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The Set-up for Numerical Experiments
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Two Layers of Complexity

— Superconductivity
— Time-periodic Hamiltonian (p,(t) = 2eV,,t/h)

= Floquet theory
e Wave-function more microscopic than Green’s function
= Notions taken from band theory in solids
e Tilted band picture
= Notion of relaxation of Floquet states
= Experimental consequences for spectroscopy

[ Solid state physics | Superconductivity |
Tight-binding model Tight-binding model
Hopping term n — n+1 Ny — Ny, — Np — N, £2 (2T)
Wave-vectors Superconducting phases
Brillouin zone Brillouin zone
- < ke, k, <T —T < Pa,Pp < T
Electric field dk/dt o< E | Josephson relation dy,/dt = 2eV,/h
Bloch oscillations Bloch oscillations
Topology Topology
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Rotating-Wave Approximation

for a Periodically Driven Qu-Bit

H = Ho + H'(t)

e Ho = %32
o H/(t) = wg cos(Qt)5*

Hj(t) = wrcos(Qt) [6](t) + 6 (t)] (1)
= wgcos (Qt) [e"At(’}Jr + e_iAtﬁ_] (2)
Rotating-wave approximation:
wr [o(A-Dtst | ¢i(@-A)t5-]

X

Hll(t) — Hrwa, with Hrpa =
o

At resonance (w = A): Hrpwa = L [67+67] =R
Spin-1/2 in static magnetic field:
HRWA = —heff.a', with

AN
% A-Q hey = — 5_ “YRg
¢ 0
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Beyond the Rotating Wave Approximation

27 /2 time-periodic Hamiltonian = We apply time Bloch theorem
[Ya(t)) = e Eat/M|xa(t)) (with a = 1,2)
@ |, (t)) = two-component wave-function
of the two-level system

@ |xa(t)) = periodic with period T = 27/Q

Then we have the following expansion:
Xalt)) = Zh_ e e ™ i)

Schrédinger equation i 2|y (t)) = H(t)|1(t))
= infinite number of equations (due to time periodicity)
(Bt m)[xi7) = $370)) + 8% xinly) + S8 la), ¥ om
= Tight-binding Hamiltonian on a ladder
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Tight-Binding Hamiltonian

in the m Representation

Energy (term H 0)
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Tight-Binding Hamiltonian

in the m Representation

“mQ” term = Better representation of the Hamiltonian
involves a tilt in the (m, E) plane:

A

Energy (term H,—mgQ)
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Meaning of the Rotating Wave Approximation in the m

Representation

Q = A = Horizontal steps. For a single ladder:

G a

?

> i
iy
m

Vertical couplings are neglected in the rotating wave approximation
= Infinity of horizontal dimers

n— n= DC

n — n+ 1 = Oscillations with fundamental frequency Q
No oscillations with frequencies 29, 39, ...

in the rotating wave approximation
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Limit 2 — 0 in the ¢-Representation (No Tilt)

Plane waves: |X$,f)> = /M| (%))
¢ is conjugate to m
We recover the Hamiltonian with a frozen phase:

EsIX1?)) = (367 + wreos(¢)8™) [x(?)

k in band theory <> ¢ in this problem
k € [0,27] (Brillouin zone) <+ ¢ € [0, 27| (phase modulo 27)
dk /dt o electric field <> Brillouin zone swept at constant velocity

Band structure;

A/2 . A2
WR c/osgb W/_?ZO/S2¢ =H(¢) = E+(9) = ﬂ:\/4 + w% cos? ¢
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Combining the ¢- and m-Representations

Q — 0 First step: Band structure

Energy

=
/N

IC.
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Combining the ¢- and m-Representations

(Q < wg) Second step: Projection on the energy axis
[M, ¢] = 0 (classical limit)

Energy
A A

EV
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Combining the ¢- and m-Representations

(2 < wg) Third step: Introducing the tilt
Still [, 0] =0

Energy Energy
A A
Classically forbidden
Classically
allowed
» O >
- T Classically forbidden m
Classically
allowed

Classically forbidden
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Combining the ¢- and m-Representations

(Q < wg) Fourth step: Re-quantization (2 play the role of usual &)
Use M = —id/d¢ (e.g. [M, d] = 0)
= wave-function solution of a first-order differential equation
2m-periodicity on wave-function = discrete energy levels
= Floquet-Wannier-Stark ladders

Energy Energy

A A
Classically forbidden

- T Classically forbidden Vrn

Classically forbidden

If Q@ — 0, extent of wave-functions along the m axis becomes very
large = Emergence of a large number of harmonics and strong
deviations from rotating wave approximation
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Combining the ¢- and m-Representations

Bloch oscillations

Energy Energy
A A
Classically forbidden
) —
T T Classically forbidden m

Classically forbidden
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Combining the ¢- and m-Representations

Bloch oscillations

Energy Energy
A A
Classically forbidden
) —
T T Classically forbidden m
o>

Classically forbidden
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Combining the ¢- and m-Representations

Bloch oscillations

Energy Energy
A A
Classically forbidden
) —
T T Classically forbidden m
®

Classically forbidden
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Combining the ¢- and m-Representations

Bloch oscillations

Energy Energy
A A
Classically forbidden
) —
T T Classically forbidden m
@

Classically forbidden
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Combining the ¢- and m-Representations

Bloch oscillations

Energy Energy
A A
Classically forbidden
) —
T T Classically forbidden m

Classically forbidden
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Combining the ¢- and m-Representations

Bloch oscillations

@ Bloch oscillations are not observed in metals because of
inelastic collisions
= Semiconductor superlattices:

o Brillouin zone [—7/a, 7/ a], with a enhanced
by about a factor 1000 compared to a metal
= Period of oscillations much shorter than
inelastic scattering time.
o “Self-diffracted four-wave mixing experiment’ '92

= Bloch oscillations also observed in cold atoms experiments
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Combining the ¢- and m-Representations

Energies on the circle (1/2)
o Let (|xm)),, be a solution for energy E,
- o Let us define |x},) = [xm-1)
— @ Then |x},) is solution for E}, = E, — Q
= — o e i(Ea=Q)t g=i(m=1)Qt _ g—iEatg—imQt
%ﬁ = Same global wave-function in spite of
different levels on the ladder
= Energies E, and E, — Q should be identified

Energy
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Combining the ¢- and m-Representations

Energies on the circle (1/2)
o Let (|xm)),, be a solution for energy E,
o Let us define |x},) = [xm-1)

@ Then |x},) is solution for E}, = E, — Q

. ° e—i(Ea—Q)te—i(m—l)Qt — g iEat o—imQt

= Same global wave-function in spite of
different levels on the ladder

E_ = Energies E, and E, — Q should be identified

Energies on the circle (2/2)
Meaningless to say that E; > E_ or E_ < E
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Combining the ¢- and m-Representations

Energies on the circle (1/2)

— o Let (|xm)),, be a solution for energy E,
- = o Let us define |x},) = [xm-1)

'.__.‘__‘

@ Then |x},) is solution for E}, = E, — Q
Ea—Q)te—i(m—l)Qt — g iEat o—imQt

m

E, o el

= Same global wave-function in spite of
different levels on the ladder

E_ " = Energies E, and E, — Q should be identified

= Spectroscopy experiments

Q1 = £(E+ — E_) + nQ = Future developments with two
independent frequencies for forthcoming three-terminal Josephson
junctions. Goal: To motivate experiments in the group of Caglar
Girit (Collége de de France) and Romain Danneau (Karlsruhe)
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The Set-up for Numerical Experiments
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Floquet-Wannier-Stark-Andreev Resonances (2 Terminals)

B Tl + Ty Fa — oV (R~ ) | [/\“/a_ i, %2%] _
tE AE Two uncoupled FWSA—Andreev bands:
A | Ay = EL(§) — 2eV], with

I'= (N, — Np)/2 (auxiliary variable)

» Steady state =
Hilps) = Exlys) =

. | |Ex(p) = 2eVI| [vs) = Exlua)
with | = i9/d¢ (e.g. [I,¢] =)

= First order differential equation for wave-function

Imposing 27-periodicity in ¢ leads to quantized energy levels:

E; =2eVj + (E) _ 1
{ E_]{, = 2eVj — (E) with (E) = 27T/O Ei(p)dy

= Two Floquet-Wannier-Stark-Andreev ladders
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Floquet-Wannier-Stark-Andreev Ladders

Non-coinciding resonances

E E

Coinciding resonances

e Tunneling between ladders
and continua

e Inter-ladder tunneling

= Landau-Zener-Stiickelberg
transitions

e Tunneling between ladders
and continua

= Finite width of
FWS-Andreev resonances
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Differences Between 2 and 3 Terminals

o Ladders parameterized by the quartet phase g
= Level crossings as a function of ¢g

@ Multiple Andreev Reflections become Phase-sensitive Multiple
Andreev reflections = Interference process in the tunnel effect

A single picture for four phenomena:
e Width of resonances
o Landau-Zener-Stiickelberg transitions
o Phase-sensitive Multiple Andreev Reflections

@ Houzet-Samuelsson thresholds
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Experimental Consequences / Numerical Experiments

We want to suggest new experiments on the spectroscopy of those
ladders:

= Variation of the resonance energies with voltage
= Variation of the width with voltage

We want to understand mechanisms for the width of the
resonances:

@ Equilibration with quasiparticle semi-infinite continua
o Electron-phonon scattering

We want to determine connections between spectrum and
DC-transport and noise:

@ Same energy scales in spectrum and DC-transport ?
@ Connection with DC-current

@ Connection with noise
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Floquet-Wannier-Stark-Andreev Resonances (1/2)

r/A=0.1
E
Inter-ladder tunneling for A/eV ~ 14
= Landau-Zener-Stiickelberg transitions

I'/A=0.1

[ . ! —————— -
2 4 6 10 12 14 16
AleV
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Floquet-Wannier-Stark-Andreev Resonances (2/2)

[/A =03
E
Inter-ladder tunneling for A/eV ~ 6,13
= Landau-Zener-Stiickelberg transitions

I'/A=0.3
4 — : w

L I — SE———

% 2 . ——

- s
P e — — |
w -2t \—)ﬁ_— 1

N
-4 P el

AleV
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Wannier resonances (1/2)

Bentosela, Grecchi and Zironi, PRL '83

“Kronig-Penny model” H(N,f) = 5’722 — SN 6(x — na) + fa~lx

Non-hermitian effective Hamiltonian at level crossing:
E +ie X :
Hefr = < X E 4 i > with e < ¢
One resonance strongly coupled to continum (€’),
the other weakly coupled (¢)
Weak coupling between
resonances: |X| < ¢
System dominated by

’2‘1“ - - .

d f dissipation:

75 80 85 50 o5 f .

e — no level repulsion

0T In|ImE;| flat for level strongly
FIG. 1. f™! behavior of three resonances followed by .
intinuity: (short-dashed curve) £y, 4(f) is a resonance coupled to continuum
first ladder and first rung (or first region); (solid
wwve) £,,,(f) is a resonance in first ladder second In ||m E| has pea k for |eve| wea k|y
ng (or second region); (long-dashed curve) £;, ;7 (f) !

a resonance in second ladder first rung (or second Cou pled to Conti n u u m

sgion) .
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Wannier resonances (2/2)

Bentosela, Grecchi and Zironi, PRL '83

“Kronig-Penny model” H(N,f) = 5’722 — SN 6(x — na) + fa~lx

Non-hermitian effective Hamiltonian at level crossing:
E +ie X :
Hetr = < X Er e > with € < €
One resonance strongly coupled to continum (€’),
the other weakly coupled (¢)

Strong coupling between resonances
|X| > €
Quasi-hermitian system

@ Level repulsion for real parts

FIG. 2. f~! behavior of three resonances in the third

region followed by continuity. Each one goes through o Eq ua I|ty for | m agl na ry pa rts

all the first three ladders by type (2) crossings.

85
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Future calculations on three-terminal Josephson junction

Strong coupling between resonances
(X[ > ¢
Quasi-hermitian system

@ Level repulsion for real parts

- e Equality for imaginary parts
behavior of three resonances in the third

owed by continuity. Each one goes through

all the first three ladders by type (2) crossings.

e Realizing numerically (and also experimentally)
a “Floquet-qu-bit” on this principle
@ Manipulations with NMR pulses

@ Density matrix theory
from first principle Green's function calculations

@ Quantum trajectories

Still a lot of open questions on current-current
cross-correlations ...
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Relation with Noise Cross-Correlation Experiments

Thermal noise in a two-terminal point contact at equilibrium:

A

current

Régis Mélin, Institut NEEL, Grenoble
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Possible Emergence of Schrédinger cats of Cooper pairs

Correlation time for sign of current=h/d
do=Level splitting at avoided crossings

FWS-Andreev spectrum as function of A/eV:
I'/A=0.3

urrent
urrent
urrent

Ey eV
onN A~

_47———\___7

[ —

2 4 6 8 10 12 14 16
AleV
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Possible Emergence of Schrédinger cats of Cooper pairs
e, + F) + FH ) +

Correlation time for absolute value of current=h/d
d=width of Floquet-Wannier-Stark-Andreev resonances
log[line-width broadening](A/eV):

I'/A=0.1

urrent
urrent
urrent

5. NdofA=100 =

wndot/AJ o’ -

5 H—i—-_

-6 L v

2 4 6 8 10 12 14 16
AleV

logo[8(A/eV)/A]
A
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Meaning of the Dynes parameter 740t

Emergence of exponentially small energy scales

= Those should be compared to lots of things
= Dynes parameter as a source of extrinsic relaxation
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Dynes parameter

Dynes, Narayanamurti, Garno, Phys. Rev. Lett. 41, 1509 (1978)

Strong-coupling superconductor Pbg ¢Big 1

CURRENT (mA)

A

;0
JLM

1
1

|
(\
L
-/‘{‘M
il

i
|

v (ard)

%
o V)

63, . {

3 N t T+0090meV 1 larsx

e o

J | reoonma
- 1 1 - P Nt
FIG. 1. I-V characteristic for a Pbq, yBiy,, tunnel junc et
Vim)

FIG. 2. dI/dV vsV determined from the data using Fig. 1. The solid curves are fits to the data using Eq. (2)
with T' an adjustable parameter.

1511

+00
= GN/ A(E)o(E + V) [F(E) — F(E + V)] dE

p(E,T) = (E—il)/[(E—il?-A?]
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Role of Dynes parameter ns/A, with 740 /A =0

Double quantum dot: Four Floquet-Wannier-Stark-Andreev ladders

Current, ns/A = 1073 Current, ns/A = 1075
lo(bg). eVIA=0.15, ng/a=10"2 lo(6g). eV/A=0.15, ng/a=10"®
0.75
0.2 05
o 01 < 025
B B
) 0 ) 0
= o1 = 025
02 -0.5
-0.75
0 2 T 3m2 2m 0 w2 T 3m2 2m
[ b
Noise, ns/A = 1073 Noise, s/A = 10~°
S (). €V/A=0.15, ng/A=10"2 S (). €V/IA=0.15, ng/a=10"®
10 200
< 7.5 < 150
NCU NCU
= 5 & 100
@ @
< 25 < 50
0 0 :
0 2 n 3m2 2m 0 2 n 3m2 2m
%o %o

Interpretation: Avoided crossings between
Floquet-Wannier-Stark-Andreev ladders tuned by quartet phase

Emergence of a tiny n&/A
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Connection With RF-Irradiated Josephson Junctions (2/

Bergeret, Virtanen, Ozaeta, Heikild, Cuevas,
Phys. Rev. B 84, 054504 (2011)

0. T T T T

041 =06 b

FIG. 5. (Color online) (a) The CPR for e = 0.1 = 0.6A, and
two values of the flicient, T =08 and = 0.6.
(b) The CPR for and two values of @, 0.2
and 0.6. In both pa nd to the microscopic
theory and the dashed lines to th el model.

Recall also following paper:
Voltage-induced Shapiro steps
in a superconducting multiterminal structure

J.C. Cuevas and H. Pothier, Phys. Rev. B 75, 174513 (2007)
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Motivations for Introducing 7ot

@ Dynes parameter n4o: on the quantum dot

@ Dynes parameter ns in superconductors

Ndot has much stronger influence on current than ng

Considered scenario for ng40:: Electron-phonon scattering
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Spectrum < Transport

Nonequilibrium
Resonances

Equilibrium
Andreev bound states

A E
A |
—_——
0 K 0)
21
/ \
A | 1
I=-% LE(p) | =777
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Spectrum and Self-Induced Rabi Resonances

1) Two Floquet-Wannier-Stark-Andreev ladders:

E; =2eVj + (E) _ 1P
{ E, = 2eVj' — (E) , with (E) = 277/0 E(p)de.

2) Self-induced Rabi resonance whenever E; = Ej, =

E
2e\/j+(E)_2er’—(E):>er_<k>,with k=j—j
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Spectrum <+ Transport: Current I.(eV /A)

Spectrum Transport, current /.
x-axis=A/eV x-axis=eV /A
Avoided crossing Maximum in |/c|
at AjeV ~ 14 ateV/A ~0.1
[/A=01 Ng/A=10", [/A=0.1
g Rl
> Q= °
& Op— " g
W -2 e =
-4 —_— ':

2 4 6 8 10 12 14 16
AeV eV/A

@ Possible explanations for difference between the two:

e Transport couples also to

Floquet wave-function and populations

e Two cross-over values evaluated with different methods

@ Ultra-sensitivity on tiny 740t/ A
= Additional energy scale 1} ,/A
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Energy Scale n},./A in Current (1/3)

o logyo(mGee/A)

ev/a=0.225 defined as
002 e Ns /A—10 e inflection point on
. Electron- g /A 10 _
< 002 [MAR “\_ phonon Ne/A=10"® those curves
[0} . .
> dominated '\ dominate, e
T 006 logso(n' g)A) @ N/nhos is intrinsic
[ AN characteristic time
e
-0.1 .
6 5 -4 -3 -2 @ Important effect of
l0g10(Mgot/A) Ndot /A (change of

sign in current /)
@ Much stronger effect of 74or/A than ns/A

@ Possible experimental relevance of new regime 140¢ > 1, in which
quantum dot degrees of freedom are
nonequilibrated with quasiparticle continua

Régis Mélin, Institut NEEL, Grenoble Nonequilibrium generalization of Andreev bound states



Energy Scale n},./A in Current (2/3)
log[n%,./A] as function of A/eV

10g10(N gor(A/EV)/A)
- — Remarkably:
logyo(8/A) —=
Electron-phonon-dominated: f == =ss-s—-s_g S
3 27 -~ equilbration 1 pectrum < current
E 5l W%&F § | relation
% &-w@ 7t 1, T holds qualitatively
‘e A4t i1 1) I Trpl | Stueckelberg-
2 e (but not exactly).
€ -5 IMAR-dominated] “‘ [ 4] |
equilbration 4% || & | | A&Vm Namely:
S it " RS DU
0 2 4 6 8 10 12 14 16 18 |Og[||ne-W|dth
AleV

broadening]
Exponentially small energy scales in
current and
in line-width broadening

I/A=0.1

log4o[8(A/eV)/A]
NOoO Ohs WwN

2 4 6 8 10 12 14 16
AeV
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Energy Scale n},./A in Current (2/3)
log[n%,./A] as function of A/eV

10g10(N gor(A/EV)/A)

- _— Remarkably:

logyo(8o/A) —
Electron-phonon-dominated: &= #s—s-s—s
S 20 4,4  eaibration Spectrum < current
g 5| L relation
3 &‘&W *’?? I"m\ holds qualitatively
‘e 4t 1|
= SN T i (but not exactly).
€ -5 IMAR-dominated] “ [ 4] I
equilbration 4% || & | | AeVR Namely:
P i * SN U O
0 2 4 6 SA/ V10 12 14 16 18 |Og[||ne—W|dth
e 5
. broadening]
Interpretation:
Relaxation due to resonant coupling T/A=0.1
T -2

to the gap edges at the thresholds =
of multiple Andreev reflecti 3

p v reflections 27
(like Houzet-Samuelsson g
thresholds) T 2 4 6 8 1012 14 16

v AleV
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Energy Scale n},./A in Current (3/3)
log[ndor/A] as function of A/eV

10g4o(M gor(A/EV)/A)

N Remarkably:
10g10(80/A) ——
Electron-phonon-dominated: == ===

[ W equilibration
4

Al %ﬁ *@lﬁ .
I

rMAR-dominateds

Spectrum <> current
relation

holds qualitatively
(but not exactly).

10010(N gor(A/EV)/A)
w

&

. equilbration f oLl Namely:
0 2 4 6 8 10 12 14 16 18
AeV FWS-Andreev spectrum

Compatible with
Landau-Zener-Stiickelberg
resonance splitting &g

Ey eV
AMNDOMN D
1

2 4 6 8 10 12 14 16
AleV
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Conclusions (1/2)

Two complementary points of view:
1) From the point of view of superconductivity:
@ Quartets current
@ Positive current cross-correlations
@ Interpretation of experiments
with Green’s function calculations
2) From the point of view of time-periodic Hamiltonians:
o Floquet theory
o First generalization of Andreev states to nonequilibrium

@ Avoided crossings between
Flogquet-Wannier-Stark-Andreev resonances

@ Continua of quasiparticles for a three-terminal Josephson
junction, but not for a driven qu-bit.
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Conclusions (2/2)

Three relevant low-energy scales:

1) Line-width broadening of

Floquet-Wannier-Stark-Andreev resonances

2) Resonance level splitting at avoided crossings of
Floquet-Wannier-Stark-Andreev resonances

3) Cross-over Dynes parameter g /A or n%,,/A

New predictions for spectroscopy experiments

Qualitative connection between spectrum and transport:
even in presence of strong effect of weak relaxation

Interesting perspective on quantum thermodynamics:

In infinite-gap limit, no entropy flows from dot to superconducting
leads = Interest of investigating heat transport, and, maybe, in
connection with entanglement of quartet state

Interesting perspective on semi-classics:

Kang Yang and Benoit Doucot are now developing semi-classical
theory on the basis of the Floquet-Wannier-Stark-Andreev
viewpoint = Analytical results
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