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Abstract. We calculate the distribution of current fluctuations in two simple exclusion models. Although
these models are classical, we recover even for small systems such as a simple or a double barrier, the
same distibution of current as given by traditional formalisms for quantum mesoscopic conductors. Due
to their simplicity, the full counting statistics in exclusion models can be reduced to the calculation of the
largest eigenvalue of a matrix, the size of which is the number of internal configurations of the system. As
examples, we derive the shot noise power and higher order statistics of current fluctuations (skewness, full
counting statistics, ....) of various conductors, including multiple barriers, diffusive islands between tunnel
barriers and diffusive media. A special attention is dedicated to the third cumulant, which experimental
measurability has been demonstrated lately.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion –
73.23.-bElectronic transport in mesoscopic systems – 72.70.+m Noise processes and phenomena

1 Introduction

A constant voltage difference across a conductor drives an
electrical current which will always fluctuate around its
mean value. Fluctuations result from random microscopic
processes (thermal relaxation, scattering, tunneling...) un-
dergone by the charge carriers. These fluctuations can be
considered as an undesirable noise but also as a rich sig-
nature of the basic transport mechanisms occurring in
the conductor. This second perspective has concentrated
much attention in the mesoscopic community over the last
decade [1].

In our previous paper [2] we gave evidence that the
statistics of current fluctuations in a large classical model,
the symmetric exclusion process, are identical to the ones
derived for quantum mesoscopic conductors [3]. Here, we
show that exclusion models allow also to recover the cur-
rent fluctuations of small systems such as a single or a
double barrier.

In the present paper, we develop a classical approach to
derive the statistics of current fluctuations in mesoscopic
conductors (“quantum conductors”) and more generally
in conductors smaller than the electronic inelastic mean
free path and for some inelastic conductors. Solving the
current statistics problem is reduced to finding the largest
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eigenvalue of a modified evolution matrix, later called the
counting matrix. We extend the well known current statis-
tics for a few mesoscopic systems. Our description is based
on the exclusion process models, which have been widely
studied in statistical physics and probability theory [4–6].
The main benefits of this approach are its conceptual and
analytical simplicity.

In the remaining part of this introduction section, we
briefly recall the traditional approaches for mesoscopic
transport (Sect. 1.1) and the basic mathematical tools
necessary to describe current fluctuations (1.2). Section 2
presents two exclusion models fitted for condensed mat-
ter conductors and the procedure to derive the complete
statistics of current fluctuations (later called “Full Count-
ing Statistics” or FCS). In Section 3, our exclusion models
are used to derive the current statistics of various elemen-
tary conductors.

1.1 Traditional formalisms for transport in condensed
matter physics

A number of approaches have already been used to de-
scribe the FCS in mesoscopic conductors. The Scattering
Matrix theory [3,7–13] is well adapted to the modeling
of quantum-mechanically coherent conductors in a regime
where electron interaction effects are sufficiently weak to
be neglected. With this strong assumption, this allows to
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treat an arbitrary large number of transverse conduction
channels, which yield independent contributions to the
current statistics. This approach, combined with results
from random matrix theory for scattering matrices [14]
has lead to precise predictions for the FCS of a disordered
conductor in the diffusive regime [15]. A more direct mi-
croscopic treatment of disordered systems relies on the
Keldysh technique [16] to construct the non-equilibrium
density matrix of the steady state at finite current. Disor-
der averaging is then performed using a non-linear Sigma
model representation [17]. A rather general circuit theory
has been constructed to account for the influence of an ar-
bitrary environment, described in terms of an equivalent
circuit, on the measured fluctuations of a mesoscopic con-
ductor [18,19]. Semi-classical descriptions, based on the
Boltzmann-Langevin model [20,21] have also been used to
derive the first four cumulants of current fluctuations in a
diffusive medium [22,23]. Other semi-classical approaches
focused on high order statistics and FCS of a double tunnel
barrier [24], chaotic cavities [25] and diffusive media [2,26].
The semi-classical results are the same as the ones ob-
tained with the corresponding quantum conductor model.

The exclusion models discussed in this paper repre-
sent an extreme semi-classical approximation : the only
quantum rule which is preserved is the Pauli exclusion
principle. In particular, electrons have no phase and do
not interfere.

1.2 Mathematical formalism for current fluctuations

If qt is the algebraic charge which flows across a section
during time t, the fluctuations of current I = qt/t depends
in principle on the duration t chosen to measure I. In prac-
tice the long time response of the measuring electronics
apparatus sets a lower bound on t: this bound is most of-
ten decades larger than all the physical times experienced
by charge carriers (diffusion time, dwell time, coherence
times in the conductor and in the electrodes,...). Thus,
experiments correspond to the t → ∞ limit, often called
the zero-frequency limit in the shot noise literature. In
this limit, the choice of the cross-section is irrelevant since
the maximum charge accumulation between two different
cross-sections is finite, at least in a conductor connected
to two electrodes only.

In a conductor smaller than the inelastic mean free
path, carriers do not undergo inelastic collisions. It is
therefore reasonable in many situations to neglect inter-
action effects on such small length scales. Equivalently,
we may then assume that these charge carriers remain
on independent energy levels [1]. Consequently the statis-
tics of the total current will consist in a summation of
independent random variables corresponding to different
energy levels. In the following, to keep equations free of
elementary-charge prefactors, we focus on carriers count-
ing rather than charge counting. In addition, we will call
this generic charge carrier an electron.

If Pt,ε(Q) is the probability that Q electrons have been
transfered at the energy level ε during a time interval t,
one can fully characterize the counting statistics by the

cumulant generating function:

St,ε(z) = ln



∞∑

Q=−∞
Pt,ε(Q) zQ


 = ln(zQ) (1)

or equivalently by cumulants (the nth order one is written
here):

Cn(t, ε) =
∂nSt,ε(z)
∂(ln z)n

(2)

we have in particular: C1 = Q̄, C2 = (Q − Q̄)2, C3 =

(Q − Q̄)3, C4(ε) = (Q − Q̄)4 − 3(Q − Q̄)2
2
, ...

For a given conductor, the current at an energy level ε
only depends on the boundary conditions, that is the
fillings ρ

L
(ε) and ρ

R
(ε) of the left and right electrodes

(or “reservoirs”) at both ends of the conductor. If we
rewrite the cumulant explicitly as Cn(t, ε, ρ

L
, ρ

R
), the cu-

mulants Kn(t) for the whole conductor are given by

Kn(t) =
∫

Cn(t, ε, ρ
L
(ε), ρ

R
(ε)) n(ε) dε (3)

where n(ε) is the density of energy levels in the conductor.
Likewise, the cumulant generating function for the whole
conductor can be derived with the same type of summa-
tion. For comparison with experiments Fermi-Dirac dis-
tributions are imposed in the left and right electrodes:

ρ
L
(ε) =

1

1 + e
ε−eV
kB T

; ρ
R
(ε) =

1

1 + e
ε

kB T
. (4)

With such fillings, the Kn(t) are function of the driv-
ing voltage normalized by temperature eV/kBT . The
kBT � eV limit corresponds to the Johnson-Nyquist ther-
mal noise and the opposite limit to pure shot noise. In
this paper, the integration equation (3) over ε will be es-
timated assuming that n(ε) and Cn(t, ε, ρL , ρR) are inde-
pendent of ε. This assumption is quite reasonable, since
in most cases the Fermi energy in the reservoirs is much
larger than both the thermal energy window kBT and the
driving energy eV .

The electrical conductance G and the current noise
power density SI are proportional to K1 and K2:

G = I/V = eK1/V t; SI = 2
∫

δI(τ)δI(0)dτ = 2e2K2/t

(5)
where δI(τ) = I(τ)−I is the current fluctuation at time τ .
The time scale of the model dynamics can be chosen ar-
bitrarily since this only changes the prefactor of the cu-
mulant generating function. The transport mechanism is
characterized by the cumulants C2, C3,... (or K2, K3,...)
normalized by C1 (or K1). In particular, we will focus on
the normalized shot noise power (called the Fano factor
in the eV � kT limit)

F = SI/2eI = K2/K1 (6)

and the third Fano factor

F3 = K3/K1. (7)
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2 Exclusion models

In this section, we present two exclusion models. The first
one is a classical version of the Landauer picture of a
quantum conductor, where electronic wave-packets can no
longer interfere (see also [26–28]). We call it the counter-
flows exclusion model because the two directions of prop-
agation of electrons found in a 1D conductor are explicitly
considered. Conductors with a low transmission efficiency,
such as tunnel barriers or diffusive media, can sometimes
be described by a simpler exclusion model, presented in
the tunnel exclusion model section. Many systems studied
in the exclusion, hopping-model and sequential-tunneling
literatures are directly relevant to this latter category of
conductors. These models describe independent particles,
apart for the exclusion constraint which represents the ef-
fect of the Pauli principle.

2.1 The counter-flows exclusion model

The counter-flows model is inspired from the Lan-
dauer [8,9,29,30] picture of conductors: at zero tempera-
ture, electrons are injected periodically from the reservoirs
to the conductor. This assumption seems a good enough
modeling to account for the FCS in the t → ∞ limit.
Indeed, the predictions of the model would remain un-
changed if the variance (Nt − Nt)2 of the number of injec-
tion attempts Nt during a time interval t, is only sublinear
in t. This later property follows from the Pauli exclusion
in degenerate electrodes which imposes an anti-correlation
between injection events [3,12]. The experimental valida-
tion of Landauer approach [1,31,32] justifies a posteriori
this nearly-periodic injection model. While in the sample,
these charge carriers may undergo internal scattering on
localized barriers and finally are either reflected or trans-
mitted to electrodes at both ends of the conductors. The
Pauli exclusion principle is fulfilled at each stage during
the system evolution.

More precisely, the 2N sites counter-flows model con-
sists in N + 1 barriers, each characterized by 2 trans-
mission probabilities Γ

(→)
i (from left to right) and Γ

(←)
i

(from right to left) where i is the index of the barrier
increasing from left to right (1 ≤ i ≤ N + 1). Between
two consecutive barriers, 2 sites are available for at most
2 electrons propagating in opposite directions. So a con-
figuration at time t is characterized by 2N binary vari-
ables τ

(→)
i (t) and τ

(←)
i (t) for 1 ≤ i ≤ N ; τ

(→)
i (t) (respec-

tively τ
(←)
i (t)) is equal to 1 if an electron propagating to

the right (respectively to the left) is present at site i at
time t. Time is discrete and at each time step, electrons
are transmitted through one barrier to the next site, un-
less a back-scattering occurs on the barrier. By definition
of the dynamics of the model, τ

(→)
i+1 (t +1) and τ

(←)
i (t + 1)

depend only on τ
(→)
i (t) and on τ

(←)
i+1 (t), and the (classical)

transition probabilities are given in Figure 1. This allows
for a simultaneous update of all occupancies, even in the
presence of backscattering on barriers.

Fig. 1. Counter-flows model. Probability of evolution for the
various configurations of electrons reaching the ith barrier at
time t.

Fig. 2. Counter-flows model. Upper figure: Transmission and
reflection probabilities for the ith barrier, assuming no conflict
with the exclusion principle. Lower figure: The counter-flows
model for N = 4. The white circles represent empty sites, the
black disks are electrons, the gray disks stand for sites with a
fixed filling probability and the arrows indicate the direction
of propagation associated with each site.

At the boundaries of the conductors, each electrode
is modeled by 2 sites, the occupation states of which are
re-set before each time step. The site corresponding to an
electron propagating into the conductor is re-filled with
probability ρL (left electrode) or ρR (right electrode) and
the site accessible to the electron leaving the conductor is
re-emptied at each time step (see Fig. 2). The densities ρ

L

and ρ
R

are given by Fermi-Dirac distributions (Eq. (4)).
After this reset, the one-time-step evolution follows the
same transmission/back-scattering rule that holds in the
bulk of the conductor.

On modeling real conductors, the barriers can rep-
resent junctions (between two different materials for ex-
ample), scattering centers (impurities, structural defects,
...) or even inelastic processes (phonon or photon-assisted
hopping, emission of phonon or photon, ...). The model
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Fig. 3. Tunnel model. Upper figure: Tunneling probabilities
across the ith and (i+1)th barriers for an electron located be-
tween them, assuming no conflict with the exclusion principle.
Lower figure: Tunnel exclusion model for N = 5 sites.

parameters N , Γ
(←)
i and Γ

(→)
i are related to the corre-

sponding physical quantities such as tunneling probabili-
ties or scattering cross-sections.

2.2 The tunnel exclusion model

It is useful to note that the counter-flows exclusion model
may be decomposed into two independent stochastic mod-
els. Let us define new variables σi(t) and σ′i(t) such
that σi(t) = τ

(→)
i (t) if i and t have the same parity and

else σi(t) = τ
(←)
i (t). In a similar way, σ′i(t) = τ

(←)
i (t)

if i and t have the same parity and else σ′i(t) = τ
(→)
i (t).

From the definition of the model, the random variables σi

are completely decoupled from the σ′i variables. It turns
out that in the limit of small transmission probabilities,
the dynamics of each of these two ensembles of binary
variables may be formulated in terms of a simpler lat-
tice model, that we shall call the tunnel exclusion model.
The elementary time-step of the latter model involves two
steps in the former one. This has the advantage that in the
limit of a vanishing transmission probability, the config-
uration of σi’s does not evolve in time. For each of these
two independent submodels, expanding the evolution of
this reduced system to first order in transmission proba-
bilities, and taking the continuous time limit, we get the
model which definition is sketched on Figure 3. In this
case, the quantities Γ

(→)
i and Γ

(←)
i become the probabili-

ties per time unit of tunneling across the ith barrier from
left to right and vice-versa, provided that the target site is
empty. Each electrode is modeled by a single site, the oc-
cupation of which is reset to ρ

L
(left electrode) or ρ

R
(right

electrode) before each time step. The fillings ρL and ρR

are given by Fermi-Dirac distributions (See Eq. (4).)
A special choice of the tunneling probabilities is the

Symmetric Simple Exclusion Process or SSEP [33] (see
Fig. 4) for which the the internal barriers are symmet-
ric (Γ (←)

i = Γ
(→)
i ) and uniform along the conductor (in-

dependent of i for 2 ≤ i ≤ N). We note this probabil-
ity Γ . The two out-most barriers are also modeled with
symmetric rates Γ

L
= Γ1 and Γ

R
= ΓN+1. Physically

they account for the electrical connection between the
electrodes and the conductor. In the theory of exclusion
processes [2], one usually represents the reservoirs by in-
jection rates α, δ, and extraction rates γ, β which give

Fig. 4. SSEP model for N = 5 sites. ΓL , Γ and ΓR are the
tunneling probabilities and ρL , ρR the electrodes’ fixed fillings.

an equivalent description of the boundary conditions if:
α = ρ

L
Γ

L
, δ = ρ

R
Γ

R
, γ = (1 − ρ

L
)Γ

L
, β = (1 − ρ

R
)Γ

R
.

2.3 The FCS solving procedure

In the counter-flows model, the conductor has 22N

internal configurations C =
{

τ
(→)
1 , τ

(←)
1 , ..., τ

(→)
N , τ

(←)
N

}
.

Let pt(C) be the probability of finding the system in con-
figuration C at time t. As the dynamics is a Markov pro-
cess, the evolution equation for pt(C) can be written:

pt+1(C) =
∑
C′

[M1(C, C′) + M0(C, C′) + M−1(C, C′)]pt(C′)

(8)
where we have decomposed the evolution matrix into three
parts M1, M0 and M−1, depending on whether, when the
system jumps from configuration C′ to configuration C,
the total number of charges transfered from the system to
the right reservoir increases by 1, 0 or −1.

If we define Pt(C, Q) as the probability that the system
is in configuration C at time t and that Q charges have
been transfered, one has:

Pt+1(C, Q) =
∑
C′

M1(C, C′)Pt(C′, Q − 1)

+ M0(C, C′)Pt(C′, Q) + M−1(C, C′)Pt(C′, Q + 1). (9)

Then the generating functions Pt(C, z) defined by:

Pt(C, z) =
∞∑

Q=−∞
Pt(C, Q) zQ (10)

satisfies

Pt+1(C, z) =
∑
C′

[
z M1(C, C′) + M0(C, C′) +

1
z
M−1(C, C′)

]
Pt(C′, z).

(11)

If we introduce Mz that we will call the counting matrix,
defined by:

Mz(C, C′) = z M1(C, C′) + M0(C, C′) +
1
z
M−1(C, C′) (12)

it is clear from equation (11) that in the long time limit,
the cumulant generating function for the total number of
transfered charges is:

St(z) = ln(zQ) = ln

[∑
C

Pt(C, z)

]
∼ ln

(
ν(z)t

)

∼ t ln (ν(z)) (13)
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Table 1. Asymmetric Single Barrier for arbitrary fillings ρL and ρR of the electrodes. The full circles represent occupied sites.

charge

evolution counting probability

increase ρL(1 − ρR)Γ (→)

decrease (1 − ρL)ρRΓ (←)

others unchanged 1 − ρL(1 − ρR)Γ (→) − (1 − ρL)ρRΓ (←)

where ν(z) is the largest eigenvalue of the counting ma-
trix Mz [2,34]. Due to the fact (see beginning of Sect. 2.2)
that the counter-flows model can be decomposed into two
decoupled sets of variables, the eigenvalue ν(z) can in fact
be obtained by diagonalizing a 2N × 2N matrix.

In the tunnel exclusion model, the conductor has
2N internal configurations and – as previously – we call
pt(C) the probability of finding the system in configuration
C at time t. The time being continuous in this model, one
has:
dpt(C)

dt
=

∑
C′

[W1(C, C′) + W0(C, C′) + W−1(C, C′)] pt(C′)

(14)
where the evolution matrix has been decomposed into
three parts W1, W0 and W−1, depending on whether when
the system jumps from configuration C′ to configuration C,
the total number of transfered charges increases by 1, 0
or −1. Equation (14) is a continuous time version of equa-
tion (9), the main difference being the diagonal elements
of W0 are now all negative.

Following the same procedure as above, we can define
the counting matrix Wz by:

Wz(C, C′) = z W1(C, C′) + W0(C, C′) +
1
z
W−1(C, C′) (15)

and we find the cumulant generating function for the total
transfered charge in the long time limit:

St(z) = ln(zQ) ∼ ln
(
eµ(z) t

)
∼ t µ(z) (16)

where µ(z) is the largest eigenvalue of the counting ma-
trix Wz . This latter equation can be seen as the first term
in the expansion of the corresponding equation obtained
in a discrete time approach in the limit of small transmis-
sion.

Both for the counter-flows and tunnel models,
the FCS is fully determined by the largest eigenvalue of
what we called the counting matrix.

The full knowledge of the eigenvalue is not necessary
if only the first n cumulants are wanted. In this case, the
equation satisfied by the eigenvalues |Mz − ν(z)I| = 0 (or
|Wz − µ(z)I| = 0) can be solved by a perturbation theory
and the nth cumulant is obtained from the coefficient of
the nth order of the eigenvalue in powers of log(z) (see
Eq. (2)). Once the counting matrix is written down, this
procedure can be easily performed by an analytical calcu-
lation software.

3 Application to mesoscopic systems

In the remaining of this paper we derive the FCS or
the first cumulants of basic mesoscopic systems. A spe-
cial attention is dedicated to the current fluctuations
skewness (third cumulant) and its associated third Fano
factor, the physical interest ([35,36]) and measurabil-
ity [37] of which have been recently emphasized. Indeed,
at high temperature the skewness can reveal information
about transport which are not blurred by thermal fluc-
tuations [35,36]. Some of the results derived are already
known and they validate exclusion modeling for charge
conduction in condensed-matter systems. The various new
results, often derived in a few lines of linear algebra, illus-
trate the strength of this modeling.

3.1 Asymmetric barrier and single channel

The counter-flows model with N = 0 site is a single barrier
between two electrodes of fillings ρ

L
and ρ

R
. Since the

system has no internal state, the counting matrix Mz is
a scalar. A positive charge transfer (from left to right)
will occur with probability p+ = ρ

L
(1 − ρ

R
)Γ (→) and a

negative transfer with probability p− = (1 − ρL)ρRΓ (←)

(see Tab. 1).
Following the general procedure for the counter-flows

model, we consider the counting “matrix”:

Mz = p+ z + p− z−1 + (1 − p+ − p−). (17)

The logarithm of the largest (and unique) eigenvalue
ν(z) = Mz gives the cumulant generating function St(z),
which fully characterize the FCS of an asymmetrical
barrier:

St(z)/t = ln
{ [

ρ
L

(1 − ρ
R
) Γ (→)

]
(z − 1)

+
[
(1 − ρ

L
) ρ

R
Γ (←)

] (
z−1 − 1

)
+ 1

}
(18)

A few particular cases are interesting:
• The Γ (→), Γ (←) → 1 limits account for quasi-

ballistic barriers. On the opposite case of tunnel barriers
(Γ (→), Γ (←) � 1), the FCS can be re-estimated from a
first order expansion of equation (18) or directly with the
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tunnel exclusion model with N = 0:

St(z)/t = µ(z) = Wz = ρ
L
(1 − ρ

R
)Γ (→)(z − 1)

+ (1 − ρL)ρRΓ (←)(z−1 − 1) (19)

• The asymmetric case (Γ (→) �= Γ (←)) accounts for
inelastic barrier, such as those for which stepping over the
barrier requires the emission or assistance of a photon or
phonon [35].

For symmetric barriers

T = Γ (→) = Γ (←) (20)

we recover the important case of a conduction channel of
transparency T encountered in mesoscopic transport [12].
Once the behavior of a single conduction channel has been
determined, scattering matrix theory shows how to re-
duce the problem of interaction-less electronic transport
through a quantum constriction into a set of indepen-
dent symmetric barriers. In the zero temperature limit,
the only states which contribute to the FCS are those
whose energy ε is such that ρ

L
(ε) = 1 and ρ

R
(ε) = 0,

or ρ
L
(ε) = 0 and ρ

R
(ε) = 1. The FCS is then given as

a superposition of independent binomial laws (“partition
noise”), one for each of these scattering states, lying in
an energy window eV , where V is the voltage drop across
the barrier [12]. In the high temperature limit, one has
to integrate the single channel result equation (18) over
the complete Fermi-Dirac distributions in the reservoirs,
given in equation (4).

From equations (2), (3), (18) and (T = Γ (→) = Γ (←)),
one can derive the normalized noise power F = K2/K1 in
the low temperature limit (Fano factor) and the third Fano
factor F3 = K3/K1 in the high temperature limit [17,35].
It is interesting to note that these two quantities turn out
to be equal. More generally, for a mesoscopic conductor de-
composed into independent channels of transparencies Ti

one has:

F (eV � kBT ) = F3(eV � kBT ) =
∑

Ti(1 − Ti)∑
Ti

. (21)

The physical information contained in the third cumulant
at high temperature [35,36] is the same at the one con-
tained in the low temperature second cumulant.

The first equality in equation (21) will be directly
checked for the semi-classical mesoscopic systems consid-
ered in the rest of this paper.

3.2 Double barriers

For single barriers, the agreement between the exclusion
model and mesoscopic models is not surprising since the
boundary conditions (injection from the electrodes,...) are
identical. The next step is to assess the validity of exclu-
sion models for double barriers, for which it is crucial to
account properly for both the boundary conditions and
the Pauli exclusion principle inside the conductor.

Fig. 5. Upper figure: Double symmetrical barriers (counter-

flows model with N = 1, = Γ
(→)
i = Γi). For legibility, the

reflection probabilities 1−Γ1 and 1−Γ2 are not written. Lower
figure: The internal states of the system.

Double barriers have been widely studied because a
rich behavior results from the interplay of various effects
including Pauli exclusion principle, Coulomb interactions,
inelastic processes and quantum resonance [1]. In this sec-
tion, we do our calculation on a generic double barrier.
Then we see how this system relates to various experimen-
tal devices (quantum dots, hopping on localized states,
islands and wells) and how the Coulomb interaction be-
tween electrons can be introduced to account for charging
effects. The case of a partly or fully diffusive island be-
tween two tunnel barriers is addressed in Section 3.3.

Generic double barrier
We first consider two symmetric barriers of transmis-

sion Γ1 and Γ2, temporarily in the zero temperature limit
eV � kBT (ρ

L
= 1 and ρ

R
= 0). The upper graph of

Figure 5 depicts the corresponding counter-flows model,
with N = 1, while the lower graph labels the 22N internal
states of the system.

If the charge counting is done over the second barrier
(arbitrary choice), the counting matrix Mz is:

Mz =




Γ1Γ2z Γ1 Γ2z 1
(1 − Γ1)Γ2z 1 − Γ1 0 0
Γ1(1 − Γ2) 0 1 − Γ2 0

(1 − Γ1)(1 − Γ2) 0 0 0


 . (22)

In this matrix, the states are ordered from state-
A (upper-left) to state-D (lower-right). The eigenvalues
of Mz can be easily found and the cumulant generat-
ing function St(z) is proportional to the logarithm of the
largest one:

St(z)/t = ln

(
1 − Γ1 + Γ2 − Γ1Γ2z

2

+

√(
1 − Γ1 + Γ2 − Γ1Γ2z

2

)2

− (1 − Γ1) (1 − Γ2)

)
.

(23)

The symmetry of this expression between Γ1 and Γ2 il-
lustrates that the charge counting can be performed on
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C2/t =
Γ1Γ2Γ

2
12(ρL + ρR) − (ρ2

L
+ ρ2

R
)Γ 2

1 Γ 2
2 (2 − Γ12) − 2ρLρRΓ1Γ2(Γ

2
1 + Γ 2

2 − Γ1Γ2(Γ1 + Γ2))

Γ 3
12

. (26)

F3(eV � kBT ) =
Γ 4

1 + Γ 4
2 + Γ 3

1 Γ 3
2 (4 + Γ1 + Γ2) + Γ 2

1 Γ 2
2 (6 − 3Γ1 − Γ 2

1 − 3Γ2 − Γ 2
2 ) − Γ1Γ2(2Γ 2

1 + Γ 3
1 + 2Γ 2

2 + Γ 3
2 )

Γ 4
12

(27)

any side of the system without changing the result. As ex-
pected, the single barrier FCS is recovered if one barrier
is transparent (Γ1 or Γ2 = 1). Equation (23) extends two
other results first obtained by de Jong in the Boltzmann-
Langevin formalism: the first and second cumulants of a
double barrier [27] and the FCS of a double tunnel barrier
(Γ1Γ2 � 1) [24]. It is interesting to relate the classical ex-
pression equation (23) with the one derived by a full quan-
tum treatment of the double barrier system. As described
below, such a precise connection may be established in the
tunneling regime where both transmissions Γ1 and Γ2 are
very small. A generalization for arbitrary transmissions is
presented in the appendix.

For arbitrary fillings ρ
L

and ρ
R

of the electrodes,
the counting matrix Mz has no zero element and the
eigenvalue problem is still manageable but more tedious.
Considering instead the 2 × 2 counting matrix associ-
ated with one of the two independent submodels (see
beginning of Sect. 2.2) makes the eigenvalue problem
straightforward again. The power expansion method pre-
sented in Section 2.3 is chosen here to derive the cumu-
lants C1, C2 and C3, and integration over Fermi-Dirac
distribution in the electrodes, according to equations (3)
and (4), gives the cumulants K1(eV/kBT ), K2(eV/kBT )
and K3(eV/kBT ). It is useful to define:

Γ12 = Γ1 + Γ2 − Γ1Γ2. (24)

One finds

C1/t = (ρ
L
− ρ

R
)
Γ1Γ2

Γ12
(25)

see equation (26 ) above

For eV � kBT , we find K2/K1 = 2kBT/eV , that is
the well known Johnson-Nyquist thermal noise formula,
more often written SI = 4kBTG where the conductance G
and the current noise power spectral density SI are given
by equation (5).

We focus now on the third Fano factor F3 = K3/K1.
We give below its eV � kBT and eV � kBT limits,
which -as would be expected from a quantum mechanical
derivation (Eq. (21)) – is equal to the normalized noise
power F = K2/K1 in the zero temperature limit (Fano
factor). Figure 6 shows that depending of Γ1 and Γ2,
the third Fano factor changes sign in the low tempera-
ture limit (left Fig. 6) and not in the high temperature
one (right Fig. 6). The insert on the left figure shows
F3 = (1 − Γ1Γ2/Γ12)(1 − 2Γ1Γ2/Γ12) obtained when the

exclusion principle is deactivated between the two barri-
ers. The change of sign is still observed and thus, it can-
not be attributed to correlation inducted by the exclusion
principle inside the conductor.

see equation (27 ) above

F3(eV � kBT ) = 1 − Γ1Γ2(2 − Γ12)
Γ 2

12

= F (eV � kBT ).

(28)
Tunnel limit
The FCS of a double tunnel barrier can be obtained

from the general expression equation (23) for the double
barrier. Nevertheless, it is interesting to derive it with the
Symmetric Simple Exclusion Model with N = 1. For ar-
bitrary fillings ρL and ρR of the electrodes, and charge
counting done over the second barrier, the counting ma-
trix is:

Wz =
(
−Γ2 (1 − ρ

R
) − Γ1 (1 − ρ

L
) Γ1 ρ

L
+ Γ2 ρ

R
z−1

Γ2 (1 − ρ
R
) z + Γ1 (1 − ρ

L
) −Γ1 ρ

L
− Γ2 ρ

R

)
.

(29)
Following Section 2.3, the cumulant generating func-
tion St(z) is proportional to the largest eigenvalue of Wz .
After a few lines of algebra, we find:

St(z)/t = −Γ1 + Γ2

2

+

((
Γ1 + Γ2

2

)2

+ Γ1Γ2

(
ρ

L
(1 − ρ

R
) (z − 1)

+ ρ
R

(1 − ρ
L
)
(
z−1 − 1

))
)1/2

. (30)

We recover the FCS derived in [38], which slightly dif-
fers from the one derived in [39].

Experimental systems
Depending on the elastic or inelastic nature of the bar-

riers, several double barrier systems are traditionally con-
sidered. If we restrict ourselves to elastic barriers, the size
of the island between the barriers is another source of ex-
perimental diversity.

In large but finite-size islands (“quantum island”), the
quasi energy levels are discrete and the generic system de-
scribed above can model each such level. At this stage, it
may be useful to describe in more detail the connection
between a microscopic quantum coherent model for a sin-
gle conducting channel in the presence of a double barrier
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Fig. 6. Third Fano factor F3 = K3/K1 for a double symmetrical barrier. Left figure: Zero temperature limit (eV � kBT )
(insert: the exclusion principle is deactivated between the barriers). Right figure: High temperature limit (kBT � eV ).

in the tunneling limit, and the corresponding SSEP. At
zero temperature, the generating function St(z)/t for the
microscopic quantum model is given by [12]:

St(z)/t = vF

∫ kmax

kmin

dk

2π
ln(T (k)(z − 1) + 1),

where T (k) is the transmission coefficient for an in-
coming electronic wave-function with wave-vector k and
kmax − kmin = eV

�vF
, vF being the Fermi velocity in the

electrodes. For a fully coherent system, T (k) has to obey
the quantum series composition rule for transmission ma-
trices. In the limit of small transmissions T1 and T2, this
yields the well-known Lorentzian resonance profile:

T (k) =
4T1T2

(T1 + T2)2 + 16(k − k0)2l2
,

where l is the distance between the two barriers. In the
limit where eV/� is much larger than the decay rate
γ = vF

2l (T1 +T2) of the resonant level in the central region,
and if the average energy of this level is such that k0 falls
in the interval [kmin, kmax], we may take the k integration
over the whole real axis, yielding exactly equation (30) in
the special case ρL(ε) = 1 and ρR(ε) = 0, provided we
set Γi = vF

2l Ti (i = 1, 2) [24]. So in the tunnel limit, the
simple SSEP may be viewed as the result of integrating
the contributions of quantum-mechanically coherent elec-
trons over an energy window larger than the width �γ
of a discrete level inside the cavity delimited by the two
barriers.

When the island is infinite in the transverse direction
(“Quantum well”), the energy levels become a continu-
ous energy band: the generic model still applies but the
integration equation (3) should be done versus wavevec-
tors [1] k‖ (longitudinal) and k⊥ (transverse direction)
rather than versus the energy ε.

Finally, when the island is small (“Quantum dot”) or
when it consists in localized states (dopants, impurities...),

Fig. 7. Left figure: Energy levels associated with the two sites
in interaction. Right figure: The three internal states of the
system. Each black disk represents an electron and each circle
represents an available site with spin degeneracy.

the energy levels are well separated but one can no longer
neglect that electrons entering or leaving the island are
changing its Coulomb electrostatic energy, which induces a
shift of the energy levels (“charging effect”). We illustrate
in the simple example below how to account for such an
effect.

Charging effect
We consider now two localized states tunnel-coupled

to two electrodes with Fermi-Dirac fillings ρ
L
(ε) and ρ

R
(ε)

(Fig. 7). The coupling is elastic (for example, it could be
due to some overlapping of the localized state wavefunc-
tion with electrodes) and characterized by two symmet-
rical transmission coefficients Γ1, Γ2 � 1. So we assume
that an electron can be transfered from one electrode to
the other by a sequential tunneling process through one of
the two localized states. Because of large on-site Coulomb
interaction, at most one electron, with spin up or down,
can be trapped on each localized state. To model intersite
charging effects, we assume that the localized sites contri-
bution to the energy is Eloc(n1, n2) = ε1n1+ε2n2+Un1n2

where n1 and n2 are the occupation numbers, ε1 and ε2
are the single level energies and U > 0 is an electrostatic
energy. Such a model has already been proposed [40] to
explain experimental data. Our purpose in this section is
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Wz = Γ




−4ρL(ε0) − 4ρR(ε0) (1 − ρL(ε0)) + (1 − ρR(ε0))z 0
4ρL(ε0) + 4ρR(ε0)/z − 2 + ρL(ε0) − 2ρL(ε+) + ρR(ε0) − 2ρR (ε+) 2(1 − ρL(ε+)) + 2(1 − ρR(ε+))z

0 2ρL(ε+) + 2ρR(ε+)/z − 4 + 2ρL(ε+) + 2ρR(ε+))


 (31)

Fig. 8. Two sites interacting via the Coulomb electrostatic
repulsion and tunnel coupled to electrodes (see text). Left fig-
ure: Normalized current C1/(t4Γ/3). Central figure: Normal-
ized noise power C2/C1. Right figure: Third Fano factor C3/C1.

to illustrate how exclusion models can deal with charg-
ing effect. For the sake of clarity, we therefore restricted
ourselves to degenerated energy levels ε0 = ε1 = ε2 and
Γ = Γ1 = Γ2. This system has three internal states, corre-
sponding to 0, 1 or 2 trapped electrons (States A, B and C
in Fig. 7) and the corresponding counting matrix is

see equation (31 ) above

where ε+ = ε0 +U . With a software like Mathematica, the
analytical equations for the cumulants C1, C2 and C3 are
easily derived by the series expansion method (Sect. 2.3).
These expressions are not reported here but have been
used to generate the normalized cumulants of Figure 8 for
parameters ε0/kBT = 10, U/kBT = 20 and Γ � 1. The
first cumulant C1 is normalized by the averaged transfer
charge 4.t.Γ/3 expected in the high driving voltage limit.

Similar stochastic classical models have also been stud-
ied to account for transport through quantum dot above
the Kondo temperature (see for example [38,41,42]). Be-
low this temperature, classical models are no longer ex-
pected to be meaningful.

3.3 Multiple barriers: from double wells to diffusive
islands between tunnel contacts

In this section we discuss the general SSEP model pre-
sented at the end of Section 2.2 , (N −1) identical barriers
of transmission Γ � 1 are sandwiched between two tun-
nel barriers of transmission Γ

L
and Γ

R
. Although a single

chain of sites is considered, this situation is expected to
account for physical systems with a large number of trans-
verse conduction channels. This is justified a-posteriori by
the perfect quantitative agreement between the predic-
tions of the classical models and the full quantum mechan-
ical derivation for multi-channels systems (see below).

Writing down that the mean current and its vari-
ance do not depend on the barrier over which they

are measured, we showed in [2] how to derive the first
two cumulants:

C1/t =
Γ

N1
(ρ

L
− ρ

R
) (32)

C2/t =
Γ

N1

[
(ρ

L
+ ρ

R
− 2ρ

L
ρ

R
)

− 2
3
(ρ

L
− ρ

R
)2

(
1 − 1

2N1
− λ

2N1
2 (N1 − 1)

)]
(33)

with N1 = N − 1 + Γ
Γ

L
+ Γ

Γ
R

and λ =
Γ
Γ

L

(
Γ

Γ
L
− 1

)(
2 Γ

Γ
L
− 1

)
+ Γ

Γ
R

(
Γ

Γ
R
− 1

)(
2 Γ

Γ
R
− 1

)

For arbitrary N1, the third cumulant C3 can be derived
from the third order series expansion of the cumulant gen-
erating function given in [2] (Eq. (C.14)). We give below
the third Fano factor in the large N1 (or N) limit.

Experimental systems
Three limiting cases of the above general formula could

be relevant to mesophysics.
• Firstly, for N = 2, the system is a triple barrier

with three different tunnel transmissions. Such systems
have been widely studied as a model for double localized
state, coupled quantum dot and double well structures (for
example see [1,43]). It would be interesting to compare our
predictions to the experimental results.

• In the limit N → ∞ for constant Γ , Γ
L

and Γ
R
,

the relative contribution of the two out-most barriers is
vanishingly small and we obtain a diffusive medium in
good contact with the electrodes. Section 3.4 addresses
this purely diffusive regime and gives its FCS. At this
point, we just point that C1 and C2 are in agreement
with the one found by alternative condensed-matter for-
malisms [22,27,44–48]. It is specially interesting to note
that a one dimensional classical stochastic model is able to
reproduce current fluctuations arising in a 3 dimensional
coherent diffusive conductor.

• The limit N → ∞ for constant Γ , NΓ
L

and NΓ
R

ac-
counts for a diffusive island between two tunnel contacts,
the resistances of which are comparable to the resistance
of the diffusive island itself. We define as qL = Γ/(NΓL)
and q

R
= Γ/(NΓ

R
) the ratios of the left and right con-

tact resistances over the diffusive island resistance. The
large q

L
and q

R
limit accounts for simple or double tunnel

barriers while vanishing values of q
L

and q
R

account for a
purely diffusive medium.

The normalized noise power F (Eq. (6)), is found to
be, for an arbitrary temperature:

F =
K2

K1
=

2kBT

eV
(1 − s) + s coth

(
eV

2kBT

)
(34)



538 The European Physical Journal B

Table 2. First cumulants Cn for diffusive medium for arbitrary filling of the electrodes, and low and high temperature normalized
cumulants Kn/K1. (X = (ρL − ρR) and Y = (ρL + ρR − 1)).

Kn/K1 Kn/K1

n Normalized cumulants: Cn
(tΓ/N)

for for

kBT � eV kBT � eV

1 X 1 1

2
[
3 − X2 − 3Y 2] /6 1

3
2kBT

eV

3 X3/15 + XY 2 1
15

1
3

4
[−9X4 + X2 (

7 − 462Y 2) − 105Y 2 (−1 + Y 2)] /210 − 1
105

2kBT
3eV

5 4X5/105 + XY 2
(−3 + 4Y 2

)
+ X3

(−1 + 120Y 2
)
/21 − 1

105
− 1

5

6 [−20X6 − 33X4
(−1 + 244Y 2

) − 231Y 2
(
3 − 7Y 2 + 4Y 4

)−
11X2

(
1 − 618Y 2 + 1044Y 4

)
]/462 1

231
− 2kBT

5eV

with

s =
1
3

+
2
(
q3

L
+ q3

R

)

3 (1 + q
L

+ q
R
)3

. (35)

The well known noise power of double tunnel barri-
ers [1,49,50] and diffusive media [22,27,44–48] are recov-
ered in the large and small qL , qR limits. The third Fano
factor is found to be:

F3 =
K3

K1
= 1 +

kBT

eV
3 (s − 1 − 2f) coth

(
eV

2kBT

)

+
f − 3(s − 1)/2 + 2f

[
cosh( eV

2kBT )
]2

[
sinh( eV

2kBT )
]2 (36)

with

f = − 3
10

+ 3s (s − 1/2)−
6(q5

L
+ q5

R
)

5(1 + q
L

+ q
R
)5

(37)

Equation (36) bridges continuously between two sim-
ple situations: double tunnel barriers (large q

L
, q

R
) and

diffusive media (small q
L
, q

R
) for which we also recover

known results [17,23]. In the low and high temperature
limits, we found:

F3(eV � kBT ) = 1 + 2f

F3(eV � kBT ) = s = F (eV � kBT ). (38)

The high temperature skewness is equal to the low tem-
perature noise power, as would be expected from a fully
quantum treatment (see Eq. (21)).

3.4 Diffusive medium

In this section, we consider a diffusive medium with good
contacts to the electrodes.

We first consider the SSEP model in the N → ∞ limit,
which is enough to account for a purely diffusive behavior.
At the end of this section, we consider the cross-over from
a ballistic to diffusive conduction. To do so, the counter-
flows model will be required.

SSEP diffusive medium
In our previous paper [2], we detail the derivation of

the FCS for SSEP models in the N → ∞ limit and we shall
only summarize the results here. The cumulant generating
function St depends on N , z, ρL and ρR but to first order
in 1/N , St turns out to depend only on a combination ω
of these parameters:

ω =
(z − 1)(ρLz − ρR − ρLρR(z − 1))

z
. (39)

Consequently, to first order in 1/N one can write:

St/t =
Γ

N
R(ω) (40)

where the expression of R(ω) has been conjectured. Thus,
if the FCS is known for two arbitrary fillings of the elec-
trodes, then it can be deduced for any fillings or at any
temperature.

Based on the exact derivation of the first 4 cumulants,
we conjectured that for ρL = ρR = 1/2, the statistics
of current fluctuations is Gaussian (at order 1/N). This
fully determines R(ω) and thus the current statistics at a
arbitrary fillings ρ

L
and ρ

R
:

St/t =
Γ

N

[
log(

√
1 + ω +

√
ω)

]2
. (41)

This expression is identical to the one found at zero
temperature by [15] and at arbitrary temperature by [17]
(and by [51] with minor discrepancies). Table 2 gives
the first cumulants Cn, Kn/K1 for kBT � eV and for
kBT � eV . Right/Left symmetry and particle/hole sym-
metry suggest the change of parameters: X = (ρ

L
− ρ

R
)

and Y = (ρ
L

+ ρ
R
− 1). Agreement is found with the first

four cumulants which can be easily derived from [23] (af-
ter correcting a typo: the last x in equation (24) should
be an x1).

Ballistic-diffusive cross-over
We now consider a counter-flows model with uniform

symmetrical transmission coefficients Γ in the bulk of the
conductor (Γ = Γ

(→)
i = Γ

(←)
i for 1 < i < N + 1), unity
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Fig. 9. Third Fano factor K3/K1 in a ballistic/diffusive
medium parametrized by the ratio L/Lelast of the conductor’s
length L over a elastic mean free path Lelast (counter-flows
with N = 8). The two lines correspond to known limit for
L/Lelast � 1 (continuous line) and for L/Lelast � 1 with
eV � kBT (pearly line).

transmission at the boundaries (Γ (←)
1 = Γ

(→)
1 = Γ

(←)
N+1 =

Γ
(→)
N+1 = 1), and we consider the N → ∞ limit taken at

constant (1−Γ )(N−1). We can define the mean free path
Lelast of a single electron as 1/(1 − Γ ) and the length
L of the conductor as N − 1. Then (1 − Γ )(N − 1) =
L/Lelast � 1 corresponds to a ballistic conductor while
L/Lelast � 1 to a diffusive one [28,52]. We explore the
third Fano factor F3 = K3/K1 versus both the ballistic-
diffusive cross-over and the thermal (kBT � eV ) - shot
noise (eV � kBT ) cross-over. At zero temperature, it was
shown [26] that N as small as 8 gives a correct picture of
the skewness, even in the diffusive limit. We performed a
numerical simulation of such a small N by solving numer-
ically the largest eigenvalue of the counting matrix. Fig-
ure 9 shows F3(L/Lelast, eV/kBT ). For comparison, the
continuous line is calculated from the analytical results in
the diffusive limit and good agreement is found with the
numerical estimation. This is an interesting result, which
shows a tendency of the simple exclusion model to repro-
duce the same FCS as for a larger class of models. This
raises the question of trying to identify more precisely the
key features which are required for a stochastic model to
yield this FCS. The pearly line corresponds to a single
scatterer with the same conductance as the system in the
low temperature limit. As L/Lelast → 0 (L may be arbi-
trary large), the system is expected to converge to such a
point scatterer limit and a good agreement is found with
the simulation. Good agreement is also found with Monte-
Carlo simulations performed along the ballistic-diffusive
cross-over at zero temperature [26].

4 Concluding remarks

In this paper, we have checked explicitly that the FCS
of purely classical stochastic models with a local exclu-
sion constraint coincides with the FCS of a large class of

quantum mechanical microscopic models where the cur-
rent flows between two reservoirs. In particular, no restric-
tion on the system size seems to be necessary, since this
coincidence appears for a small number of tunnel barriers,
as well as in the limit of a diffusive medium composed of an
arbitrary large number of such barriers. The two key com-
mon ingredients to both types of models are the stochastic
nature of scattering processes and the constraint removing
doubly occupied sites, imposed by the Pauli principle. The
first ingredient establishes a very interesting difference be-
tween classical Hamiltonian mechanics, where diffusion is
a chaotic but deterministic process, and quantum mechan-
ics, where an intrinsic notion of probability arises. This
distinction is the same as the difference between ray and
wave optics. As shown in [53], the crossover from the first
regime to the second occurs when the typical time spent
by a wave-packet in the system becomes larger than the
Ehrenfest time associated to the spreading of this wave-
packet induced by the underlying chaotic dynamics. Our
stochastic models require physical systems dominated by
diffractive scattering.

This work raises the question of the role of space di-
mensionality in the FCS of classical exclusion models. It
would also be very interesting to extend the classical ap-
proach in terms of exclusion models to multi-terminal ge-
ometries. Such generalizations have been considered in
a fully quantum-mechanical treatment of diffusive sys-
tems [47], or in the semi-classical Boltzmann-Langevin ap-
proach [48]. These works have so far focused on the cor-
relation matrix of the integrated charges flowing through
each contact during a finite time interval. A natural ques-
tion is whether simple classical exclusion models are able
to generate these results for the second order cumulants.
The computation of higher-order cumulants in multi-
terminal geometries is another interesting open question.

5 Appendix: Quantum treatment of a double
barrier

We consider here the quantum version of the calculation
for a double barrier of Section 3.2, but adapted to the case
where transmissions T1, T2 are not assumed to be small.
Our starting point is the composition rule for the series of
two barriers:

t =
t1t2

1 − r′1r2
=

t1t2
1 − |r1||r2|eiφ

(42)

where Ti = |ti|2, and |ti|2 + |ri|2 = 1. We have seen that
when both T1 and T2 are small, integrating over the
phase φ of r′1r2 with a uniform weight yields the FCS of the
counter-flows model, in the limit where Γ1, Γ2 � 1, which
coincides with the FCS of the Symmetric Simple Exclu-
sion Model for a double barrier. This integration over the
phase-shift φ is motivated in this case by the fact that |t|2
exhibits a sharp resonance as a function of φ. So even for
a single coherent channel, a rather small voltage drop in-
duces an energy spread for the incoming electrons which
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is larger than the energy width of the resonance, thereby
justifying the φ integration.

When Ti’s are no longer small, |t(φ)| becomes a rather
smooth function of φ, and resonances tend to disappear,
since the inner regions between the barriers is now well
coupled to reservoirs. For a single channel, averaging
over φ takes place only if:

eV � �
2kF

ml
. (43)

For smaller voltages, the FCS becomes a binomial law
obtained by the quantum series composition rule equa-
tion (42), where the phase-shift is taken at the Fermi level.
In this case, it is clear that the FCS of the counter-flows
model given by equation (23) does not agree with the full
quantum treatment, since the former has lost all informa-
tion on phases of reflection coefficients.

What happens in a situation where φ-averaging makes
sense? Besides the single channel case, in the regime of
equation (43), we have in mind a coherent system with
a large number of transverse conduction channels. For
a given value of the total single particle energy, a large
spread in the longitudinal wave-vector k‖ is obtained by
varying its transverse component k⊥. We assume clean
interfaces, with no disorder along the barrier so that the
potential seen by electrons may be decomposed as a sum
V (r) = V (r‖) + V (r⊥). For this reason, the system we
consider is quite different from the chaotic cavity studied
in references [1,25]. The scattering matrix of such system
is diagonal in the same basis as for the conduction chan-
nels of the reservoirs, and we neglect any dependency of
coefficients ri, ti on the longitudinal wave-vector k‖. The
phase entering in expression (42) is then equal to 2k‖l.
The FCS is given by:

St(z)/t =
eV

h
N⊥

1
2πi

×
∮

du

u
ln

(
1 +

T1T2

1 + R1R2 −
√
R1R2(u + u−1)

(z − 1)
)

(44)

where u ≡ eiφ, N⊥ is the number of transverse conduction
channels, and the integral is along the unit circle in the
complex plane.

When z is real and larger than 1, the logarithm in this
integral exhibits a branch cut along the interval [u1, u2]
illustrated on Figure 10, with:

u1 =
a −

√
a2 − 4
2

, a =
2b(z)√
R1R2

(45)

u2 =
√
R1R2 (46)

We have defined b(z) as:

b(z) =
1 + R1R2 + T1T2(z − 1)

2
. (47)

Note that the pole at u = 0 turns out to have a vanishing
residue.

Fig. 10. Location of the branch cut singularity in the com-
plex u plane, while computing integral (44). This analytic
structure corresponds to the case where z is real and larger
than 1.

We find then:

St(z)/t =
eV

h
N⊥ log

(
u2

u1

)
, (48)

and finally:

St(z)/t =
eV

h
N⊥ log

(
b(z) +

√
b(z)2 −R1R2

)
, (49)

which is exactly proportional to the result equation (23)
obtained for the FCS of the counter-flows model.
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