers’ model developed in Sec. III C. The bulk dissipation can
be implemented in the algorithm with a wave number complex part
ξ [see Eq. (21)], and the flow ballistic deflection can be implemented
with a non-zero velocity U [see Eqs. (24) and (25)]. Both effects can
be independently studied by alternatively setting ξ or U to zero. We
first detail below the respective effects of ξ and U for perfectly aligned
plates (Xsh = 0).

Figure 17 displays the result of a numerical simulation for sec-
ond sound tweezers of aspect ratio L/D = 1, γ = 0, and increasing
values of bulk dissipation in the range 0 < ξD < 0.2. The left panel

FIG. 16. Schematic representation of the two attenuation mechanisms. The top
panel illustrates a bulk dissipation of the wave due, for example, to the presence
of quantum vortices. The bottom panel illustrates the ballistic deflection of the wave
by a flow directed parallel to the plates.
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FIG. 17. Numerical simulation: collapse of a resonance due to increasing values of the bulk attenuation ξ. The left panel displays the magnitude of the thermal wave as a
function of the wavevector k, and the right panel displays the same resonance in the phase-quadrature plane. It can be seen that the bulk attenuation results in a homothetic
collapse of the resonance, that means, without global phase shift. For a given value of k, the model predicts that attenuation is directed toward the center of the resonant
Kennelly circle (red curves of right panel).

displays the magnitude of the second resonant mode as a func-
tion of the wave number, and the right panel displays the same
resonant mode in the phase-quadrature plane. More precisely, if
we call T(k) the thermal wave magnitude recorded by the ther-
mometer and φ(k) its phase, the right panel displays the curve
Y(k) = T(k) sin(φ(k)), X(k) = T(k) cos(φ(k)).

The resonant curve (Y(k), X(k)) is called in the following the
resonant “Kennelly circle” (see also Sec. IV B) because the curve is
very close to a circle crossing the origin. Furthermore, the resonant
curve becomes closer to a perfect circle for increasing resonant qual-
ity factors. The major characteristic to be observed in Fig. 17 is that
the collapse of the resonant Kennelly circle due to bulk attenuation
is homothetic. It means that the different curves have no relative
phase shift when the bulk attenuation increases. The red curves in
the right panel display the displacement in the phase-quadrature
plane for a fixed value of the wavevector. The model predicts that
the displacement is directed toward the Kennelly circle center, which
implies that the path at a fixed wavevector approximately follows

a straight line. By comparison, the left panel of Fig. 19 displays an
experimental resonance in the phase-quadrature plane for second
sound tweezers of size L = 1 mm in superfluid helium at 1.65 K. The
global orientation of the resonant Kennelly circles is simply due to
a uniform phase shift introduced by the measurement devices and
should be overlooked. It can be seen that the resonance collapse
with increasing values of the flow velocity follows the predictions of
Fig. 17: it is homothetic. The red paths correspond to the tweezers’
signal at fixed heating frequency. Those paths follow approximately
a straight line directed to the Kennelly circle center. The slight devi-
ation in the path orientation from the predictions of Fig. 17 can be
explained by a second sound velocity reduction and will be discussed
in Sec. III D 4.

Figure 18 displays the result of a numerical simulation for sec-
ond sound tweezers of aspect ratio L/D = 1, γ = 0, with ξ = 0 and
a flow mean velocity 0 < U

c2
< 0.2. As there is no tweezers’ lateral

shift Xsh = 0, negative velocities would lead to the same result from
symmetry considerations. This figure illustrates the effect of pure

FIG. 18. Numerical simulation: collapse of a resonance due to ballistic deflection of the thermal wave in the presence of a flow of velocity U, without bulk attenuation
(ξ = 0). The left panel displays the result for tweezers without lateral shift (Xsh = 0). Contrary to the results of Fig. 17, it can be seen in the present case that the collapse is
associated with a global anti-clockwise phase shift of the resonant Kennelly circle. Each red curve represents the attenuation at a given value of the wavevector k. The right
panel displays the result for tweezers with a strong lateral shift Xsh = 0.5 × L (where L is the tweezers’ size). Such tweezers are very sensitive to the velocity U, with both an
attenuation of the resonance and a strong clockwise angular shift of the Kennelly circle. We note s the curvilinear abscissa of the curve obtained at a given value of k (red
curve). The inset displays the function s(U). This shows that, once calibrated, second-sound tweezers can be used as anemometers.
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ballistic advection on a resonance in the phase-quadrature plane.
First, it can be seen that the collapse of the resonant Kennelly cir-
cle is accompanied by a relative anti-clockwise phase shift of the
curves when the velocity increases. In addition, the displacement
of the tweezers’ signal at fixed wavenumber follows the red straight
paths directed anti-clockwise. This type of signal strongly contrasts
with the one of Fig. 17 obtained for a pure bulk attenuation. The
prediction of the left panel in Fig. 18 cannot be directly compared
to experiments because, as stated before, a superfluid flow always
carries quantum vortices that overwhelm the tweezers’ signal for
tweezers satisfying Xsh ≈ 0.

3. Effect of lateral shift of the emitter
and receiver plates

We discuss in this section the consequences of a lateral shift,
that is, Xsh ≠ 0 with the notations of Fig. 13. Contrary to Sec. III D 1
and 2, the present discussion is restricted to second sound tweezers,
for which a lateral shift has major quantitative effects. A lateral shift
would not be as important, for example, in the case of wall embedded
resonators.

The lateral shift has a marginal effect on the tweezers’ spectrum
when the background fluid is at rest. An effect only appears in the
presence of a non-zero velocity specifically oriented in the shifting
direction U = Uex because of the mechanism of ballistic advection
of the thermal wave by the flow (see the representation of the mech-
anism in Fig. 16). The importance of this effect depends on the
tweezers’ aspect ratio, on the reduced velocity β = U

c2
, and on the lat-

eral shift Xsh. The lateral shift in the plates’ positioning magnifies the
signal component related to ballistic advection. This property opens
the opportunity to build second sound tweezers for which ballistic
advection of the wave completely overwhelms bulk attenuation from
the quantum vortices, which means that the tweezers’ signal is, in
fact, a measure of the velocity component in the shifting direction.
We illustrate this mechanism in Fig. 18.

The right panel displays a numerical simulation of a tweezers’
resonant mode in the phase-quadrature plane for the parameters
L
D = 1, γ = 0, and Xsh = 0.5, for positive and negative values of the
flow velocity in the range −0.2 < U

c2
< 0.2. As can be seen at first

sight, the deformation of the resonant curve—that we equivalently

call the Kennelly circle—is very different from a deformation due to
a bulk attenuation (see Fig. 17). First, we observe that the deforma-
tion can result in an increase in the magnitude of the thermometer
signal when the velocity is negative. This can be explained in this
configuration because the thermal wave emitted by the heating plate
is redirected toward the thermometer plate: less energy is scattered
outside the cavity when the wave is first emitted by the heater, and
the signal magnitude increases. On the contrary, the signal magni-
tude decreases when the velocity is positive because the flow advects
the emitted thermal wave further away from the thermometer plate
and more energy is scattered outside the cavity. Second, the defor-
mation of the Kennelly circle is associated with a global clockwise
rotation, a phenomenon that is not observed for bulk attenuation
in Fig. 17. Coming back to Fig. 18, the red curve displays the dis-
placement in the phase-quadrature plane for a fixed wave frequency
value. The displacement follows a very characteristic curved path,
always directed clockwise. Let s(U) be the curvilinear abscissa of the
red path. Once calibrated, the value of s can be used as a measure of
the flow velocity component in the ex direction.

The right panel of Fig. 19 displays the experimental sig-
nal observed with second sound tweezers of size L = 250 μm,
D = 431 μm, and Xsh ≈ 125 μm for a positive velocity range 0 < U < 1
m/s. The main characteristics of a ballistic advection signal can be
observed: the Kennelly circles are attenuated with a clear clockwise
rotation, and the signal at fixed frequency follows a curved path in
the clockwise direction. This is a strong indication that tweezers of
that type can be used as anemometers. Their signal fluctuations were
recently characterized in a turbulent flow of superfluid helium.40 It
was shown, in particular, that both the signal spectra and their prob-
ability distributions indeed display all the characteristics of turbulent
velocity fluctuations.

4. Limits of the model
Although the model of Sec. III C gives excellent experimental

predictions, we still observe some unexpected phenomena with real
second sound tweezers. We discuss two of them in this section.

We have seen in Sec. III D 2 that the thermal wave complex
amplitude T( f ) can be represented in the phase-quadrature plane
by a curve [X( f ), Y( f )] very close to a circle crossing the origin.

FIG. 19. Experiment: collapse of a second sound resonance for increasing values of the flow mean velocity U in superfluid helium at T0 ≈ 1.65 K. The right panel displays
the result for tweezers of size L = 1 mm and minor lateral shift Xsh < 0.1 × L. This figure shows a homothetic collapse of the resonant Kennelly circle without global phase
shift, as predicted by the model of Fig. 17. The red curves display the displacement in the phase-quadrature plane at a fixed value of the second sound frequency f . The
right panel displays the experimental data obtained with shifted second sound tweezers with parameters L = 250 μm and Xsh = 0.5 × L. The figure qualitatively confirms the
clockwise angular shift with increasing values of U, predicted by the numerical simulations of Fig. 18.
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FIG. 20. Experimental resonance obtained with second sound tweezers at 1.98 K
for two values of the He flow mean velocity U. The blue curve displays a periodic
perturbation of the resonance that we refer to as the “daisy effect.” The circle is a
fit of the Kennelly osculating circle for this resonance. This effect is not predicted
by our model, and we interpret it as a secondary resonance in the experimental
setup. The daisy effect perturbs the measurements at low values of U, but it can
be seen on the red curve that the effect disappears for higher values of U.

The wave is damped in the presence of a superfluid flow, which can
be seen in the phase-quadrature plane as a homothetic shrinkage of
the Kennelly circle toward the origin. Figure 20 displays an experi-
mental resonance in the phase-quadrature plane for U = 0 m/s and
U = 0.7 m/s, together with the fitted Kennelly circles. As can be seen
in this figure, the resonant curve at U = 0 has periodic oscillations in
and out of the Kennelly circle. We call this phenomenon the “daisy
effect.” The daisy effect progressively disappears for increasing val-
ues of U and cannot be seen any more on the resonant curve at
U = 0.7 m/s. We interpret the daisy effect as a secondary resonance
in the experimental setup with a typical acoustic path of a few cen-
timeters. We assume that the flow kicks out the thermal wave from
this secondary resonant path when U is increased. The daisy effect
alters the attenuation measurements close to U = 0 and should be
considered with care before assessing the vortex line densities for
very low mean velocities.

It has been shown in Sec. III D 2 that the displacement of
the tweezers’ signal in the phase quadrature plane, for a fixed wave
frequency, follows a straight line. We call “attenuation axis” the
direction of this straight path. The model predicts that the attenua-
tion axis should always be directed toward the center of the resonant
Kennelly circle. Figure 21 displays a zoom on a part of the Ken-
nelly circle at U = 0, together with the signal displacement at fixed
frequency and for increasing flow velocity. It can be seen that the
displacement is indeed a straight line but not exactly directed toward
the Kennelly circle center. An angle between 20○ and 30○ is sys-
tematically observed between the attenuation axis and the circle
center direction (see Fig. 21). Moreover, the angle is always positive
(with the figure convention) and cannot be interpreted as a ballis-
tic advection, which would give a negative angle instead. This effect
is thus very likely attributable to a decrease in the second sound
velocity in the presence of the quantum vortices. Whereas a second

FIG. 21. Attenuation of a resonance in the presence of a flow mean velocity U,
obtained with second sound tweezers in superfluid helium at 1.65 K. The blue
curve is the resonance at U = 0 in the phase-quadrature plane. Contrary to the
prediction of the model of Sec. III D (see also Fig. 17), the attenuation signal at
fixed heating frequency is not directed exactly toward the center of the Kennelly
osculating circle. We observe a systematic clockwise angular shift 20○ < θ < 30○.
We still have no definite explanation for this observation.

sound velocity reduction has previously been observed in the pres-
ence of quantum vortices,64–66 the exact value of this reduction turns
to be difficult to assess, in particular, experimental conditions. We
therefore keep the second sound velocity reduction as a qualitative
explanation, and we do not try to assess quantitative result from the
attenuation axis angle.

E. Quantum vortex or velocity measurements?
We have shown that second sound resonators are sensitive to

two physical mechanisms. The first one is the thermal wave bulk
attenuation inside the tweezers’ cavity due to the quantum vortices.
The second one is thermal wave ballistic advection perpendicular
to the plates (advection of second sound by velocity is illustrated,
e.g., in Ref. 39). Both mechanisms exist for all the second sound res-
onators, but depending on their geometry, they can preferentially
be sensitive to the one or the other mechanism. We call selectiv-
ity the fraction of the signal due to quantum vortices or to ballistic
advection. Let T(ξ, U) be the probe signal as a function of the bulk
attenuation coefficient ξ (m−1) and flow velocity U(m/s), then we
define the vortex selectivity as

Rξ =
∣T(ξ, 0) − T(0, 0)∣
∣T(ξ, U) − T(0, 0)∣

, (26)

and by symmetry, we define the velocity selectivity as

RU =
∣T(0, U) − T(0, 0)∣
∣T(ξ, U) − T(0, 0)∣

. (27)

Further investigations in second sound tweezers’ experiments
have shown that the velocity/vortex selectivity process only weakly
depends on the aspect ratio L

D . Indeed, for a given resonator trans-
verse size L, ballistic advection of the wave outside the cavity
increases when the gap D increases, but the number of quantum
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vortex lines inside the cavity also increases linearly with D. Alto-
gether, both the ballistic advection and the bulk attenuation due to
the quantum vortices have similar dependence on D, and that is why
changing the gap has no significant effect on selectivity. For sec-
ond sound tweezers, also note that the selectivity does not depend
strongly on the mean temperature (that controls the superfluid
fraction and the second sound velocity).

As explained in Sec. III D 2, the velocity selectivity is more
important for open cavity resonators, such as second sound tweez-
ers. For a given tweezers’ size, we find that the selectivity depends
mainly on the shift Xsh and on the wave mode number. Perfectly
aligned tweezers excited with low mode numbers are preferentially
sensitive to quantum vortices. Increasing Xsh or choosing larger
mode numbers leads to a larger velocity sensitivity and changes
the signal balance from vortex selectivity to velocity selectivity. The
tweezers’ selectivity also strongly depends on the size L: smaller
tweezers can encompass less quantum vortices in the cavity, which
means that the total wave attenuation from one plate to the other
is smaller for small tweezers. By contrast, the attenuation fraction
due to velocity advection does not depend on the tweezers’ size.
The velocity selectivity is thus larger when the tweezers are smaller.
Figure 22 displays the selectivity of two second sound tweezers of
size L = 250 μm and L = 1 mm, respectively, depending on the shift
Xsh and the mode number n (where k = nπ). The simulation was run
with a quantum vortex line density L = 2 × 1010 m−2 and U = 1 m/s,
in accordance with the typical values observed in the experiments of
Ref. 40. It can be seen that large tweezers (L = 1 mm) can reach a
vortex selectivity Rξ > 90% for a small shift and low mode num-
ber, which means that they can be used for direct quantum vortex
measurements (this result confirms the analysis of the first dataset
measured using a second sound tweezer,38 in 2007). On the con-
trary, small tweezers (L = 250 μm) can reach a velocity selectivity
RU > 90% for large shift or high mode number and can thus be
used as anemometers, as confirmed by the experiments reported in
Ref. 40.

IV. MEASUREMENTS WITH SECOND SOUND
TWEEZERS

Second sound tweezers are singular sensors in the sense that
they can measure two degrees of freedom at the same time, whereas
most of hydrodynamics sensors only measure one (e.g., Pitot tubes,
cantilevers, and hot wires). The tweezers record the magnitude and
phase of the thermal wave averaged over the thermometer plate.
Both quantities contain physical information about the system. To
summarize, magnitude variations give information about quantum
vortices in the cavity, whereas phase variations give information
about the local mean temperature and pressure. The local mean
velocity has an impact on both magnitude and phase and will be
specifically treated in Sec. IV E. Sections IV A–IV E aim to explain
the proper extraction of information on quantum vortices from the
signal.

In the following, we call L� the density of projected quantum
vortex line density (projected VLD),

L� =
1
V∫ V

sin2 θ(l)dl, (28)

where V is the tweezers’ cavity volume, l is the curvilinear abscissa
along the vortex lines inside the cavity, and θ(l) is the angle between
the quantum vortex line and the direction perpendicular to the
plates (vector ez). Assuming isotropy of the vortex tangle, the total
quantum vortex lines density (VLD) is

L = 3
2
L�. (29)

A second sound wave is damped in the presence of a tangle of
quantum vortices. Let ξVLD (in m−1) be the bulk attenuation coef-
ficient of second sound waves; it has been found67–71 that ξVLD is
proportional to L� according to the relation

FIG. 22. Selectivity to quantum vortices or velocity advection for two second sound tweezers, obtained with numerical simulations. The color code indicates the fraction of
the signal due to bulk attenuation by quantum vortices (see Fig. 16). The selectivity of the tweezers mainly depends on the lateral shift of both plates one from another and
the resonant mode number excited in the cavity. The left panel shows that large tweezers (L = 1 mm) are mainly sensitive to quantum vortices. Almost pure quantum vortex
signal can be achieved with carefully aligned tweezers excited at low mode numbers (Rξ > 90%). On the reverse, small tweezers (L = 250 μm) are mainly sensitive to the
velocity. Almost pure velocity signal can be achieved by shifting the heater and the thermometer plates and by exciting the cavity at large mode numbers (RU > 90%). The
present simulation was run with a vortex line density L = 2 × 1010 m−2 and U = 1 m/s, in accordance with the typical values observed in our experiments.
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ξVLD =
BκL�

4c2
, (30)

where B is the first Vinen coefficient and κ ≈ 9.98 × 10−8 m2/s (for
4He) is the quantum of circulation around one vortex.

Therefore, Eq. (30) shows that a measure of the bulk attenua-
tion coefficient gives access to the projected VLD defined by Eq. (28).
We review in Sec. IV A the standard methods to measure the bulk
attenuation coefficient from a second sound resonance, we propose
in Sec. IV C two new analytical methods, and we give in Sec. IV D
some examples of applying our elliptic method to the experimental
data.

A. The vortex line density from the attenuation
coefficient

We assume that a single second sound resonance can be
accurately represented by the following expression [see Eq. (11)]:

T( f ) = T0
sinh (ξ0D)

sinh (i 2π( f − f0)D
c2

+ (ξ0 + ξVLD)D)
, (31)

where f0 is the second sound frequency of the local amplitude maxi-
mum, D is the resonator gap, c2 is the second sound velocity, ξ0 is the
attenuation coefficient without flow, and ξVLD is the additional bulk
attenuation in the presence of quantum vortices given by Eq. (30).
ξVLD = 0 without flow.

A standard method to measure ξVLD goes as follows: we fix the
second sound frequency at the resonant value f0, and we measure
the thermal wave amplitude with and without flow. Equation (31)
then shows that ξVLD is given by

ξVLD =
1
D

asinh( T0

T( f0)
sinh (ξ0D)) − ξ0. (32)

Equation (32) shows that besides the value of D, which can be deter-
mined from a fit of the tweezers’ spectrum (Sec. III D), the value of ξ0
has to be accurately measured. This is usually done by the measure-
ment of the resonant half width. With some algebra manipulations,
it can be found from Eq. (31) that the resonant magnitude satisfies

∣T ∣2 = ∣T 0∣
2 sinh2(ξ0D)

sinh2(ξ0D) + sin2( 2π( f − f0)D
c2

)
. (33)

Letting Δ f be the frequency half-width defined by the relation

∣T ( f0 ± Δ f
2 )∣

2
= 1

2 ∣T 0∣
2
, it can be shown from Eq. (33) that ξ0 and

Δ f are related by

sin(πΔ f D
c2
) = sinh (ξ0D). (34)

We note, in particular, that the relation Eq. (34) can be used
to find ξ0 as long as the resonance quality factor is high enough,
which means for sinh (ξ0D) < 1. The linear approximations of
Eqs. (32) and (34) are usually used when ξ0D≪ 1, and they give the
well-known approximation,

L� ≃
4πΔ f

Bκ
( T0

T( f0)
− 1). (35)

For low quality factor resonances, another method should be
used instead of the resonant half width. The elliptic method pre-
sented in Sec. IV C allows determination of ξ0 for resonances of any
quality factors.

The main problem of the method presented above is that it
implicitly assumes that there is no variation of the acoustic path
value 2π f0D

c2
during the measurement. In particular, as c2 depends on

temperature and pressure, it means that the experiment should have
an excellent temperature and pressure regulation. This can become
increasingly difficult when the second sound derivatives vs temper-
ature become steep, close to the superfluid transition. Moreover,
measurements in the presence of a flow are necessary done out of
equilibrium as the flow dissipates energy. As an example, measure-
ments in such conditions are illustrated by Fig. 23, which shows
second sound resonances measured close to the superfluid transition
in the turbulent Von Kármán experiment SHREK.72 Furthermore,
we observe that a measurement with a non-zero value of ξVLD can be
associated with an acoustic path shift (i.e., a variation of the factor
2π f D

c2
). The situation is illustrated in the left panel of Fig. 24, where

the acoustic path shift leads to an overestimation of the attenuation
and an important error on ξVLD.

Passive and active approaches have been reported in the lit-
erature to handle the most common cause of acoustical path shift
during second sound measurement: the temperature drift and the
resultant shift of the resonance frequency.

A passive approach consists in performing a sweep of the sec-
ond sound frequency, across the resonance curve. Afterward, with
proper modeling of the resonance, the attenuation and the phase
shift can be fitted separately, e.g., as done in Ref. 28. A limita-
tion of this approach is its time resolution that is restricted by the
duration of frequency scan. Another passive approach consists in
performing systematic calibration of the full frequency responses
of the resonator in various conditions and subsequently interpolat-
ing measurements obtained at a fixed working frequency onto this
mapping.73

A standard example of active approaches consists in control-
ling the helium bath temperature. An alternative or complementary
approach consists of controlling the second-sound frequency so that
it always matches the resonance peak, despite possible drift of the
temperature. The resonator itself can provide the feedback signal of
these control loops, for example, by monitoring the thermometer or
locking the phase of the second sound signal. An even more direct
approach has been recently proposed: the resonator is driven by a
self-oscillating circuit, which frequency adapts dynamically to the
drift of the second sound velocity.74

Below, we introduce two analytical methods to separate phase
shift from attenuation. The first method is relevant for simple cases
(Sec. IV B), while the second one has a broader range of validity
(Sec. IV C).

B. Analytical method in an idealized case
The acoustic path shift can be corrected using the resonant rep-

resentation in the phase-quadrature plane. Letting X( f ) and Y( f )
be, respectively, the real and imaginary parts of T( f ), the curve
[X( f ), Y( f )] in the phase-quadrature plane is very close to a cir-
cle crossing the origin. It can even be proved (see Sec. IV C) that the
resonant curve converges to a circle when the quality factor increases
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FIG. 23. Spectral response of tweezers in a turbulent boundary layer of the SHREK facility, right below the superfluid transition temperature Tλ, where second sound velocity
c2 is very sensitive to temperature (here, D ≃ 500 μm and c2 drifts around a mean value of 5.4 m/s). The frequency axis is made dimensionless using the second sound
velocity c2 calculated from the temperature recorded near the sidewall of the flow. While the temperature of the bath is regulated, frequency sweeps are repeated half a
dozen of times for different turbulent flow conditions flagged by colors. The measurement error in a given flow condition can be estimated from the data dispersion to about
1 μK. This is one order of magnitude below the attenuation of the resonant peaks due to the flow mean velocity. A systematic drift of resonance frequencies vs flow conditions
is observed; it is interpreted as an under-estimation of temperature, and therefore an over-estimate of c2, due to turbulent dissipation in the core of the flow. At a given
mean flow, some scatter of the resonance frequencies is apparent; it is interpreted as noise from the temperature regulation, which cannot fully compensate for the turbulent
fluctuations of the dissipation. The elliptic method introduced in Sec. IV C allows for separation of such temperature artifacts from the attenuation due to second sound
attenuation by quantum vortices.

or, equivalently, when ξ0 decreases.75 An illustration of two resonant
curves with their osculating circles is displayed in the right panel
of Fig. 24. The acoustic path shift translates to a phase shift θ in
the phase-quadrature plane such that the amplitude of the second
measurement (with ξVLD > 0) does not correspond to the maximal
amplitude R of the attenuated resonant peak (see Fig. 24 for the
notations). Using the geometric properties of the (Kennelly) circle,
R can be approximately recovered from the measured amplitude r
and phase slip θ with

R = r
cos θ

. (36)

Thus, a modified version of Eq. (32) can be written to find the
VLD attenuation coefficient in the presence of a phase shift,

ξVLD =
1
D

asinh( T0 cos θ
T( f0)e−iθ sinh (ξ0D)) − ξ0. (37)

Using this equation and Eqs. (30) and (34), the VLD L can then
be derived.

C. The elliptic method
We present in this section an original method to obtain the val-

ues of the acoustic path shift and the attenuation coefficient from

FIG. 24. An illustration of an attenuation measurement. Left: the resonant mode without (blue curve) and with quantum vortex attenuation (red curve). The figure shows that
an acoustic path shift can lead to an important error in the attenuation measurement. The wave vector is given by k = 2π f

c2
. Right: the resonant mode represented in the

phase-quadrature plane, together with the fitted Kennelly circle (defined in Sec. IV B). The figure shows that the acoustic path shift creates a phase shift θ. Using the phase
measurement θ, the maximal magnitude can be recovered using Eq. (36).
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experimental data. The method, which we call the “elliptic method,”
is much simpler to implement and much more reliable than the fit
of the Kennelly resonant circle and the use of Eq. (37). In addition,
the method can be used for resonances with very low quality factors
(Fig. 25).

The method comes from the observation that a pair of ideal
consecutive resonances is transformed into an ellipse with the com-
plex inversion z → 1

z in the phase-quadrature plane. The inversion is
represented in Fig. 26. To prove this assertion, consider the inversion
of the classical Fabry–Perot expression [Eq. (6)],

1
T
=

sinh (i 2π f D
c2
+ ξD)

A
. (38)

Expanding the sinh in the previous expression gives

1
T
= cos(2π f D

c2
) sinh (ξD)

A
+ i sin(2π f D

c2
) cosh (ξD)

A
. (39)

Finally, let Xl = Re( 1
T
) and Yl = Im( 1

T
) be, respectively, the real

and imaginary parts of Eq. (39), then the coordinates (Xl, Y l) satisfy
the equation

( Xl

sinh (ξD)/A)
2

+ ( Yl

cosh (ξD)/A)
2

= 1, (40)

which is exactly the Cartesian equation of an ellipse with semi-major
axis a = cosh (ξD)

A and semi-minor axis b = sinh (ξD)
A . In particular,

we note that the attenuation coefficient ξ can be recovered from
the ratio of the semi-major and semi-minor elliptic axes using the
formula

ξ = 1
D

atanh(b
a
).

When the quality factor increases (equivalently when ξ decreases),
the ellipse is flattened. The limit of infinite quality factor (ξ → 0)
corresponds to two parallel straight lines in the complex plane.

Second sound tweezers’ resonances are not ideal Fabry–Perot
resonances. Yet, we have argued in Sec. III B that a single second

FIG. 26. Transformation of a pair of consecutive resonances to an ellipse using the
inversion of the complex plane z → 1/z.

sound resonance can be locally fitted by the following Fabry–Perot
equation [see also Eq. (11)]:

T = A

sinh (i 2π( f − f0)D
c2

+ (ξ0 + ξVLD)D)
. (41)

This, in particular, means that the resonant curve in the vicinity of
its maximal amplitude is transformed into a part of an ellipse with
the complex inversion z → 1

z . The curve (Xl( f ), Yl( f )) is very close
to a straight line for frequencies f close to the resonant frequency f0.
The situation is illustrated in Fig. 27. This figure shows a part of ideal
Fabry–Perot resonances given by Eq. (41), in the range 1.95π < kD
< 2.05π (where k = 2π f

c2
), and for increasing values of the VLD atten-

uation coefficient ξVLD. The left panel displays the different resonant
curves close to their maximal amplitudes in the phase-quadrature
plane. Using the complex inversion, those curves become almost
parallel straight lines, as can be seen in the right panel. The trans-
formation of the resonant Kennelly circles into parallel straight lines
has very nice applications that we explain as follows.

In the phase-quadrature plane, a variation of the acoustic path
value 2π f D

c2
corresponds to a displacement along the Kennelly cir-

cle, whereas a variation of the bulk attenuation ξ corresponds to a
displacement orthogonal to the Kennelly circle. The acoustic path
direction and the attenuation direction thus form a local orthogonal
basis. Such a basis is displayed by the red arrows in the left panel of

FIG. 25. Sequence of five resonances of second sound tweezers at 1.6 K. The flow is weakly turbulent: the velocity standard deviation is a few percent of the mean velocity
displayed on the color bar. The measurement error can be estimated from the repeated measurements in a given flow condition and is less than 0.01 mK. The right side plot
illustrates that each resonance can be approximated by a circle in the complex plane. The global phase shift of the last resonance (lower circle) compared to the others is
attributed to a cutoff of the measurement electronics at high frequency.
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FIG. 27. A resonant mode in the phase-quadrature plane and its elliptic transform for an ideal Fabry–Perot resonance with ξ0 = 0.2 and 1.95π < kD < 2.05π.

Fig. 27. When the reference point where the basis is defined moves
along the Kennelly circle, the basis rotates and the acoustic path and
attenuation axes have to be redefined. This can become a tiresome
task while analyzing the experimental data. Fortunately, the com-
plex inversion is a conformal mapping, which means that it preserves
locally the angles: the local basis composed of the acoustic path and
attenuation axes is transformed into an orthogonal basis (see the red
arrows in the right panel of Fig. 27). More precisely, let z0 be the
complex position in the phase-quadrature plane and (u, v) be the
two complex (unit) vectors defining the local basis at z0, then the
local basis (ul, vl) at the point 1

z0
is given by

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ul = −u
∣z0∣2

z2
0

,

vl = −v
∣z0∣2

z2
0

.
(42)

The major advantage of defining the local basis (ul, vl) with the
elliptic transform is that it becomes a global basis: when the reference
point 1

z0
moves because of a change in the acoustic path value or the

attenuation value, the basis is simply translated in the plane, but the
vectors (ul, vl) do not change. One can find the global basis (ul, vl)
for a given resonance and use it to find the local basis (u, v) at every
point in the phase-quadrature plane. We will see in Sec. IV D 1 how
the global basis (ul, vl) can be easily used to suppress temperature
and pressure drifts during second sound attenuation measurements.

We finally explain how the elliptic method can be used to mea-
sure the bulk attenuation coefficient ξ0. We have seen in Sec. IV A
that the standard methods to find ξ0 are based on the measure of the
half-width Δ f and on Eq. (34). As was said previously, the classical
method can only be applied to resonances satisfying (ξ0D) < 1. It is
a global method in the sense that one has to sweep the frequency
to measure a large part of the resonant curve. The method is only
accurate provided the resonance does not deviate too much from an
ideal Fabry–Perot resonance, which is often not satisfied for the first
modes of second sound tweezers (see, for example, the first mode of
Fig. 15). The alternative method consists in expanding (Xl, Y l) given
by Eq. (40) to leading order in f − f0,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Xl ∼
sinh (ξ0D)

A
,

Yl ∼
2π( f − f0)D

c2

cosh (ξ0D)
A

,
(43)

where f0 is the resonant frequency. Using Eq. (43), we get

Yl( f )
Xl( f ) ∼

2πD
tanh (ξ0D)c2

( f − f0). (44)

Yl( f )
Xl( f ) is proportional to f in the vicinity of f0, with the proportional-
ity factor 2πD

tanh (ξ0D)c2
. The attenuation coefficient ξ0 can be found by

a linear fit of the function Yl
Xl

, provided D and c2 are known.

D. Applications of the elliptic method
The motivation to develop and use the elliptic method has come

from experimental constraints: in experiments done in the vicin-
ity of the superfluid transition, where c2(T0) sharply varies, or in
large superfluid experiments where it can be very difficult to control
the values of mean temperature and pressure. This is even more the
case if the superfluid experiment dissipates energy. One then expects
a drift of the thermodynamic conditions during the measurement.
Regarding second sound resonators, the critical parameter is the
second sound velocity c2 because variations lead to uncontrolled
acoustic path shifts. The elliptic method has been designed to easily
filter those variations from experimental data. This includes filtering
temperature and pressure drifts (Sec. IV D 1) and the vibration of the
tweezers’ arms (Sec. IV D 3), and it extracts properly the quantum
vortex line fluctuations (Sec. IV D 2).

1. Suppression of temperature and pressure drifts
This section presents an example of the elliptic method imple-

mentation for second sound tweezers to find the relationship
between ⟨ξVLD⟩ and the mean velocity U in the presence of a
superfluid flow.

As before, we note (X, Y) the temperature signal obtained
from the second sound tweezers in the phase-quadrature plane and
(Xl, Yl) the Cartesian coordinates obtained by the complex inversion
given by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Xl = Re( 1
X + iY

),

Yl = Im( 1
X + iY

).
(45)

The coordinates (Xl, Y l) will be called “elliptic coordinates” for
convenience. Figure 28 displays experimental data obtained from
second sound tweezers of size L = 1 mm, in a bath under the sat-
urated vapor pressure, at mean temperature T0 ≈ 2.14 K, and for
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FIG. 28. Experiment: measurement of a resonance with second sound tweezers at T0 ≈ 2.14 K for different values of the mean flow velocity U. The left panel presents the
data in the phase-quadrature plane, and the right panel presents the same data after the complex inversion. The red points are obtained for a fixed value f = 6.35 kHz and
sweeping the flow mean velocity between 0 and 1.2 m/s. It can be seen that the measurement error is different along the attenuation axis than along the acoustic path axis. It
is below 0.01 mK along the attenuation axis but can reach almost 0.1 mK along the acoustic path axis due to the difficult experimental pressure regulation, especially at large
mean flow velocities. The elliptic method allows to properly separate the measurement error along both axes.

different mean flow velocities 0 < U < 1.2 m/s. At such a tempera-
ture close to the superfluid transition, it was difficult to regulate the
mean temperature well enough to prevent measurable variation of
the second sound velocity c2. Uncontrolled acoustic path variations
can be observed, for example, in the red points of Fig. 28.

The first step consists in sweeping the second sound frequency
f in the vicinity of the resonant frequency f0. The data (X, Y)
obtained, displayed by the black curve of the left panel of Fig. 28,
form a part of the Kennelly circle. As explained in Sec. IV C, the ellip-
tic coordinates (Xl, Y l) given by Eq. (45) form a straight line (see the
right panel of Fig. 28). Using a linear fit, it is then straightforward
to obtain the unit vector vl parallel to the line defining the acous-
tic path axis and the orthogonal vector ul defining the attenuation
axis. We then call Zl = (Xl, Yl) the vector of the elliptic coordinates.
The attenuation coefficient ξ0 can be found from the relation [see
Eq. (44)]

Zl( f ).vl

Zl( f ).ul
∼ 2πD

tanh (ξ0D)c2
( f − f0).

Figure 28 displays experimental resonant curves obtained for non-
zero mean velocities U > 0 to illustrate the robustness of the elliptic
method. However, we emphasize that only the resonant curve with
U = 0 is necessary to find the global basis (ul, vl) in the plane of
elliptic coordinates.

The second step consists in fixing the second sound frequency
to f0 and varying the mean velocity U to look at the resonance atten-
uation. The experimental data are displayed by the red points in
Fig. 28. It can be seen in this figure that the bulk attenuation is
accompanied by a systematic acoustic path deviation as the mean
velocity increases. For mean velocities U ≈ 1 m/s, energy dissipation
in the experiment leads to a data dispersion along the acoustic path
direction. To properly recover the mean VLD attenuation coefficient
⟨ξVLD⟩, we use the elliptic coordinates Zl = (Xl, Yl), and we project it
on the attenuation axis ul. We get from Eq. (43),

Zl(U).ul

Zl(0).ul
= sinh ((ξ0 + ⟨ξVLD⟩)D)

sinh (ξ0D) .

⟨ξVLD⟩ is then given by

⟨ξVLD⟩ =
1
D

asinh(Zl(U).ul

Zl(0).ul
sinh (ξ0D)) − ξ0. (46)

We note that the previous expression remains accurate even if the
second sound frequency chosen for the measurement is close but not
exactly equal to the resonant frequency f0. The average VLD atten-
uation can then be converted to the average projected vortex line
density ⟨L�⟩ using Eq. (30).

2. Measure of vortex line density fluctuations
Second sound tweezers are designed to directly probe locally

vortex line density fluctuations, not only its average value. The
method to probe fluctuations slightly differs from the method used
to probe the average value explained in Sec. IV D 1. The average
VLD value can be directly computed using the complex inversion
of experimental data, but this is no longer possible for their fluctua-
tions. Indeed, the tweezers’ signal has different sources of noise, such
as thermal white noise, interfering frequencies, and electromagnetic
bursts. Those signals can usually be considered as independent addi-
tive noises in the signal data and easily filtered out or attenuated by
an appropriate post-processing. On the contrary, the complex inver-
sion is a non-linear transformation. Using the latter on noisy data
can lead to an overestimation of the signal fluctuations closest to
zero, perturb the additivity of noise sources and make them much
more difficult to filter out. We thus choose to compute the VLD
fluctuations only using linear transformations.

The first step is similar to that of Sec. IV D 1. We sweep the sec-
ond sound frequency f close to the resonant frequency f0 in order to
measure a part of the Kennelly circle. We then transform this Ken-
nelly circle into a straight line using the complex inversion, and we
find the global basis (ul, vl) in the plane of elliptic coordinates. A fit
of the Kennelly circle, and its transformation into a straight line, can
be seen in Fig. 29. This experimental step has to be done just before
the fluctuations’ measurement.

We then record the signal fluctuations (X(t), Y(t)) for dif-
ferent values of the flow mean velocity U. Figure 29 displays the
fluctuating signal for U = 0 and U = 1.2 m/s in the form of clouds
of data points. It can be, in particular, observed that the U = 1.2 m/s
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FIG. 29. Illustration of the method used for fluctuation decomposition. The two
patches display the fluctuating signals obtained at the mean flow velocities 0 and
1.2 m/s in the X–Y plane. The inset panel displays the signal after the elliptic
transformation of Fig. 27. The method to obtain the two projection axes is detailed
in the main text.

data are shifted compared to the U = 0 m/s data because of both
an average attenuation and an acoustic path shift (see Sec. IV D 1).
Let us define ⟨Z(t)⟩ = ⟨X(t)⟩ + i⟨Y(t)⟩ as the average complex posi-
tion in the phase-quadrature plane for a given value of U. Following
Eq. (42), the local basis (u, v) of the attenuation and acoustic path
axes can be computed from the global elliptic basis (ul, vl) by

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

u = −ul
⟨Z⟩2

∣⟨Z⟩∣2
,

v = −vl
⟨Z⟩2

∣⟨Z⟩∣2
.

(47)

Figure 29 shows that the local basis (u, v) depends on ⟨Z⟩ and thus
on the value of U: for different mean velocities, the bases are rotated
from one another. If there is a significant drift of the mean signal
value during the measurement (as can, e.g., be observed in Fig. 20),
the local basis will also depend on time, with a typical timescale that
should be much larger than the fluctuation timescale.

The acoustic path fluctuations and the attenuation fluctuations
can then be recovered using a projection on the (u, v) basis. More
precisely, let x be the average acoustic path value and δξ = ξ − ⟨ξ⟩
be a small fluctuation of the attenuation coefficient: a leading order
expansion of expression Eq. (41) shows that

T ≈ A
sinh (ix + ⟨ξ⟩D)

− δξ
AD

sinh (ix + ⟨ξ⟩D) tanh (ix + ⟨ξ⟩D) . (48)

We then do the approximation ⟨Z⟩ ≈ A/ sinh (ix + (ξ0 + ⟨ξVLD⟩)D),
which is equivalent to neglecting non-linear corrections in Eq. (48).
We finally get

δξ(t) = 1
D

u.(Z(t) − ⟨Z⟩) × ∣ tanh (ix + (ξ0 + ⟨ξVLD⟩)D)
⟨Z⟩ ∣, (49)

where the value of ξ0 can be found with Eq. (44) and ⟨ξVLD⟩ with
Eq. (46).

The use of the elliptic method is illustrated by Fig. 30, which
reports the probability density function of the fluctuations of the
quantum vortex density in a nearly isotropic superfluid turbulent
flow. The data of this plot were reported together with spectra of vor-
ticity fluctuations. For details about the setup and analysis of these
results, see Ref. 40.

3. Filtering the vibration of the plates
One possible source of noise for second sound resonator mea-

surements is the vibration of the plate arms whenever U ≠ 0. The
signature of those vibrations can be very clearly identified in the
form of two thin peaks in the fluctuation power spectrum. Those two
peaks are located at the two arm resonant frequencies: their exact
values can vary for different tweezers, but we always observe them
around f ≈ 1 kHz (see Sec. IV D).

Fortunately, the tweezers’ arm vibrations correspond to a vari-
ation of the gap D and, thus, to acoustic path fluctuations. Figure 31
displays a part of the tweezers’ fluctuation power spectrum. The
fluctuations are projected along the attenuation axis (blue curve)
and along the acoustic path axis (red curve), following the method
presented in Sec. IV D 2. The two peaks located at f ≈ 825 Hz
and f ≈ 1050 Hz are identified on the acoustic path axis fluctua-
tion power spectrum, whereas the same peaks are damped by many
orders of magnitude on the attenuation axis fluctuations. These
spectra illustrate the effectiveness of the elliptic method.

Using the power spectrum of Fig. 31, we can estimate the order

of magnitude of the gap standard deviation. We find
√
⟨(δD)2⟩

≈ 0.5 μm and
√
⟨(δD)2

⟩

D ≈ 4 × 10−4. This confirms that the arm
vibrations have a negligible impact on the measurement.

E. Velocity measurements
As shown in Sec. III E, the geometry of the second sound tweez-

ers can be optimized to sense specifically velocity rather than vortex
density. One trick for achieving this is to shift one plate with respect
to the other in the flow direction. Figure 32 shows three second
sound tweezers and one anemometer that is based on the same
principle as Pitot tubes. All sensors are positioned across a nearly
homogeneous turbulent flow bounded by a cylindrical pipe (not
shown here). For details on this set-up, see Ref. 76. The insert in

FIG. 30. Example of the probability density function of vortex line density (dashed
line) and velocity (continuous line) measured simultaneously by second sound
tweezers in the same superfluid turbulent flow.40 In abscissa, each signal s is nor-
malized by its mean value ⟨s⟩. The nearly Gaussian velocity statistics and skewed
vorticity statistics are reminiscent of those in classical turbulence.
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FIG. 31. Experiment: a part of a second sound tweezers’ fluctuation power spec-
trum, with T0 = 1.65 K, U = 1.2 m/s and for a tweezers’ gap D = 1.320 mm.
The tweezers’ arms resonances can be clearly identified in the acoustic path
fluctuations, one above 0.8 kHz and the other above 1 kHz.

the figure is a close-up view of the tip of the left-side tweezers, which
is dedicated to velocity measurements. This shift of one plate vs the
other in the downstream direction is clearly visible.

The projection of the anemometer-tweezers’ signal in the com-
plex plane is not performed along orthogonal axes. These axes are
determined with an in situ calibration, ramping the mean velocity.
The complementary “Pitot tube” signal is used to calibrate the axis
in units of m/s.

As an illustration, Fig. 30 presents the probability density func-
tion of the velocity fluctuations measured by the anemometer tweez-
ers, together with vortex line density fluctuations recorded by the
other tweezers in the same setup (see Fig. 32). As already reported
in quantum turbulence,77 the velocity statistics are close to Gaussian
when probed at scales significantly larger than the intervortex dis-

FIG. 32. Example of an arrangement of three second sound tweezers dedicated to
velocity (x1, left side) and vorticity (x2, right side) time series acquisitions, together
with a miniature total head pressure tube (loosely labeled “Pitot tube” on the bottom
left side of the picture) used for velocity calibration. All probes are mounted on a
ring connecting two 76 mm-inner-diameter coaxial pipes (see Fig. 1 of Ref. 40).
The inset is a close-up view of the shifted plates of the anemometer tweezers.

tance, which is the case here. Velocity spectra derived from the same
dataset are reported in Ref. 40.

V. SUMMARY AND PERSPECTIVES
This study has covered three independent topics: (i) the com-

prehensive analytical modeling of second-sound resonators with a
cavity that allows a throughflow of superfluid (Sec. III), (ii) new
mathematical methods to process the signals provided by such res-
onators (Sec. IV), and (iii) the miniaturization of immersed second-
sound resonators enabling time- and/or space-resolved flow sens-
ing (Sec. II). These miniaturized resonators, named second-sound
tweezers, have been used throughout this paper to demonstrate the
strength and limitations of the modeling and analysis methods.

Two observations remain unexplained: the origin of some noise
in the acoustic path length and second-order oscillations in the res-
onator spectral response in quiescent 4He, named the “daisy effect”
(Sec. III D 4). Fortunately, neither effect affects the measurement of
flow vorticity or velocity.

Some unexpected results have arisen from this study, and it is
worthwhile to recall and discuss them.

● The possibility to operate the second-sound tweezers in a
non-linear mode by over-driving the standing wave beyond
an intrinsic turbulent transition. In this mode, the probe
becomes sensitive to velocity, which is interpreted as a sig-
nature of the local vortex tangle being swept by the outer
flow (Sec. II B 3). This operating mode is analogous to hot
film and hot wire anemometry in classical fluid dynamics,
where sensitivity to velocity is due to the more-or-less pro-
nounced sweeping of the thermal boundary layer around an
overheated thermometer.

● In the linear regime, where the second-sound standing wave
has a small amplitude, the tweezers can be designed and
operated to be predominantly sensitive either to the quan-
tized vortices or to the throughflow velocity (Sec. III E). This
theoretical prediction is experimentally verified by compar-
ing the statistics obtained from turbulent flows (Sec. IV E).
The spatial and temporal resolutions of tweezers oper-
ated as anemometers, both in non-linear and linear modes,
are comparable to or better than alternative miniaturized
anemometers operating in He II, such as hot-wires,78,79

cantilevers,76,80 Pitot tubes,76,80 and total head-pressure
probes.40,81

● In the absence of throughflow, the spectral response of the
resonators and their quality factors can be accurately deter-
mined by considering only the loss due to diffraction and
misalignment of the reflecting plates of the cavity. Other
sources of dissipation have negligible contributions under
the conditions studied here. However, in the presence of a
throughflow carrying quantum vortices, the vortices can sig-
nificantly contribute to the total dissipation. We have not
experimentally explored the production and detection of
second-sound by mechanical means, which requires a cavity
with rough surfaces, such as millipore or nucleopore mem-
branes. In this case, the effect of vortices pinned on the
surface may no longer be negligible. For a discussion, see
Ref. 15.
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● The elliptic method allows the variations in vortex line den-
sity or velocity to be sensed without knowledge of the vari-
ations in second sound velocity (or acoustical path). More
generally, the method enables a mathematical decoupling
of both effects using a projection method in the (inverse)
complex plane. This result is of significant practical interest
in flows where the second-sound velocity is not accurately
controlled due to residual temperature variations or ther-
mal gradients. Such situations can occur, for instance, in
flows sequentially driven at various levels of forcing (e.g., to
explore Reynolds number dependence), in inhomogeneous
dissipative flows, and in flows close to the lambda super-
fluid transitions where the second-sound velocities strongly
depend on temperature.

Two applications of second-sound tweezers have been demon-
strated. The small size of the probe enables measurements within
a turbulent boundary layer (see Fig. 23), while the high time and
spatial resolution allow for time-series measurements in the bulk of
quantum turbulent flow (see Fig. 30). The probe has potential for
mapping the velocity or vorticity field of inhomogeneous flows, as
demonstrated by recent mapping of the vorticity in a counterflow
jet.82

Another potential application of tweezers is to simultaneously
measure temperature fluctuations and either velocity or vorticity,
enabling exploration of their correlations in turbulent counterflows
or co-flows. The tweezers’ thermometer can provide a direct mea-
surement of temperature within a bandwidth ranging from zero
frequency up to a fraction of the frequency of the second sound
standing wave, and this signal can be multiplexed with the measure-
ment of the second sound standing wave. Alternating measurements
in the linear and non-linear modes can also be useful to locally
explore both velocity and vorticity in a given flow. Another possi-
ble application is to use a double-tweezers configuration consisting
of a heating plate between two thermometer plates, or vice versa.
Such a stack can be used to probe joint statistics of vorticity on one
side and velocity on the other, or it can be used alternatively to probe
transverse gradients of either vorticity or velocity.
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APPENDIX: MICROFABRICATION PROCESS

The cantilevers’ fabrication process is presented in Fig. 33 and
summarized below.

Step 1: Starting substrate. The cantilevers were fabricated by
processing SOI (Silicon On Insulator) wafers by microelectronic
techniques. The thicknesses of the device, buried oxide, and silicon
substrate layers were, respectively, 20, 1, and 500 μm. The wafers
diameters were 100 mm. The wafers were double side polished and
were oxidized to form a 100 nm thick SiO2 layer on both sides.

Step 2: Electrical path fabrication. The serpentine electrical
path (red color) was deposited first on the SOI wafer frontside. The
deposition was done using a standard photolithography, evapora-

FIG. 33. Cantilevers’ fabrication process.
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tion, and lift-off sequence. The photoresist model was AZ 5214E
from Microchemicals GmbH, processed as a negative photoresist.
Depending on the cantilever type, heater, or thermometer, two dif-
ferent evaporation sequences were used: Ti 5 nm + Pt 80 nm or Au
25 nm + Sn 100 nm. Evaporation was preceded by in situ wafer sur-
face cleaning by an argon ion bombardment during 20 s. Lift-off was
initiated in an acetone bath during 5 min and then completed by
ultrasound during a few tens of seconds.

The current leads (orange color) were deposited during a
second photolithography, evaporation, and lift-off sequence. The
evaporation sequence was Ti 5 nm + Au 200 nm + Ti 5 nm + Pt
50 nm. The usage of a platinum layer was found to facilitate lift-off
and may also be useful for brazing purpose. A thin protective resist
layer was deposited on the frontside in order to protect it during all
subsequent operations on the backside.

Steps 3–4: Backside masks fabrication. In order to etch silicon
from the backside, two superimposed etch masks were fabricated.
First, an aluminum mask was made by a photolithography, evapo-
ration, and lift-off sequence on the wafer backside. A double-side
alignment was necessary during photolithography. The aluminum
thickness was 120 nm. The protective resist layer on the frontside
had to be deposited again after lift-off.

Then, a resist mask was deposited over the aluminum one.
This mask was made by photolithography on the positive AZ4562
photoresist spin-coated at 4000 rpm.

The aluminum mask was identical to the resist mask except
within the arm area, as shown in Fig. 33. This area was covered by
resist but not by aluminum.

Step 5: Backside etching 1. The etch mask during this phase
was the resist mask (see step 4 in Fig. 33). The area exposed to etch-
ing includes the tip area and a 200 μm wide trench, which delimits
the piece contour. First, the thin surface oxide layer was etched by
reactive ion etching (RIE) based on SF6 gas. Then, the silicon was
etched in a STS HRM deep reactive ion etching (DRIE) equipment
using a standard recipe based on the Bosch process. The etch rate
was around 10 μm/min, and the etched depth was around 230 μm
(120 cycles). The longer this phase, the thicker the cantilever arm at
the end of the process.

Steps 6–7: Backside etching 2. Following the first silicon etch
phase, the resist mask was removed by an oxygen plasma, thus
uncovering the arm area and the remaining aluminum etch mask.
The area exposed to etching includes the previous one plus the
arm area. The backside surface oxide was etched into the arm area.
Then, another silicon etch sequence was applied with the aluminum
mask. This sequence was stopped when the buried oxide was reached
everywhere in the tip area and in the cantilever contour (NOT
in the arm area). The recipe used during this sequence was the
same as in step 5; however, the number of cycles was 200 instead
of 120.

An additional difficulty appeared at this step due to a parasitic
effect during etching. This effect originates from the polymer passi-
vation layer deposited on sidewalls during the first silicon etch phase.
As the arm area was masked during the first silicon etch sequence
and unmasked during the second one, the passivation layer located
along the arm edges was released and generated locally some irreg-
ular micromasking effect. In order to decrease the micromasking,
the etch recipe was interrupted 3 times, every 50 cycles, in order to

TABLE II. Bosch process recipe used during frontside deep silicon etching.

Phase Deposition Etch

Sub-phase Main Delay Boost Main

Gas C4F8: 250 SCCM SF6: 250 SCCM
O2: 10 SCCM

Duration 3 s 2.0 s 5.5 s 22.5 s
Pressure 14 mTor 20 mTor 40 mTor 40 mTor
Coil power 300 W 300 W 300 W 1 W
Platen power 20 W 100 W 50 W 1 W
Electromagnet 0 A 0 A 2 A 0 A
current

Platen RF 13.56 MHz
frequency

He backside 10 Tor
pressure

apply a 1 min oxygen plasma followed by 20 s of an isotropic silicon
etching recipe.

The final 50 etching cycles ended up reaching the buried oxide
layer, at the trench bottom, all around the cantilever. It was neces-
sary at this step to check that the buried oxide was fully uncovered
by silicon everywhere in the trench bottom and in the tip area. How-
ever, etching cycles should not be applied in excess to avoid some
mechanical weakening of the wafer.

Steps 8–9: Buried oxide etching. The buried oxide was then
removed by plasma etching. This oxide was fully removed at the
trench bottom and in the tip area. If this layer is not removed,
some bending may occur on the tip at the end of the process due
to mechanical stress of oxide. The aluminum mask was removed in
an aluminum etchant solution at 50 ○C during a few minutes.

Steps 10–12: Frontside etching. The frontside protective resist
layer was removed in an acetone cleaning bath. The 3D can-
tilever fabrication was ended by a third silicon etching made from
the frontside. The etch mask was formed by photolithography on
AZ1512HS resist, deposited at 4000 rpm. As shown on Fig. 33, the
mask design includes two bridges on the baseplate sides in order
to maintain the cantilever after having opened the trench that sur-
rounds it. The design also includes the tip contour. The frontside
thin surface oxide was etched first and then the silicon of the device
layer. The silicon etching was done with specific conditions. Due
to the wafer mechanical weakness at this step, caused by the mul-
tiple deep trenches made on the backside, the processed wafer was
attached to a blank silicon wafer by Kapton tape. This ensemble was
loaded into the etching chamber. As no thermal bridge was present
between the two wafers, the recipe was adapted: low RF powers were
used and a 22 s idle time was added after each etching cycle (see
Table II). The objective was to avoid overheating during etching. The
silicon etch duration was 50 cycles. After this sequence, the trench
around the cantilever was fully opened. The resist was removed by a
low power oxygen plasma.
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