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SN Junction: Andreev Re�ection (1/3)
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SN Junction: Andreev Re�ection (2/3)
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SN Junction: Andreev Re�ection (3/3)
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SN Junction: Nonlocal Andreev Re�ection (1/3)
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Nonlocal Andreev Re�ection (2/3)
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Nonlocal Andreev Re�ection ≡ Cooper Pair Splitting (3/3)

Three-terminal set-up required in experiments
First theoretical contributions: Byers-Flatté, Martin,
Anatram-Datta, Deutscher-Feinberg, Falci-Hekking,

Choi-Bruder-Loss, Mélin
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Magnetoresistive e�ects
Beckmann, Weber, von Löhneysen, PRL '04

Structure: Superconductor + ferromagnetic electrodes
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Magnetoresistive e�ects
Beckmann, Weber, von Löhneysen, PRL '04

Voltage on one contact as a function of current
through the other contact: nonlocal resistance
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Magnetoresistive e�ects
Beckmann, Weber, von Löhneysen, PRL '04

High transparency → large signal
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Magnetoresistive e�ects
Beckmann, Weber, von Löhneysen, PRL '04

Nonlocal resistance depends on relative spin orientation
→ Magneto-resistive e�ects
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Beckmann, Weber, von Löhneysen, PRL '04
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Perturbation Theory in the Number of
Nonlocal Green's Functions
R. Mélin and D. Feinberg, PRB '04

Small parameter of perturbation theory ∼ exp(−2R/ξ)

First evidence for negative nonlocal conductance
in a highly transparent NSN structure (P = 0)
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Quasiclassics: General Solution in Ballistic Limit
M.S. Kalenkov and A.D. Zaikin, PRB '07
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Two Recent Equivalent Experiments with Quantum Dots
(1/2)

Herrmann, Portier, Roche, Levy Yeyati, Kontos, Strunk PRL '09

Carbon nanotube as an electron beam splitter
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Two Recent Equivalent Experiments with Quantum Dots
(2/2)

Hofstetter, Csonka, Nygard, Schönenberger, Nature '09

Quantum wire as an electron beam splitter
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Two Recent Equivalent Experiments with Quantum Dots
(2/2)

Hofstetter, Csonka, Nygard, Schönenberger, Nature '09

Experimental signatures for separated electron pairs |1 ↑; 2 ↓〉
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Two Recent Equivalent Experiments with Quantum Dots
(2/2)

Hofstetter, Csonka, Nygard, Schönenberger, Nature '09

These experiments do not probe directly entanglement,
for instance (|1 ↑; 2 ↓〉 − |1 ↓; 2 ↑〉)/

√
2
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Spectroscopy (theory)
Byers and Flatté, PRL '95

Metallic contact + STM tip
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Spectroscopy (theory)
Byers and Flatté, PRL '95

Propagation of quasi-particles
in the directions where ∆k has nodes
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Spectroscopy (theory)
Byers and Flatté, PRL '95

Probe of anisotropy of order parameter
(High-Tc superconductors and correlated materials)
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Summary

Magneto-resistive e�ects

Correlated pair of electrons

Spectroscopy

What Theory Brings Into These Problems

Suggestion of experiments

Semi-quantitative simulation of set-ups

Discriminate the features of pair splitting from other e�ects
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Measurement of Current Fluctuations
B. Kaviraj, O. Coupiac, H. Courtois, F. Le�och, PRL 2011

SQUID-based ampli�ers Recursive Green's functions Scattering calculations

Sa,b > 0 at high transparency

not due to Cooper pair splitting

CEA-Grenoble (Le�och et al.) NEEL-Grenoble (Mélin et al. '08, '10, '13)
Karlsruhe (Golubev and Zaikin '10)

Current Noise Sa,a and Current Noise Cross-Correlations Sa,b

Sa,a(t ′) = 〈δÎa(t + t ′)δÎa(t)〉
Sa,b(t ′) = 〈δÎa(t + t ′)δÎb(t)〉
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Production of Nonlocal Quartets, R < ξ
A. Freyn, B. Douçot, D. Feinberg, R. Mélin, PRL 2011, NÉEL / LPTHE

bV 

Sb

a

R  ~ ξ

V 

S
a

VS S

Intuitively

2 pairs in coherence volume within time interval ~/∆
→ production of a correlated pair of pair between Sa and Sb

ac Josephson current of pairs from Sa to S and from S to Sb

But possibility of a dc Josephson current of quartets
from S to Sa and Sb

if Va = −Vb and VS = 0 because ∆E = 2e(Va + Vb − 2VS) ≡ 0

Adiabatic model

φa(t) + φb(t)− 2φS = [2e(Va + Vb − 2VS)/~]t + φa + φb − 2φS
Iquartet(t) = Ic sin[φa(t) + φb(t)− 2φS ]

AC Josephson e�ect of quartets in general

DC Josephson e�ect of quartets if Va = −Vb and VS = 0
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Nonlocal Quartets, DC if Va = −Vb, VS = 0
Quartet Resonance in DC Current for Va = −Vb
A. Freyn, B. Douçot, D. Feinberg, R. Mélin, PRL 2011, NÉEL / LPTHE
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Nonlocal Quartets, DC if Va = −Vb, VS = 0
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Nonlocal Quartets, DC if Va = −Vb, VS = 0
Quartet Resonance in DC Current for Va = −Vb
A. Freyn, B. Douçot, D. Feinberg, R. Mélin, PRL 2011, NÉEL / LPTHE
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π-Junction for the Electron Quartets

S
b

S

Sa

R~ ξ Split pair
1√
2
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c+a,↑c
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b,↓ − c+a,↓c

+
b,↑

)
Unstable
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π-Junction for the Electron Quartets
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No preformed quartets

Glue between pairs
= interfaces with R ∼ ξ
− sign ⇒ π-junction

Iquartet =
−|Ic | sin(ϕa + ϕb − 2ϕS)

Macroscopic
manifestation of the
internal structure of a
pair (orbital and spin

symmetries)
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Quartets in Metallic Structures
A.H. Pfe�er, J.E. Duvauchelle, H. Courtois, R. Mélin, D. Feinberg and F. Le�och,
arXiv:1307.4862

Theoretical calculation

Perturbative expansion in the tunnel amplitudes

⇒ Di�usion modes, evaluated in the ladder approximation
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Quartets in Metallic Structures
A.H. Pfe�er, J.E. Duvauchelle, H. Courtois, R. Mélin, D. Feinberg and F. Le�och,
arXiv:1307.4862

Two-terminal SINIS ok with Usadel equations

Quartet current if eV > Eth, not reduced as V increases

IQ ∝ Eth GCAR,NSN sin(ϕa + ϕb − 2ϕ0)
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Experimental Set-up
A.H. Pfe�er, J.E. Duvauchelle, H. Courtois, and F. Le�och
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No Resonances for a Separated Bijunction
A.H. Pfe�er, J.E. Duvauchelle, H. Courtois, R. Mélin, D. Feinberg, F. Le�och,
arXiv:1307.4862

2 resonances for direct Josephson S0 − Sa and S0 − Sb

S
b

Sa

N N

S
0
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Resonances for a Bijunction (T = 200 mK)
A.H. Pfe�er, J.E. Duvauchelle, H. Courtois, R. Mélin, D. Feinberg, F. Le�och,
arXiv:1307.4862

S
b

Sa
N

S
0
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Resonances for a Bijunction
A.H. Pfe�er, J.E. Duvauchelle, H. Courtois, R. Mélin, D. Feinberg, F. Le�och,
arXiv:1307.4862

Direct Josephson Sa − S0 and Sb − S0

Two resonances for Va = 0 and Vb = 0

Régis Mélin, Institut NEEL, Grenoble Production of nonlocal quartets in a Josephson bijunction



Resonances for a Bijunction
A.H. Pfe�er, J.E. Duvauchelle, H. Courtois, R. Mélin, D. Feinberg, F. Le�och,
arXiv:1307.4862

Direct Josephson Sa − Sb

Resonance expected at Va = Vb

However, not visible because lock-in excitation on S0
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Resonances for a Bijunction
A.H. Pfe�er, J.E. Duvauchelle, H. Courtois, R. Mélin, D. Feinberg, F. Le�och,
arXiv:1307.4862

Three additional resonance lines

2V0 = Va + Vb; 2Va = V0 + Vb; 2Vb = V0 + Va

Just permutation of the 3 terminals → equivalent resonances

Are they due to quartets or to classical synchronization
by an external impedance ?
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Argument (A)

Same external circuit for the bijunctions, separated or not

No resonance for the separate bijunction

⇒ Resonance is due to the bijunction itself

Argument (B)

Bijunction = phase-coherent mesoscopic object

Nothing to do with classical resistance

Usual RSJ descriptions of synchronization due non linear
oscillators coupled by commmon shunt are not applicable

Argument (C)

The strong resonant signal does not decay as eV is increased
above Eth

AC Josephson oscillations decay above Eth

Quartets do not decay above Eth
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Conclusion for the experimental part of the talk

(A)+(B)+(C) ⇒
Synchronization and resonances must be reconsidered
from the begining, taking quartets into account.
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Generalization to Higher Order Resonances
Exemple of the Sextet Resonance for Vb = −2Va

V0=0
Vb=V

Va=-V�2

¥®
¬¥
¬¥
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Summary for the Quartet, Sextet Resonances

Vb
−Vb V /2−V /2

b b

Pair

Cotunneling
Quartets

Sextets

Higher order

pair cotunneling

And more

generally

V =(p/q)V ba

C
u
rr

en
t

−2Vb

Sextets

Va0 b
2V

Now let us put these resonances on a computer
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The double Dot Structure
T. Jonckheere, J. Rech, T. Martin, B. Douçot, D. Feinberg, R. Mélin, PRB '13

S0

Sa

Sb

Da
Db
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The starting Point of the Calculations
T. Jonckheere, J. Rech, T. Martin, B. Douçot, D. Feinberg, R. Mélin, PRB '13

S0

Sa

Sb

Da
Db

Hj =
∑

k Ψ†jk (ξkσz + ∆jσx) Ψjk

HDα = εα
∑

σ=↑,↓ d
†
ασdασ

ĤT (t) =
∑

jkα Ψ†jktjαe
iσzϕj/2dα + h.c.

ϕj(t) = ϕ
(0)
j + 2eVj t/~

〈Ij(t)〉 = −2Re
{
tr

[
σz

(
Σ̂j ⊗ Ĝ

)+,−
(t, t)

]}
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Multipair Resonances in a double Dot Structure
Metallic regime: T. Jonckheere, J. Rech, T. Martin, B. Douçot, D. Feinberg,
R. Mélin, PRB '13
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Organization of the Talk

0. Introduction on crossed Andreev re�ection
(1S, 2N, 2 voltages, 0 phase)

1. Nonlocal quartets in metallic systems
(3S, 1 voltage, 1 phase)
1.a. Phenomenology, microscopic process, π-junction
1.b. Experimental results

2. Nonlocal quartets in a double quantum dot
(3S, 2 dots, 1 voltage, 1 phase)
2.a. Higher-order multipair resonances
2.b. Phase-sensitive multiple Andreev re�ections

3. Probing nonlocal quartets in a Bisquid (0 voltage, 2 phases)

4. NS1S2 structure (1 voltage, 1 phase)

5. Conclusions
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In general, two Coexisting Transport Channels:
Multipair Resonances and Phase-sensitive MARs
T. Jonckheere, J. Rech, T. Martin, B. Douçot, D. Feinberg, R. Mélin, PRB '13

S 0

V=0

V −V

Sa S b

Quartets

S 0

V=0

V −V

Sa S b

phase−MAR

Ia Ib
Ia Ib

With particle-hole symmetry:
Phase-MAR Odd in voltage, Even in phase

�cos(ϕa + ϕb − 2ϕ0) term�, Ia = −Ib (symmetric junction)

Nonlocal quartets Even in voltage, Odd in phase
�sin(ϕa + ϕb − 2ϕ0) term�, Ia = Ib
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Lowest-order Phase-MAR Process
Triangular building block
T. Jonckheere, J. Rech, T. Martin, B. Douçot, D. Feinberg, R. Mélin, PRB '13

V0=0

Vb=V

Va=-V
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What will be observed, Quartets, Multipairs or Phase-MAR ?
Dot levels are at (εa, εb) = (0.4∆,−0.4∆)
T. Jonckheere, J. Rech, T. Martin, B. Douçot, D. Feinberg, R. Mélin, PRB '13
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What will be observed, Multipairs or Phase-MAR ?
T. Jonckheere, J. Rech, T. Martin, B. Douçot, D. Feinberg, R. Mélin, PRB '13
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Total current is mainly

In quartet or multipair channel at resonance

In phase-MAR channel above the onset of phase-MARs
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BiSQUID
J. Rech, T. Jonckheere, T. Martin, B. Douçot, D. Feinberg and R. Mélin,
submitted to PRB
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BiSQUID
J. Rech, T. Jonckheere, T. Martin, B. Douçot, D. Feinberg and R. Mélin,
submitted to PRB
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BiSQUID: All 4 quantum dots at resonance
J. Rech, T. Jonckheere, T. Martin, B. Douçot, D. Feinberg and R. Mélin,
submitted to PRB

Fourier transform with respect to Φ
ΦA,B = Φ(1∓ η), and η = (SB − SA)/(SB + SA) = 0.1
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Andreev interferometer (1 voltage, 1 phase)
A.V. Galaktionov and A.D. Zaikin, PRB '13

3 superconducting contacts, one phase, one voltage
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Lowest Order Phase-MAR Process (1/2)
�Triangular� building block

V0=0

Vb=V

Va=-V
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A simpli�ed Model for the Triangular Building Block (2/2)
Next step in NSS ′

D. Gosselin, G. Hornecker, R. Mélin and D. Feinberg, PRB '14

• 1)→ 2): Electron propagation for NS1 to S1S2 and
Andreev re�ection at S1S2

• 2)→ 3): CAR across S1
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The two Processes
D. Gosselin, G. Hornecker, R. Mélin and D. Feinberg, PRB '14

Large transparency

Cooperative Andreev re�ections

�Double Elastic Cotunneling�
building block (dEC)

Small transparency

Pair/quasiparticle exchange

Triangular
building block
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Proposed Sample Con�guration
D. Gosselin, G. Hornecker, R. Mélin and D. Feinberg, PRB '14
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Transparency-induced Cross-over in the Conductance
D. Gosselin, G. Hornecker, R. Mélin and D. Feinberg, PRB '14

Large transparency: spectroscopy in re�ection

Small transparency: spectroscopy in transmission
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Typical Conductance Maps
D. Gosselin, G. Hornecker, R. Mélin and D. Feinberg, PRB '14

Phase and energy symmetry below the gap

Phase-sensitive Tomash oscillations above the gap

Z1 = 0, Z2 = 0.5, L/ξ = 1 Z1 = 0, Z2 = 0.5, L/ξ = 3
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Provocative Conclusion: The End of the Subject ?
Only �ve building blocks ! R. Mélin and D. Feinberg, PRB '04

This seminar concludes the investigation of all possible nonlocal transport electron-hole channels.

Sign of the crossed conductances at a ferromagnet/superconductor/ferromagnet double interface

R. Mélin*
Centre de Recherches sur les Très Basses Températures (CRTBT†), CNRS, BP 166, 38042 Grenoble Cedex 9, France

D. Feinberg
Laboratoire d’Etudes des Propriétés Electroniques des Solides (LEPES‡), CNRS, BP 166, 38042 Grenoble Cedex 9, France

(Received 12 July 2004; revised manuscript received 8 September 2004; published 16 November 2004)

Crossed conductance in hybrid ferromagnet/superconductor/ferromagnet(FSF) structures results from the
competition between normal transmission and Andreev reflection channels. Crossed Andreev reflection(CAR)

and elastic cotunneling(EC) between the ferromagnets are dressed by local Andreev reflections, which play an
important role for transparent enough interfaces and intermediate spin polarizations. This modifies the simple
result previously obtained at lowest order, and can explain the sign of the crossed resistances in a recent
experiment[D. Beckmannet al., cond-mat/0404360]. This holds both in the multiterminal hybrid structure
model(where phase averaging over the Fermi oscillations is introduced “by hand” within the approximation of
a single nonlocal process) and for infinite planar interfaces(where phase averaging naturally results in the
microscopic solution with multiple nonlocal processes).

DOI: 10.1103/PhysRevB.70.174509 PACS number(s): 74.50.1r, 74.78.Na, 74.78.Fk

I. INTRODUCTION

Andreev reflection1,2 is the mechanism by which charge is
transported at normal metal/superconductor(NS) interfaces
at voltages below the superconducting gap. A spin-up elec-
tron from theN electrode is reflected as a spin-down hole,
while a Cooper pair is transferred in the superconductor.
Multiterminal geometries are of particular interest. For in-
stance, the sign of the crossed conductance between two
electrodes connected to the same superconductor can be ei-
ther positive or negative depending on the relative strengths
of the “normal” (electron-electron) and “anomalous”
(electron-hole) channels.3–5 Multiprobe structures are espe-
cially interesting when the electrodes are ferromagnets. Ac-
tually, Andreev reflection also exists in ferromagnet/
superconductor(FS) junctions, but is suppressed as the spin
polarization of the ferromagnet increases.6–8 It was
shown9–17,19–21that “crossed” Andreev reflections(CAR) be-
tween two ferromagnetic electrodes, where spin-up electron
and outgoing spin-down hole belong to different electrodes,
give rise to interesting magnetoresistance effects. For in-
stance, the latter process is favored by antiparallel spin po-
larizations. The fundamental problem of calculating the scat-
tering matrix Si j of an NSN structure has been solved in
some limits. The authors of Ref. 20 use a “fork” geometry,
where the two electrodes merge at the superconductor. In
contrast, in Refs. 9–11(like in a recent experiment21), two
distinct F /S contacts(denoted here asa,b) are separated by
a distanceR. Yamashitaet al.22 used a generalization of the
BTK approach in this geometry.23 As a common result, CAR
is possible ifR,j, the superconducting coherence length,
but is also reduced by an algebraic factor. Andreev reflection
becomes in this geometry a genuine mesoscopic effect, non-
local at the scale of the physical contacts. On the other hand,
in the normal channel, transmission between the two elec-
trodes is also possible. Since it is spin-conserving, it is fa-
vored by parallel spin polarizations. In a tunnel model for the
two F /S junctions, CAR and EC involve the virtual creation

and propagation of a quasiparticle in the superconductor. For
the normal channel, this is similar to cotunneling, introduced
in the context of transmission across a Coulomb blockaded
quantum dot.24 The superconducting gap replacing the Cou-
lomb energy, and the normal crossed process has been called
“elastic cotunneling” in Ref. 10.

Other manifestations of spatially separated pair correla-
tions were obtained in the study of equilibrium properties of
FSF trilayers.11,25–29 It was shown11,25,26 within a model of
multiterminal hybrid structure that the self-consistent super-
conducting gap can be larger in the parallel alignment. The
same result was obtained for the FSF trilayer with atomic
thickness, for half-metal ferromagnets27 and Stoner
ferromagnets.28 However, simulations with a finite
thickness28,29showed that pair breaking dominates for strong
ferromagnets as the thickness of the superconductor is larger
than the Fermi wavelength(with, therefore, the supercon-
ducting gap larger in the antiparallel alignment).

The goal of the theory of crossed conductances at a FSF
double interface is to calculate the conductances of a FSF
structure for any relative alignments of the spin polariza-
tions. In a first approximation we neglect the dependence of
the superconducting gap on the relative spin orientation in
the ferromagnets, which is a consistent assumption if the size
of the contacts is much smaller than the superconducting
coherence length.30 The first approach to this problem was
through Landauer formalism.9 Lowest order perturbation
theory10 gives an interpretation in terms of CAR and EC
processes. The effect of noncollinear ferromagnets was also
investigated,13,14with the aim of describing transport of Coo-
per pairs at the interface between a superconductor and a
ferromagnet containing a domain wall. The Josephson effect
between two superconductors connected by two spatially
separated conduction channels was also examined,13 and it
was found that there is no Josephson effect within lowest
order perturbation theory unless the length of the ferromag-
nets is smaller than the elastic mean-free path, a condition
that is not usually verified in experiments. Toy models for
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ĝa,asvd = ĝb,bsvd

=
prS

ÎD2 − sv − mSd2F− sv − mSd D

D − sv − mSd
G ,

s8d

whererS is the normal state density of state,v is the energy,
andD is the superconducting gap. The Green’s functions of
the superconductor take the form37

ĝa,bsvd =
prS

kFR
expS−

R

jsvd
D

3H sinskFRd

ÎD2 − sv − mSd2F− sv − mSd D

D − sv − mSd
G

+ cosskFRdF− 1 0

0 1
GJ , s9d

wherea andb are two sites in the superconductor(see Fig.
1). jsvd="vF /ÎD2−sv−mSd2 is the BCS coherence length.
The local Green’s functions of the ferromagnet is given by

ĝa,a = ipFra,↑ 0

0 ra,↓
G , s10d

wherera,↑ andra,↓ correspond to the spin-up and spin-down
density of states in the ferromagnet “a.” A spin polarization
Pa corresponds tora,↑=rFs1+Pad and ra,↓=rFs1−Pad. We
discard the energy dependence in(10) since we are interested
in energies of orderD, much smaller than the exchange field
hex related to the spin polarization byP.hex/eF, for hex
small compared toeF.

D. Mixed Green’s functions

To describe infinite planar contacts we use Green’s func-
tions parametrized by the distanceR along thez axis and the
two wave vectorskx and ky. This parametrization is well

suited for a situation where translation invariance holds in
the sx ,yd plane parallel to the interface but not in thez di-
rection perpendicular to the interface. The kinetic energyj is
separated into the sum ofji="2skx

2+ky
2d /2m−mS and j'

="2kz
2/2m. The mixed Green’s function is defined by

ĝsR,ji,vd =E dkz

2p
eikzRĝsj,vd, s11d

whereĝsj ,vd is defined by Eqs.(4) and(5). After evaluating
the Fourier transform with respect tokz, we obtain

ĝAsR,ji,vd =
Î2ma0

2

2"
expsikzRd

1

ÎiÎD2 − sv − mS − ihSd2 − ji

3H 1
ÎD2 − sv − mS − ihSd2

3 Fv − mS − ihS − D

− D v − mS − ihS
G

+ iF1 0

0 − 1
GJ , s12d

with

kz =
Î2m

"
ÎiÎsv − mS − ihSd2 − D2 − ji. s13d

The mixed Green’s function of a ferromagnet is given by

g1,1
A sR,ji,vd = −

Î2ma0
2

"
expsikzRd

3
1

Î− sv − mSd + ihF + ji − h
, s14d

with

kz =
Î2m

"
Îv − mS − ihF + hex. s15d

E. Transport properties

The Green’s functionsĜi,j of the connected system are
obtained by solving the Dyson equation. In a compact nota-

tion the Dyson equation takes the formĜ= ĝ+ ĝ ^ Ŝ ^ Ĝ,

where Ŝ is the self-energy corresponding to the tunnel
Hamiltonian,^ is a summation over spatial variables and a
convolution over time variables, andĝ is the Green’s func-

tion of the disconnected system withŜ=0.
Tranport properties34,36 are obtained by evaluating the

Keldysh Green’s function

Ĝ+,− = fÎ + ĜR
^ Ŝg ^ ĝ+,−

^ fÎ + Ŝ ^ ĜAg. s16d

The spin-up current through the linka-a is given by

FIG. 1. (a) Schematic representation of the Andreev reflection
geometry in a FSF structure.(b) Schematic representation of the
tight-binding Hamiltonian cubic lattice and notation for the sites
a ,a ,b, andb. (b) corresponds to a cut in thesy ,zd plane. Voltages
Va andVb are applied on the two ferromagnets and a voltageVS is
applied on the superconductor.
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N̂b,b
s0d = fÎ − t̂b,bĝb,bt̂b,bĝb,bg−1

. s24d

Generalizing Ref. 10, we evaluate the phase averaging of the
following Green’s functions:

sga,b
1,1d2 = sga,b

2,2d2 = sga,b
1,2d2 =

p2rS
2

2skFRd2expS−
2R

jsvd
D D2

D2 − v2 ,

s25d

ga,b
1,1ga,b

2,2 =
p2rS

2

2skFRd2expS−
2R

jsvd
D2v2 − D2

D2 − v2 , s26d

ga,b
1,1ga,b

1,2 = ga,b
2,2ga,b

1,2 =
p2rS

2

2skFRd2expS−
2R

jsvd
D − vD

D2 − v2 .

s27d

We use Eqs.(25)–(27) and Eq.(22) to evaluate the phase-
averaged Green’s function in the CAR and EC currents given
by (18) and (19).

C. Crossed conductance in a FSF structure

1. Normalization of the tunnel amplitudes

For a NN contact, highly transparent interfaces corre-
spond tot= t0, wheret0 is such thatp2t0

2rN
2 =1. The NN con-

tact conductance is given byGNN=s2e2/hda, with34

a =
4st/t0d2

s1 + st/t0d2d2 . s28d

The conductance of a NF contact is given byGNF=se2/hd
3sa↑+a↓d, with

a↑ =
4p2t2rNrFs1 + Pd

f1 + p2t2rNrFs1 + Pdg2 , s29d

a↓ =
4p2t2rNrFs1 − Pd

f1 + p2t2rNrFs1 − Pdg2 . s30d

The valuet0 of t corresponding to a perfect transmission
in the spin-up channel is given by

p2t0
2sPdrNrFs1 + Pd = 1. s31d

The conductance of a SF contact with perfect transmission in
the spin-up channelst= t0sPdd is given by

GNF =
e2

h
S1 +

41−P
1+P

s1 + 1−P
1+Pd2D , s32d

varying betweene2/h for half-metal ferromagnets and 2e2/h
in the absence of spin polarization. In the following, we nor-
malize the hopping amplitudet to the maximal valuet0s1d of
t0sPd : t=tt0s1d, with t between 0 and 1.

2. Linear crossed conductance

Taking v!D, the linear crossed conductances corre-
sponding toVb=0 are given by

lGAP = 4
e2

h

t4

D2sPd
H−

t4s1 − P2d

D2sPd
+ P2J , s33d

lGP = 4
e2

h

t4

D2sPd
H−

t4s1 − P2ds1 − 2P2d

D2sPd
− P2J , s34d

with DsPd=1+t4s1−P2d /4 ,l=2skFRd2exps2R /j0d in the
ballistic limit, and l=2skFledskFRdexps2R /j0d in the diffu-
sive limit,16 wherele is the elastic mean-free path andj0 the
coherence length at zero energy. The variations oflGAPsPd
and lGPsPd are shown in Fig. 2 for increasing values oft.
First, one sees that atP=0 the crossed conductance is nega-
tive, as if a normal metal would replace the superconductor.3

By contrast, in the tunneling approach an exact symmetry
holds between CAR and EC, so that the crossed conductance
is zero forPa=0 or Pb=0.10,12 The observed trend is more
apparent for transparent contacts, and means that EC pro-
cesses dominate over CAR. We obtainGAPsPd.−GPsPd only
for small values oft [t=0.25 in Fig. 2(a)]. As t is increased
GAPsPd changes sign as shown in Figs. 2(b)–2(d). For half-
metal ferromagnets we haveGAPsPd=−GPsPd for all values
of t, as it can be seen from Eqs.(33) and(34). The key role
in the sign changes is played by processes of ordert8 like the
one represented in Fig. 3(b). Due to the opposite signs of
sga,b

1,1d2 andga,b
1,1ga,b

2,2 for v=0 [see Eqs.(25) and (26)], local
Andreev dressing effects tend to decreaseGa,b

1,2,AGb,a
2,1,R and

increaseGa,b
1,1,AGb,a

1,1,R; therefore, CAR is weakened and EC
reinforced.

3. Crossed conductance versus voltage

The variations of the crossed conductances as a function
of the voltageVb applied on electrode “b” are shown in Fig.
4 for P=0.5. For small interface transparencies(t=0.25 and
t=0.5) the crossed conductances in the parallel and antipar-
allel alignments are approximately opposite in the entire
voltage range. The crossed conductance atVb=D is vanish-
ingly small, both in the parallel and antiparallel alignments
and for arbitrary spin polarizations.

For half-metal ferromagnets the crossed conductances
take the form

lsVbdGAPsVbd = − lsVbdGPsVbd

= 4t4 D2

D2 − Vb
2S1 + t4 Vb

2

D2 − Vb
2D

−2

, s35d

wherelsVbd has the same expression asl except thatj0 is
replaced by the coherence length at a finite energy
j0D /ÎD2−Vb

2. Equation (35) is approximately equal to
s8/t4ds1−Vb /Dd if D−v!t4D, and approximately equal to
4t4D2/ sD2−Vb

2d if D−Vb@t4D. For t small there is thus a
maximum in the crossed conductance12 at a voltageVb
.Ds1−t4/2d. This argument forP=1 is compatible with the
behavior of the crossed conductances forVb&D and P=0.5
in Fig. 4.
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• Elastic cotunneling (EC):
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• Cooper pair splitting (CAR):
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• Double elastic cotunneling (dEC):
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• Double crossed Andreev re�ection
(dCAR) or quartets:
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• Triangular or mixed:
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Final Conclusion: Coming back to cross-correlations in NSN
M. Flöser, D. Feinberg, R. Mélin, PRB '13
Expression of the cross-correlations, following Anantram and Datta (PRB '96)

At perfect transparency and if Va = V
b
:

All channels disappear except for EC-AR (pair �uctuations)
Absence of CAR-NR (analogous of Cooper pair splitting for tunnel contacts)
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