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Energy cascade and the four-fifths law in superfluid turbulence

J. Salort1, B. Chabaud1, E. Lévêque2 and P.-E. Roche1
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Abstract – The 4/5-law of turbulence, which characterizes the energy cascade from large to small-
sized eddies at high Reynolds numbers in classical fluids, is verified experimentally in a superfluid
4He wind tunnel, operated down to 1.56K and up to Rλ ≈ 1640. The result is corroborated by
high-resolution simulations of Landau-Tisza’s two-fluid model down to 1.15K, corresponding to a
residual normal fluid concentration below 3% but with a lower Reynolds number of order Rλ ≈ 100.
Although the Kármán-Howarth equation (including a viscous term) is not valid a priori in a
superfluid, it is found that it provides an empirical description of the deviation from the ideal
4/5-law at small scales and allows us to identify an effective viscosity for the superfluid, whose
value matches the kinematic viscosity of the normal fluid regardless of its concentration.

Copyright c© EPLA, 2012

Introduction. – At low temperature, but above the
so-called lambda transition, liquid 4He is a classical fluid
known as He I. Like air or water, its dynamics obeys
the Navier-Stokes equation. When such a fluid is strongly
stirred, its response is dominated by the non-linearity
of the Navier-Stokes equation. The dynamics of such a
system, known as “turbulence”, was first pictured by
Richardson in 1920 and theorized by Kolmogorov in
1941 [1]. The kinetic energy, injected at some large scales,
cascades down across the so-called inertial scales until it
reaches the dissipative scales. It can be derived from the
Navier-Stokes equation that this energy flux across scales
results in skewed distributions for the velocity increments.
This prediction (the only exact result known for turbu-
lence) is sometimes referred to as the Kolmogorov’s 4/5-
law. It is recalled later in this paper.
When liquid 4He is cooled below Tλ ≈ 2.17K (at satu-

rated vapor pressure), it undergoes the lambda phase tran-
sition. The new phase, called He II, can be described
within the so-called two-fluid model [2], i.e. the superpo-
sition of a viscous “normal fluid” and an inviscid “super-
fluid” with quantized vorticity, these two components
being coupled by a mutual friction term. The fraction
ρs/ρn —where ρs and ρn are, respectively, the densities
of the superfluid and normal components— varies with
temperature from 0, at Tλ, to ∞ in the zero-temperature
limit. When He II is strongly stirred, a tangle of quan-
tum vortices is generated. This type of turbulent flow is
characterized as “quantum turbulence” or “superfluid

turbulence”. For an introduction to quantum turbulence,
one may refer to [3,4].
The focus of this letter is on intense turbulence

in He II at finite temperature, i.e. Tλ >T ! 1K. In
such conditions, most of the superfluid kinetic energy
distributes itself between the mechanical-forcing scale
(at ∼1 cm in [5]) and the inter-vortex scale (at ∼4µm
in [5]). Excitations at smaller scales are strongly damped
by the viscosity of the normal component [3]. At scales
larger than the inter-vortex spacing the details of
individual vortices are smoothed out (“continuous” or
“coarse-grained” description) and superfluid turbulence
can be investigated with the same statistical tools as
classical turbulence. An important open question is how
superfluid turbulence compares with classical turbulence.
Experimental studies have revealed differences regard-
ing vorticity spectra [5,6] but also striking similarities
concerning decay-rate scaling [7–10], drag force [11–13]
and k−5/3 scaling for the energy spectrum [14,15]. This
latter is consistent with the existence of an energy cascade
(as described by Kolmogorov’s theory), however no direct
proof has been reported yet, as stressed recently during
the Quantum Turbulence Workshop in Abu Dhabi [16]
(see also the conclusion of [17]).
The main goal of this paper is to test in superfluid

turbulence the characteristic 4/5-law of the energy
cascade. To account for departure from the ideal 4/5-law
at small scales, the classical Kármán-Howarth equation is
assessed. As a side result, it is showed that the superfluid
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Fig. 1: (Color online) Wind tunnel (in blue) in the cryostat (in
gray).

inherits viscosity from the normal component even when
the normal fraction is very low, therefore making the
velocity signal of a superfluid (obtained by an inertial
anemometer like a Pitot tube) hardly distinguishable
from the one of a classical fluid. We consider experimental
velocity fluctuations measurements obtained in a 1m-long
cryogenic helium wind tunnel at high Reynolds number,
as well as results from direct numerical simulations of the
continuous two-fluid model, at lower Reynolds numbers
but fully resolved down to the mean inter-vortex scale.

Local velocity measurements. – Local velocity
measurements have been performed in the far wake of
a disc in the wind tunnel sketched in fig. 1. The disc
diameter ∅d is half the pipe diameter. The probe, located
downstream at x/∅d ≈ 21, was operated both above and
below the superfluid transition, down to 1.56K for which
ρs/ρn ≈ 5.8. The wind tunnel is pressurized by more than
1m of static liquid to prevent cavitation. The turbulence
intensity, τ =

√

〈(v(t)−〈v〉)2〉/〈v〉, where v(t) is the local
flow velocity and 〈.〉 stands for time average, is close
to 4.8%; the mean velocity is 〈v〉= 1m/s. The forcing
length scale, L0, is obtained from the frequency of vortex
shedding: f0 = 〈v〉/L0. This latter is estimated from
the velocity spectrum (see fig. 2). The typical Strouhal
number

St=
f0∅d
〈v〉 =

∅d

L0
(1)

is found close to 0.35 both above and below the superfluid
transition. At T = 2.2K, where liquid helium is a classical
fluid with kinematic viscosity ν = 1.78× 10−8m2/s [18],
the Reynolds number Re= vrmsL0/ν = 1.8× 105. The
Reynolds number based on Taylor microscale is here
approximated by Rλ =

√
15Re≈ 1640.

The local anemometer is the probe labeled as in [15].
It is based on a stagnation pressure measurement (minia-
ture “Pitot tube” probe). It measures the pressure over-
head resulting from the stagnation point at the tip of
the probe, which is pointing upflow. Above the superfluid
transition, the measured pressure pmeas(t) is

pmeas(t) = p(t)+
1

2
ρv2. (2)

Fig. 2: (Color online) Experimental 1D velocity power spec-
trum above and below the superfluid transition. Red line:
T = 2.2K>Tλ at Rλ ≈ 1640. Blue line: T = 1.56K<Tλ. Inset:
velocity probability density distribution above and below the
superfluid transition. Black line: Gaussian distribution.

Following [14], a similar expression can be found for the
measured pressure below the lambda transition using the
continuous two-fluid description of He II:

pmeas(t) = p(t)+
1

2
ρnv

2
n+
1

2
ρsv

2
s , (3)

where vn is the velocity of the normal component and vs is
the velocity of the superfluid component. Yet, physically,
the probe is sensitive to the flux of momentum on its
tip. It is therefore convenient [19] to rewrite the measured
pressure in terms of the “momentum velocity”, $vm, with

ρ$vm = ρn$vn+ ρs$vs, (4)

where ρ= ρn+ ρs. This leads to

pmeas(t) = p(t)+
1

2
ρv2m+

ρnρs
2ρ
(vn− vs)2 . (5)

This equation is similar to the one standing in classical
fluid (eq. (2)) except for an additional term. It has been
argued theoretically [3] and shown numerically [20] that,
in the fully developed turbulent regime, the normal and
superfluid components are nearly locked at inertial scales.
Therefore, (vn− vs)2) v2m and since ρnρs " ρ2, the last
term in eq. (5) can be neglected1.
The calibrations of the probe above and below the

superfluid transition are consistent with each other within
10%. Discrepancies come mainly from experimental
uncertainties. In practice, the calibration obtained below
Tλ, where the signal is cleaner, was used to determine
the mean values obtained in normal fluid. A numerical
4th-order Butterworth low-pass filter is applied to the
velocity time series to suppress the probe organ-pipe reso-
nance [15]. The filtered velocity time series are converted

1When the turbulence intensity τ is small, the same approxima-
tion is obtained with the weaker hypothesis: 〈vs〉= 〈vn〉, i.e. the
normal and superfluid components are locked at large scales [19].
The additional term is of order τ2 at most, and can be neglected.
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Fig. 3: (Color online) Experimental histogram of the longi-
tudinal velocity increments at large and intermediate scales
in a superfluid turbulent flow (T = 1.56K). Solid black line:
Gaussian PDF.

into spatial signals using the instantaneous Taylor’s frozen
turbulence hypothesis [21], i.e. the velocity at location x
is mapped to the velocity at time t, so that

v(x) = v(t) with x=

∫ t

0

v(τ) dτ. (6)

Velocity power spectra and probability distribution
functions (PDF) are estimated from velocity series recast
in space, v(x), and shown in fig. 2. As expected, power
spectra exhibit a Kolmogorov’s k−5/3 scaling and the
velocity PDF is nearly Gaussian. The spectra above and
below the superfluid transition are found nearly identical.
The wave number are normalized by the forcing scale L0
(see above). Let us mention that the observed cut-off at
high k results from the finite resolution of the probes and
not from a dissipative effect.
The longitudinal velocity increments, here along the

streamwise direction, are defined as

δv(x; r) = v(x+ r)− v(x). (7)

The PDF of δv(x; r) for a given separation r is shown
in fig. 3. It is fairly Gaussian at large scale (r≈L0)
and clearly skewed on the negative side at smaller scales
(r≈L0/10). The skewness S(r) is defined as

S(r) =
〈δv(r)3〉
〈δv(r)2〉3/2

, (8)

where 〈.〉 stands for space average. S(r) is shown in the
inset of fig. 4.
Above the superfluid transition, S(r) is known to

be linked to the transfer rate (or flux) of the energy
cascade [22]. Its value at our smallest resolved scale is
fairly compatible with the values (close to −0.23) already
reported in the literature (in the limit of vanishing scale
r); a review of experimental values for 208"Rλ " 2500
may be found in [23]. The negative sign of S(r) is a direct
evidence that energy cascades from large to small scales.
Below the superfluid transition, the value of the skew-

ness is found nearly identical to the value above the super-
fluid transition. This is a strong hint that energy cascades

Fig. 4: (Color online) Experimental third-order velocity struc-
ture function compensated by the 4/5-law (eq. (9)) obtained
in superfluid helium at T = 1.56K (blue circles) and in clas-
sical liquid helium at T = 2.2K (red squares). Inset: skewness
of the distribution of longitudinal velocity increments (same
color code). The smallest abscissa r/L0 = 7× 10

−2 corresponds
to the probe cut-off. The oscillation at large scales is related to
the frequency of the vortex shedding.

in a similar fashion above and below the superfluid tran-
sition. More quantitatively, in classical homogeneous and
isotropic turbulence, the 4/5-law states that

〈δv(r)3〉=−4
5
εr, (9)

where ε stands for the mean dissipation rate of kinetic
energy. This equation is only valid for inertial scales r, at
which cascade dynamics prevails. It is often cited as the
only exact result of classical fully developed turbulence,
i.e. for asymptotically large Re. It is our motivation to test
its validity in quantum turbulence. In our experimental
setting Rλ ≈ 1640 and, therefore, eq. (9) is expected to be
“approached” in a finite inertial range of scales [24].
In order to compare superfluid experimental data to

this classical prediction, ε needs to be estimated at first.
Getting an accurate estimate of ε from experimental data
is not trivial. A common practice is to use the third-order
structure function and assume the 4/5-law. This method
is known to yield reasonable estimates of ε for Rλ # 1000
[25,26]. Since our aim is here to assess the 4/5-law,
we can not use this method directly. However, previous
experiments have shown that ε does not change when
the superfluid transition is crossed (keeping the same
mean-flow velocity above and below the transition) [15].
Therefore, we have estimated ε from the 4/5-law using He
I velocity recordings —where it is known to hold, since
He I is a classical fluid— and then used that estimate
to compensate the third-order velocity structure function
obtained in He II. We have obtained ε= (5.4± 0.3)×
10−3m2/s3.
We observe a “plateau” for nearly half a decade of

scales, corresponding to the resolved inertial range of the
turbulent cascade (see fig. 4). The value of this “plateau”
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is comparable above and below the superfluid transition,
within an experimental uncertainty of about 25%. This
may be viewed as the first experimental evidence that the
4/5-law (eq. (9)) remains valid in superfluid turbulence,
at least at the largest inertial scales.

Direct numerical simulations. – In this section, we
examine turbulent velocity fields obtained from a pseudo-
spectral simulation of He II dynamics in a cubic box (with
resolution 5123–10243 and periodic boundary conditions).
Stationarity is ensured by an isotropic external force
acting at some large scale L0. The numerical procedure
is detailed in [20]. The dynamical equations write as

D$vn
Dt
=− 1

ρn
∇pn+

ρs
ρ
$Fns+

µ

ρn
∇2$vn+ $f extn , (10)

D$vs
Dt
=− 1

ρs
∇ps−

ρn
ρ
$Fns+ $f exts , (11)

where indices n and s refer to the normal and super-
fluid components, respectively; $f extn and $f exts are external
(divergence-free) forces; µ is the dynamic viscosity. The
mutual coupling force is approximated by its first-order
expression:

$Fns =−
B

2
|$ωs| ($vn−$vs), (12)

where $ωs =∇×$vs is the superfluid vorticity and B = 2 is
taken as the mutual friction coefficient [27]. The normal
and superfluid velocity fields are assumed incompressible,
i.e. ∇ ·$vs =∇ ·$vn = 0.
In our simulations, we fix the cut-off resolution at the

value of the mean quantum inter-vortex distance, δ. This
latter is estimated from the quantum of circulation, κ,
around a single superfluid vortex and from the average
vorticity,

δ2 =
κ

√

〈|$ωs|2〉
. (13)

This truncation procedure was validated by the accurate
prediction of the vortex line density in experiments [20].
The velocity power spectra for normal and super-

fluid components are displayed in fig. 5 in the very-low-
temperature and high-temperature limits: T = 1.15K and
T = 2.1565K corresponding to ρs/ρn = 40 and ρs/ρs =
0.1, respectively. In order to allow closer comparisons with
experiments, the Reynolds number Re is estimated as

Re=
L0
√

〈v2m〉
µ/ρ

, (14)

where vm = (ρnvn+ ρsvs)/ρ is the momentum velocity2,
L0 = π is the length scale corresponding to the forcing
wave number k0 = 1 and µ/ρ is the kinematic viscosity.
The power spectrum of the momentum velocity is not plot-
ted but nearly matches the normal-component spectrum

2We used the one-dimensional rms value, vrms,1d = vrms,3d/
√
3

to be comparable with experiments.

Fig. 5: (Color online) Simulated 3D velocity power spectra.
Solid lines are obtained from the velocity field of the superfluid
component, !vs. Dashed lines are obtained from the velocity
field of the normal component, !vn. The sky blue spectra were
obtained at very low temperature (T = 1.15K, 10243); the
chocolate spectra were obtained at high temperature (T =
2.1565K, 5123). The smallest resolved scale matches the inter-
vortex spacing. L0 is defined as the forcing scale.

at high temperature and the superfluid-component spec-
trum at very low temperature, as expected from the mass
density ratio.
The very-low-temperature and high-temperature simu-

lations have nearly the same Reynolds number: Re= 1960
and Re= 2280, respectively, which are much smaller than
the Reynolds number of the experiment: Re= 1.8× 105.
Yet, in both cases, the spectra collapse at large scales
close to a Kolmogorov’s k−5/3 scaling but differ at smaller
scales, named “meso-scales” [20]. In this range of meso-
scales, larger than the inter-vortex scale but smaller than
inertial scales, the superfluid component is no longer
locked to the normal component. At the lowest temper-
atures, its energy distribution approaches a k2 scaling, as
evidenced in fig. 5, which is compatible with the equipar-
tition of superfluid energy.
The momentum velocity third-order longitudinal struc-

ture function is estimated by averaging the longitudinal
increment along the three directions in one “snapshot”
of the flow3. One does not expect the 4/5-law to hold
exactly at such moderate Reynolds number, discrepancies
being related to the viscous dissipation (at small scales)
and the external forcing (at large scales) [24]. However,
we observe at high temperature that i) the compensated
third-order structure function reaches a maximum slightly
lower than one, which is consistent with reported obser-
vations in classical turbulence (at comparable Reynolds
numbers) [26], and ii) the small-scale behavior goes typi-
cally like r2 corresponding to the continuous (or smooth)
limit δu(r)∼ r. At very low temperature, the velocity field

3We obtain similar results if the velocity increments are computed
with the velocity field from the dominant component rather than vm.
The momentum velocity is convenient because it is defined for all
temperatures and comparable to what is measured in experiments.
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Fig. 6: (Color online) Compensated third-order structure func-
tion obtained in numerical simulations at high temperature
(chocolate squares) and very low temperature (sky blue circles)
for nearly the same Reynolds numbers.

is no longer smooth at very small scales. It exhibits irreg-
ular fluctuations, down to the smallest scales, related to
the equipartition noise. This yields a different behavior of
〈δv(r)3〉 as shown in fig. 6. It is important to mention that
the (total) disssipation rate, ε, is eventually a parameter of
our simulations. Indeed, ρε equals the power of the exter-
nal forces (by assuming stationarity). This injected power
is fixed and kept constant in our numerical scheme [20].
In the following, we address the departure from the

ideal 4/5-law at small scales, i.e. related to the viscous
dissipation. Let us mention that departure at large scales
(related to the external forcing) is beyond the scope of the
present study and does not spoil the present results.
In classical turbulence, the viscous dissipation is

accounted in the Kármán-Howarth equation, which
generalizes the 4/5-law at small scales:

〈δv(r)3〉+ 4
5
εr= 6ν

d〈δv(r)2〉
dr

. (15)

This Kármán-Howarth equation can be interpreted
as an exact scale-by-scale energy budget. Physically,
the right-hand side of eq. (15) takes into account the
energy that leaks out of the cascade due to the viscous
dissipation. Such generalization applied to the two-fluid
model contains a term associated with the mutual friction
between the superfluid and normal components, which
can not be formulated (strictly speaking) into a form
similar to eq. (15). However, we propose here to pursue an
empirical approach and assess to what extent the classical
relation (eq. (15)) can be applied to He II. Formally,
an effective kinematic viscosity can be defined from the
deviation to the 4/5-law at small scales. More precisely,
let us introduce

N (r) =
〈δv3〉+ 4

5
εr

6d〈δv
2〉

dr

. (16)

For a classical Navier-Stokes fluid, eq. (15) implies that
N (r) should match the kinetic viscosity µ/ρ from the
“center” of the inertial range down to the smallest scales.

Fig. 7: (Color online) Compensated effective viscosity vs.
scale obtained in numerical simulations at high temperature
(chocolate squares) and very low temperature (sky blue circles)
for nearly the same Reynolds number. Inset: effective viscosity
estimated from the “plateau” ofN (r) for various temperatures.

The values of N (r), normalized by µ/ρ, are plotted vs.
scale in fig. 7. For all simulated temperatures, ranging from
T = 1.15K (ρs/ρn = 40) to T = 2.1565K (ρs/ρn = 0.1),
this plot exhibits a “plateau” in the inertial range, quite
analogous to what is expected for a classical fluid. This
means that the deviation to the 4/5-law can be described
(at first approximation) by introducing a constant effec-
tive viscosity. Interestingly, this remains valid even at very
low temperatures, where the density of the normal compo-
nent is also very small. This implies that the mutual fric-
tion term in the superfluid equation (eq. (11)) cannot be
neglected at very low temperature (even if it is propor-
tional to ρn/ρ) 1) and that it mimics to some extent a
“viscous leak” along the cascade. Nevertheless, N (r) devi-
ates from the plateau at the smallest scales, where both
components are no longer locked, especially at very low
temperature (sky blue circles). This is in contrast with
classical turbulence, for which the “plateau” would extend
down to the smallest scales [25].
From the “plateau”-value of N (r), we define the effec-

tive viscosity νvisc. The estimates of νvisc (compensated by
µ/ρ) for various temperature and Reynolds-number condi-
tions are gathered in the inset of fig. 7. It is remarkable
that this effective viscosity matches the dynamic viscosity
of the normal component (normalized by the total density)
within 20% for all temperatures. As a result, these simu-
lations indicate that superfluid helium (He II) behaves
roughly as a viscous fluid at scales for which both normal
and superfluid components are nearly locked, i.e. along the
energy cascade. Furthermore, this feature remains satisfied
at the lowest temperatures, where the normal (viscous)
component fraction is smaller than 3%.

Concluding remarks. – Using third-order longitu-
dinal velocity structure functions, we have argued both
experimentally and numerically that (stationary) turbu-
lence in superfluid helium is consistent with an energy
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cascade in the sense of Kolmogorov’s theory. In particu-
lar, our experimental data are quantitatively compatible
with the classical 4/5-law in the inertial range. It is worth
pointing out that structure functions have been analyzed
in the usual way because vortex singularities of the super-
fluid have been smoothed out, either by the large-size
(compared with the inter-vortex distance) probe or by the
coarse-grained resolution of the simulation model. With-
out this low-pass filtering of the details of the superfluid
vortex tangle, comparisons with classical turbulence would
have been less straightforward.
The “energy leak” from the cascade was assessed by

applying the Kármán-Howarth equation on simulated
velocity fields. We find that He II behaves as a viscous
fluid in its cascade range with an effective viscosity,
νvisc, inherited from the normal component, even down
to the lowest temperature (ρs/ρn = 40). This conclusion
does not extent down to the smallest (meso)-scales when
both components are unlocked and quasi-equipartition is
evidenced. It is interesting to compare νvisc with an (other)
effective viscosity, νeff , defined in the literature as [3]

ε= νeff
( κ

δ2

)2

+ νeff |ωs|2 . (17)

These two viscosities are comparable at high tempera-
ture [8], which can be understood by writing that both
normal and superfluid components are roughly locked
down to the (viscous) dissipation length scale:

νeff ≡ ε |ωs|−2 + ε |ωn|−2 =
µ

ρn
+ µ
ρ
= νvisc. (18)

However, νeff departs from the “viscous viscosity”, νvisc,
as the temperature is lowered [8–10], but becomes compat-
ible with the “friction viscosity”, νfrict = κ

ρnB
2ρ . This latter

viscosity can be derived from eqs. (10) and (11) assuming
that both components are unlocked at small scales, which
entails dissipation by friction of one fluid component on
the other [28] (see [3] for a microscopic derivation). Thus,
the definition of νeff encompasses the two dissipative mech-
anisms occuring in He II at finite temperature (T ! 1K),
i.e. the “viscous dissipation”, νvisc, that we discuss in this
letter, and the “friction dissipation”, νfrict. It would be
interesting to understand how νeff (eq. (17)) depends on
the relative weight of the two dissipation mechanisms and
on a third dissipation mechanism relevant in the zero-
temperature limit: sound emission by vortex line [29–31].
The analytical integration of the Kármán-Howarth for the
two-fluid model, which implies additional modeling, would
open this perspective.
As a perspective to further understand the mechanisms

leading to viscous-like behavior, we point out a possible
analogy with classical truncated Euler systems, in which
the presence of an equipartitioned reservoir at small scales
acts as a molecular viscosity at larger scales [32–34].
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