## From engineering a half-open Floquet qu-bit to thermodynamics of topological effects in multi-terminal Josephson junctions PhD project, Institut Néel, Grenoble, France, Academic year 2017-2018 Régis Mélin, regis.melin@neel.cnrs.fr, Phone: +33-4-76-88-11-88

Many experimental and theoretical works in the field of quantum nanoelectronics aim at manipulating **simple systems** with small numbers of degrees of freedom. Several implementations have been realized, on the basis of Josephson junctions.

Two theoretical proposals have been made recently, which aim at using a Josephson junction as a simulator of some effects appearing in band theory. Superconducting phase variable between 0 and 2pi plays the role of wave-vector in the Brillouin zone:



1. The first proposal [1] consists in using a three-terminal Josephson junction in order to simulate the wave-function of an electron in the presence of electric field, and in a periodic potential. The time periodicity of the Josephson Hamiltonian plays the role of the potential of the crystal lattice, which is periodic in space. The physics is then related to **Bloch oscillations** and to **Wannier-Stark resonances**. It is possible to fabricate on this basis a two-level system in Floquet space, namely, a qu-bit sharing some features of open systems, and others of closed systems.

2. The second proposal consists in using a four-terminal Josephson junction to produce **nontrivial topology** [2] analogous to conductance quantization in the integer quantum Hall effect.

A phase-biased Josephson junction gives rise to a **classical** current. At the level of BCS theory, increasing voltage from V=0 in a Josephson junction is thus a way to **increase the strength of quantum fluctuations**, starting from the classical limit for V=0. Those multi-terminal Josephson junctions are thus well suited for application of the **mathematical tools of semi-classical theory**. Moreover, topology fits well in the framework of semi-classical theory. Numerical Keldysh Green's function calculations will also be a useful point of comparison for those analytical approaches beyond the adiabatic limit.

Another direction of research consists in developing a description based on **quantum thermodynamics**, more especially regarding the distinction between dissipative and non-dissipative currents, and the open problem of the classification of all processes contributing to transport and noise in those set-ups, beyond the adiabatic or perturbative regimes.

Another proposed line of research is to **optimize the coherence time** of this Floquet twolevel system, with time-dependent voltages which can allow preventing quasiparticle trapping on the junction. Implementing **back-action** seems to be promising.

**Methodology:** It is expected that the candidate will acquire experience on numerical calculations, with emphasis on more theoretical and mathematical issues, in connection with development of semi-classics in collaboration with Alain Joye and Frederic Faure in the mathematical physics group of Institut Fourier in Grenoble. The candidate will also be encouraged to interact with experimental groups.

**References:** [1] R. Mélin *et al.*, Phys. Rev. B **95**, 085415 (2017). [2] R. P. Riwar *et al.*, Nature Comm. **7**, 11167 (2016).