The Feshbach Insulator: a New State of Quantum Matter

Feshbach resonances - namely resonances between an unbound two-body state (atomic state) and a bound (molecular) state - are a unique tool to tune the interaction properties of ultracold atoms. In this talk, I will show that the coherent coupling of the atomic and molecular state, can lead to a novel insulating phase - the Feshbach insulator - for bosons in an optical lattice close to a narrow Feshbach resonance. This new state of quantum matter appears around the resonance, preventing the system from collapsing when the effective atomic scattering length becomes negative. Surprisingly enough, the transition from condensate to Feshbach insulator has a characteristic first-order nature, due to the simultaneous loss of coherence in the atomic and molecular components. Our realistic study shows that these features appear clearly in the ground-state phase diagram of e.g. rubidium 87 around the 414 G resonance, and they are therefore directly amenable to experimental observation.