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Abstract – We discuss a recent experiment in which the spectrum of the vortex line density
fluctuations has been measured in superfluid turbulence. The observed frequency dependence
of the spectrum, f−5/3, disagrees with classical vorticity spectra if, following the literature, the
vortex line density is interpreted as a measure of the vorticity or enstrophy. We argue that the
disagrement is solved if the vortex line density field is decomposed into a polarised field (which
carries most of the energy) and an isotropic field (which is responsible for the spectrum).
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Motivation and aim. – Recent experiments have
explored similarities and differences between turbulence
in classical, ordinary fluids and turbulence in He II
(superfluid turbulence). Superfluid turbulence consists
of a tangle of quantised vortex filaments; it is usually
characterised (in both experiments and numerical simula-
tions) by the vortex line density L (defined as the vortex
length per unit volume). Superfluid turbulence can be
generated in many ways: heat currents [1–3], vibrating
wires [4], oscillating grids [5] or spheres [6], towed
grids [7], bellows [8,9], rotating propellers [10,11] and
ultrasound [12]. Superfluid turbulence is also tackled in
the slightly different context of superfluid 3He-B [13,14].
The current understanding of superfluid turbulence at

the relatively high temperature is the following. According
to experimental [10,15], theoretical [16] and numerical [17]
results, at sufficiently large scales in the inertial range, the
normal fluid and the superfluid components of He II are
strongly coupled, the superfluid and normal fluid velocities
are matched, vs ∼ vn, and their energy spectra obey the
classical Kolmogorov law k−5/3 (where the wave number
k and the frequency f are related by k= f/V , where V is
the mean flow).
In a recent experiment, Roche et al. [11] measured the

spectrum of the fluctuations of the vortex line density L
in turbulent superfluid helium 4He at T = 1.6K and found
a clear f−5/3-dependence. Our aim is to reconcile this
observation with the current understanding of superfluid

turbulence and the interpretation (which is quite common
in the literature) of the vortex line density L as a measure
of the superfluid vorticity, ωs = κL, where κ≈ 10

−7m2/s
is the quantum of circulation. Under this interpretation,
the f−5/3 spectrum observed by Roche et al. [11] seems to
contradict the scaling of vorticity observed in classical
turbulence, which is a flat or slowly decreasing frequency
spectrum (see, for example, [18,19] and references within).
To be more precise, what was actually measured in

ref. [11] is the vortex line density corrected by a sine
squared prefactor to account for the orientation of each
vortex line (as explained in ref. [3] for example): the
component of a vortex line parallel to the direction of
sound propagation does not contribute to the second
sound attenuation at first order. The natural interpreta-
tion of the measured signal is therefore the magnitude of
the vorticity corrected by a prefactor calculated with the
orientation of the vorticity vector. Using the DNS dataset1

of Gotoh et al. [20], we have checked that the correction
introduced by this prefactor has only a small contribution
to the slope of the spectrum of the magnitude of the
vorticity in classical turbulence. This still leaves us with
a major discrepancy between the classical vorticity spec-
trum and the steeper f−5/3 decrease which was observed.

1Data were downloaded from International Computational Fluid
Dynamics database, hosted by the Cineca supercomputing center,
Bologna, Italy (http://cfd.cineca.it/).
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In bringing together the current understanding of
superfluid turbulence with the observed spectrum of L,
we also need to make sure that the interpretation of all
measurements performed in ref. [11] using a pressure
sensor and a second sound detector are consistent with
each other. In fact, at first sight there seems to be an
inconsistency between the mean vortex line density and
the energy of the flow estimated from the measured
velocity.
For a mean velocity V ≈ 1m/s at T = 1.6K, Roche

et al. [11] report a mean vortex line density L correspond-
ing to an average intervortex spacing δ:

δ = 1/
√

L≈ 4× 10−6m (1)

from which we estimate backwards:

L= 1/δ2 ≈ 6× 1010m−2. (2)

The kinetic energy per unit volume of the same flow is

K =
1

2
ρnv

2
n+
1

2
ρsv

2
s . (3)

If the normal fluid and the superfluid are indeed coupled,
vn ≈ vs, and if we assume that this velocity is approxi-
mately Vrms = 0.3m s

−1 (corresponding to the mean flow
V = 1ms−1 and the turbulence intensity of 30% recorded
for this mean flow in the experiment), we have

K ≈
1

2
(ρn+ ρs)V

2
rms =

ρ

2
V 2rms = 6.5 Jm

−3, (4)

where ρ= ρs+ ρn = 145 kgm
−3. Since ρn < 0.2ρs, this

energy K is approximately equal to the superfluid kinetic
energy. Let us assume that the kinetic energy per unit
volume, K, is approximately equal to the kinetic energy
per unit length, E , times the length per unit volume L:

K ≈EL. (5)

The kinetic energy per unit length is obtained in cylin-
drical coordinates (r, φ, z) by integrating the square
of the velocity field κ/(2πr) around a straight vortex
line (set along the z-direction) from the radial distance
r= a≈ 10−10m (the vortex core radius) to some upper
cutoff b:

E =
ρs
2

∫ 2π

0

dφ

∫ b

a

r
( κ

2πr

)2

dr=
ρsκ

2

4π
ln (b/a). (6)

If we take b= δ, using ρs = 122 kgm
−3 at T = 1.6K, we

have
E ≈ 1.0× 10−12 Jm−1, (7)

thus
L≈K/E = 6× 1012m−2, (8)

which is much bigger than the value of L from second
sound measurements, L= 6× 1010m−2. This second
apparent inconsistency must be solved, too.

The following model which we propose to solve these
inconsistencies may not be the final answer. Nevertheless,
we think that the exercise of putting together a coher-
ent scenario with the experimental information which is
available at this stage is a valuable exercise which should
stimulate further work and bring us closer to the correct
solution of the puzzle.

Model. – The model which we propose to solve the
puzzle described in the previous section has two key
features: the decomposition of the vortex line distribu-
tion into a “polarised” field and an “unpolarised” (or
“isotropic”) field, and the assumption that the unpolarised
field has some statistical properties of a passive vector
field. We stress that our interpretation is preliminary.

Decomposition of the vortex line density. Since the
vortex core radius is many orders of magnitude smaller
than δ or any other length scale of interest in the flow,
we follow Schwarz [21] and describe vortex lines as space
curves s(ξ, t), where ξ is arclength and t is time. The
quantity s′ =ds/dξ is the unit vector at the point x= s in
the tangent direction along the vortex line.
Consider a small cubic box ∆(x) of size ∆> δ and

volume ∆3 centred around the point x. We define the
coarse-grained superfluid vorticity field as

ωs(x) =
κ

∆3

∫

∆(x)

s′dξ. (9)

This definition corresponds to the same coarse-graining
procedure which was used in ref. [22] in a numerical
calculation of a vortex tangle driven by an ABC normal
flow to show that the (coarse-grained) superfluid vorticity
matches the vorticity of the normal flow.
Note that ωs is nonzero only if the vortex lines are

spatially organised. If the vortex lines point randomly in
all directions, then each Cartesian component of ωs is zero,
because in each direction oriented vortex strands cancel
each other out when summed algebraically.
It is easy to check that the magnitude of ωs is less than

κ times the local vortex line density L:

|ωs(x)|= |
κ

∆3

∫

∆(x)

s′dξ|<

κ

∆3

∫

∆(x)

|s′|dξ =
κ

∆3

∫

∆(x)

dξ = κL(x), (10)

because |s′|= 1.
From the coarse-grained superfluid vorticity we can

define the (local) polarised vortex line density L‖:

κL‖(x) = |ωs(x)|. (11)

Since
L‖(x)<L(x) (12)

the missing part is a field which we call L×(x) and we
have the (local) decomposition

L(x) =L×(x)+L‖(x). (13)
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The smoothed field L‖ filters the vortex tangle in k
space, getting rid of short-wavelength Kelvin waves on the
same vortex line. It also accounts for cancellation effects
arising from vortex lines oriented in opposing directions.
By construction, L‖ is sufficiently organised that it defines
the coarse-grained superfluid vorticity field ωs . Thus, L‖
reflects the superfluid velocity field in the inertial range
at scales larger than ∆. At scales smaller than ∆ the
superfluid vorticity field L‖ is clearly not defined.
Vice versa, L× =L−L‖ contributes to the vortex line

density but not to the superfluid vorticity and reflects
the randomly oriented vortex lines. Note that we have
not made any assumption about the relative amount
of wiggliness of L‖ and L×. Notice that L× does not
necessarily consist only of small loops (left over by vortex
reconnections for example) or high-energy Kelvin waves
(k≫∆−1). Long filaments, provided they are randomly
oriented with respect to their neighbours (so that they do
not add up vortex length in the same direction), can be
part of L×.

Passive vectors. The second feature of our model is
the assumption that the unpolarised field L× has some
statistical properties of a classical passive vector field.
It is well known [23] that passive vectors have a power
spectrum which obeys the f−5/3 law, and this is our
explanation of the observed power spectrum of the vortex
line density.
At first it may seem contradictory to expect L‖ to corre-

spond to an active field while assuming a passive nature for
L×. We now argue that this active/passive distinction may
result from a fundamental property of superfluid vortices
which makes them different from classical vortices.
In a classical fluid [24] the local time derivative of

the vorticity is the combination of advection, (v ·∇)ω,
and stretching, (ω ·∇)v. An example of the latter is the
stretching of a classical vortex along its main axis which
elongates it while squeezing it transversally, resulting in
an increase of vorticity. In the superfluid vortex stretching
does not occur because the radius of the vortex core
is fixed, determined by quantum-mechanical constraints
on the rotation. Superfluid vortices can become longer
(for example, if energy is fed from the normal fluid,
or, at T = 0, if the geometry changes keeping the total
kinetic energy constant), but their core is rigid, thus they
remain slender with respect to any typical turbulence
scale. Superfluid vortex dynamics thus differs from the
dynamics of classical vortices (for example, see [24,25]).
Nevertheless, when superfluid vortices are assembled in
polarised bundles, the classical vorticity enhancement that
is described above can still be reproduced by stretching
the whole bundle, as if vortices were material lines. For
example, axisymmetric and non-axisymmetric oscillations
of superfluid vortex bundles in the form of waves are
known in the literature [26]. It is therefore reasonable
to expect that the field ωs, which results from polarised
vortices, will mimic a classical active vorticity field at large
enough scales.

We now turn to the stretching of an unpolarised tangle
by a large-scale velocity field. If, as modelled above, super-
fluid vortices behave as material lines, it is also reasonable
to expect that the tangle will remain unpolarised, and,
due to the fluid incompressibility, the total length of lines
will remain unchanged: in other words, L× will be simply
transported by the coarse-grained velocity.
Viceversa, it is reasonable to assume that the high

density and large density fluctuations of L× have little
impact on the dynamics of the polarised field L‖ or ωs,
that is to say that L× does not advect L‖ at scale large
than ∆ (where L‖ is defined). This must be the case,
because the velocity field induced by the unpolarised field
must be very short ranged, probably 1/r2, caused by
multipolar sources with no contribution at first order 1/r.

Consistency with measurements. –

The spectrum of the polarised field. Our model is
consistent only if we can show that the polarised vortex
line density L‖ gives a negligible contribution to the
spectrum below 1 kHz, which is the observed second sound
frequency range used by Roche et al.
Following what said in the introduction, we approximate

the second sound spectrum P‖ arising from L‖ as a white
noise signal up to a viscous cutoff corresponding to few
times the frequency of the Kolmogorov length scale η:

P‖ =
L2‖−L‖

2

V /(4η)
. (14)

The denominator is the full frequency span of an
ideal second sound probe. Equation (14) represents the
(constant) power spectral density at all frequencies below
the cut-off frequency. An ideal second sound probe is fixed
in space. The smallest time scales which are visible to
the probe are produced by the smallest flow structures
(of typical size 4η) which are advected past the probe at
the local fluid velocity (approximated by the mean flow
velocity). The inverse of this time scale gives the highest
frequency of the signal seen by the ideal probe, which is
indeed the frequency span.
Let us find an upper bound for P‖. In classical turbu-

lence, both experimental [27] and numerical studies
suggest that the vorticity ω roughly satisfies

ω2 ∼ 2|ω|
2
. (15)

If we assume that this classical relation applies to the
normal fluid in the experiment [11], and if we make
the further assumptions that normal fluid and superfluid
are locked, ωs ≈ ωn, with ωs = κL‖, we have

L2‖ ≃ 2L‖
2
. (16)

Thus,

P‖ ∼
2η

V
L2‖ =

2η

V

(

μκ2L2‖

μκ2

)

, (17)
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where ν = μ/ρ is the kinematic viscosity and μ the viscos-
ity of helium.
A bound for P‖ can be found by noticing that the total

rate of dissipation of kinetic energy per unit volume in
turbulent He II, ρǫ, should be larger than the dissipation
μω2n which arises from the regular viscous dissipation in
the normal fluid alone:

μω2n < ρǫ, (18)

where, since ωs ≈ ωn,

μω2n ≈ μω
2
s = μκ

2L2‖, (19)

Using the kinematic viscosity ν = μ/ρ, we find

P‖ <
2η

V

( ǫ

νκ2

)

. (20)

In the next section, we present different ways of evaluating
the Kolmogorov length η at T = 1.6K and show that they
all give the same order of magnitude for η. For clarity, we
use the following classical expression (with the kinematic
viscosity defined above):

η≈ (ν3/ǫ)1/4. (21)

We have

P‖ <
2

κ2V

(

ǫ3

ν

)1/4

, (22)

To evaluate this expression, we estimate the rate of
kinetic energy dissipation ǫ at the integral scale, ℓ0 ≈
10−2m, for which V0 ≈ Vrms = 0.3m/s, and obtain

ǫ≈
V 30
ℓ0
≈
V 3rms
ℓ0
≈ 2.7m2 s−3, (23)

At T = 1.6K, ν ≈ 8.9× 10−9m2 s−1 and we obtain P‖ <
4.3× 1016m−4 s, which is much less then the observed
spectral density P = 2× 1019m−4 s and is just above the
instrumental noise level 0.5× 1016m−4 s (see fig. 4 of
ref. [11]). We conclude that the contribution of L‖ to the
observed spectrum is negligible.

The Kolmogorov length. We estimate the Kolmogorov
length from the expression η= (ν⋆3/ǫ)1/4. In principle we
can define three possible kinematic viscosities ν⋆ in our
problem (all numerical values refer to T = 1.6K). The first
is based on the total density ρ= ρn+ ρs = 145 kgm

−3 and
is ν = μ/ρ= 8.9× 10−9m2 s−1. The second is based on the
normal fluid density ρn = 23.6 kgm

−3 and is νn = μ/ρn =
55× 10−9m2 s−1. The third is the efficient kinematic
viscosity ν′ ≈ 20× 10−9m2 s−1 determined from towed-
grid experiments in turbulent He II, see fig. 8 of ref. [15].
Using these three values, we obtain, respectively, η≈
0.7μm, η≈ 3μm and η≈ 1μm. In all cases η is of the
order of magnitude of the intervortex spacing, δ≈ 4μm or
at the most six times smaller. This is consistent with the
argument of Vinen and Niemela [16] that δ and η are likely
to be of the same order of magnitude: the superfluid and
the normal fluid are coupled throughout the inertial range.

The energy. A key feature of our model is that the
unpolarised field L× gives a negligible contribution to the

total energy of the flow compared to the polarised field L‖.
The estimate made in the introduction that the kinetic
energy per unit volume is K ≈ 6.5 Jm−3 clearly refers to
the polarised field L‖, because we obtained it using the
condition vn ≈ vs: in this notation we rewrite

K‖ =
1

2
ρnv

2
n+
1

2
ρsv

2
s ≈
1

2
(ρn+ ρs)V

2
rms =

ρ

2
V 2rms = 6.5 Jm

−3. (24)

Let us estimate the energy contained in the unpolarised
field L×. If we picture L× as a random network of straight
vortex lines, the energy per unit volume can be obtained
following the integral procedure that leads to eq. (6) with
b= δ: we multiply the length per unit volume times the
integral of the square of the velocity field only up to a
radial distance which is of the order of the intervortex
spacing, because at this distance the total velocity fields
of randomly oriented vortices cancel each other out. Using
the numerical value provided in eq. (6) and eq. (2) for
L× ≈L, we get

K× ≈
ρsκ

2

4π
L× ln (δ/a)≈ 0.06 Jm

−3≪K‖. (25)

The above integration procedure would not give the
kinetic energy per unit volume arising from the polarised
field L‖, because contributions of different vortex lines
add up rather than cancel each other. This why we
expect K‖≫K× to hold when a sufficient level of vortex
polarisation is reached.
The argument is made more clear if we consider a

cylindrical container of radius h and height h containing
N straight vortex lines aligned along the axis. The number
of vortex lines per unit area is L=N/(πh2) and the
intervortex distance is δ=

√

πh2/N . Suppose that the
vortices are oriented in the same direction (complete
polarisation), forming a vortex bundle, as in a recent
numerical calculation [28]; then the velocity fields of the
vortices add up and create a total solid-body rotation
velocity v=Ωr, where Ω is obtained from

Nκ=

∮

C

v ·dℓ=

∫

S

∇×v ·dS=

∫

S

ω ·dS= 2Ωπh2, (26)

which yields
Ω=Nκ/(2πh2). (27)

The energy per unit volume is

E‖ =
ρsκ

2h2L2

16
. (28)

Now assume the opposite limit, that the vortices are
randomly oriented in the positive or negative direction
along the axis of the cylinder. The energy per unit
volume is

E× =
1

πh3
ρs
2
N

∫ h

0

dz

∫ 2π

0

dφ

∫ δ

a

drr
( κ

2πr

)2

=

ρsκ
2L

8π
ln (1/(La2)). (29)
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(We write it in terms of L rather than N because we want
to take the limit of increasing the density rather than the
number of vortices.) Therefore

E×
E‖
=
2

π

1

Lh2
ln (1/(La2)) =

4

π

δ2

h2
ln (δ/a). (30)

Clearly, the larger is the vortex line density L, the
smaller is E× with respect to E‖ (provided δ > a of course).

Conclusion. – Our model of superfluid turbulence
consists in dividing the tangle in a polarised field L‖ and a
unpolarised field L× such that the total vortex line density
is L=L‖+L×. The polarised field makes up the (coarse-
grained) superfluid vorticity field, such that the two fluids
are coupled (vn ∼ vs) in the inertial range according
to current understanding of superfluid turbulence. The
unpolarised field has some of the statistical properties of
a passive vector field. What is observed with the second
sound probe is mainly L×, not L‖, which, as we have
shown, brings a negligible contribution to the measured
spectrum:

P×≫ P‖. (31)

However, the polarised field L‖ has more energy than L×:

K‖≫K×. (32)

That is why if we try to infer the vortex line density from
eq. (8) we get an unrealistic high value.
The model suggests the following picture of the turbu-

lent tangle in the large scales (upper inertial range): large
fluctuations of the density of vortex line on top of a
small modulation of polarisation which —nevertheless—
controls the velocity field, energy cascade and passive
advection of most of the vortex line density.
We stress that the model which we propose is only

an attempt to combine the information which is avail-
able from the experiment of Roche et al. [11] in a consis-
tent scenario. If the model can be confirmed, the f−5/3

power law dependence of the fluctuations of the vortex
line density reported in [11] should be considered as
the inertial-range signature of the quantum nature of
superfluid turbulence.
A testing ground for our approach would be a turbulent

flow in which the relative amount of polarised and
unpolarised vortex lines can be controlled externally. An
example which springs to the mind is the rotating coun-
terflow turbulence, in which the vortex lines tend to align
along the axis of rotation [29,30]. However, at this stage,
there is only one experiment available to analyse, but
lacks the current good spatial resolution and information
about velocity spectra. Moreover, current work on the
rotating turbulence problem suggests that the relative
amount of polarised and unpolarised vortices is not a
simple function of the rotation and the heat flux which
are applied [31,32]: the isotropic vortex field is continu-
ously fed by the anisotropic one in a way which we do
not model with great certainty. In conclusion, although

we cannot make quantitive predictions at this stage,
rotating turbulence could be a fruitful experiment to
carry out.
Finally, we remark that a decomposition of the vortex

line density field in polarised and isotropic parts, similar
in spirit to what we have done, has been attempted
by Lipniacki [33]. Lipniacki’s theory results in an Euler
equation (motified by the presence of friction) which is
similar to the Hall-Vinen equation for the macroscopic
superfluid velocity [34], which is coupled to a modified
Vinen equation for the (more microscopic and isotropic)
vortex line density L.

∗ ∗ ∗

CFB is supported by EPSRC grants GR/T08876/01
and EP/D040892/1 and P-ER by the ANR grant TSF.

REFERENCES

[1] Zhang T. and Van Sciver S., Nat. Phys., 1 (2005) 36.
[2] Zhang T. and Van Sciver S., J. Low Temp. Phys., 138
(2005) 865.

[3] Barenghi C. F., Gordeev A. V. and Skrbek L., Phys.
Rev. E, 74 (2006) 026309.

[4] Blazkova M., Schmoranzer D. and Skrbek L., Phys.
Rev. E, 75 (2007) 025302.

[5] Charambolous D., Skrbek L., Hendry P. C.,

McClintock P. V. E. and Vinen W. F., Phys. Rev.
E, 74 (2006) 036307.

[6] Jager J., Schuderer B. and Schoepe W., Phys. Rev.
Lett., 74 (1995) 566.

[7] Stalp S. R., Skrbek L. and Donnelly R. J., Phys.
Rev. Lett., 82 (1999) 4831.

[8] Fuzier S., Baudouy B. and Van Sciver S. W., Cryo-
genics, 41 (2001) 453.

[9] Smith M. R., Hilton D. K. and Van Sciver S. W.,
Phys. Fluids, 11 (1999) 751.

[10] Maurer J. and Tabeling P., Europhys. Lett., 43
(1998) 29.

[11] Roche P.-E., Diribarne P., Didelot T., Français
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