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Deutsche Zusammenfassung

Die Leitfähigkeit1 G beziehungsweise der Widerstand ρ = G−1 ist schon immer eine
wichtige Messgröße in der Festkörperphysik gewesen. In vielen Experimenten ist die
Leitfähigkeit durch das Ohmsche Gesetz I = G · V , das einen linearen Zusammenhang
zwischen dem gemessenen Strom I und der angelegten Spannung V angibt. Die Leit-
fähigkeit lässt Rückschlüsse über die im Festkörper stattfindenden Prozesse zu. Zum
Beispiel hat sich in der klassischen Festkörperphysik das Drude-Modell durchgesetzt,
bei dem angenommen wird, dass Elektronen, die im elektrischen Feld beschleunigt wer-
den, an Störstellen im Festkörper gestreut werden, was zu einer endlichen Leitfähigkeit
führt, die sich von Material zu Material unterscheidet [1]. Mit der technischen Ent-
wicklung der Tieftemperaturphysik ist es Anfang des letzten Jahrhunderts zusätzlich
möglich geworden, die Leitfähigkeit bei Temperaturen weit unter der Raumtemperatur
zu messen. Das hat zu vielen neuen, interessanten Erkenntnissen geführt. Ein sehr be-
kanntes und heute populäres Beispiel ist die Supraleitung: Unterhalb einer bestimmten
kritischen Temperatur gehen Metalle in einen neuen thermodynamischen Zustand über,
bei dem der Widerstand plötzlich auf null abfällt. Dieses Phänomen wurde 1911 von H.
K. Onnes in Quecksilber entdeckt, dessen kritische Temperatur etwa 4.2 K beträgt. Ein
weiteres, für die vorliegende Diplomarbeit wichtiges, aber weniger bekanntes Beispiel
ist der Kondo-Effekt. Er wurde in den 1930er Jahren in Legierungen mit magnetischen
Störstellen ebenfalls bei niedrigen Temperaturen um die 10K beobachtet und führt
zu einem unerwarteten, anomalen, logarithmischen Anstieg des Widerstandes (siehe
Abbildung 0.1). Dies widerspricht der Annahme, dass der Widerstand eines Festkör-
pers für tiefe Temperaturen polynomiell monoton fallend gegen einen konstanten Wert
strebt [1, 2]. Eine Erklärung für beide Effekte hat Physiker mehrere Jahrzehnte lang
beschäftigt und trug dazu bei, dass die Quantentheorie der Festkörper entwickelt wurde.
In dieser Theorie wird der Festkörper durch Phononen und Elektronen beschrieben und
der Transport von Elektronen durch den Festkörper imWesentlichen durch die Elektron-
Phonon-, Elektron-Elektron- und Elektron-Störstellen-Wechselwirkung bestimmt [3].
Die Supraleitung wurde 1957 mit der BCS-Theorie erklärt, welche zeigt, dass es eine

unerwartete, effektive attraktive Wechselwirkung zwischen Elektronen im Festkörper
geben kann, was zur Cooper-Instabilität führt [4]. Der Kondo-Effekt wurde schließlich
1964 von J. Kondo erklärt. Er benutzt eine durch das Anderson-Modell [5, 6] herleit-
bare effektive Spin-Spin-Wechselwirkung (siehe auch Kapitel 2). Dabei wechselwirkt
der Spin S der magnetischen Störstelle mit den Spins s der Leitungselektronen, was
zum Kondo-Modell mit der Wechselwirkung JS · s führt. Diese wird in dem üblichen
Formalismus der semi-klassischen Transport-Theorie verwendet, welcher die Boltzmann-

1In dieser Diplomarbeit wird durchgehend ~ = 1 (Plancksche Konstante) und kB = 1 (Boltzmann
Konstante) verwendet
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gleichung benutzt. Der Einfluss dieser Wechselwirkung auf die Streurate wird in dritter
Ordnung Störungstheorie in J ausgerechnet. Das ergibt den logarithmischen Anstieg
des Widerstandes. Durch weitere Anwendung störungstheoretischer Methoden (siehe
Kapitel 2) erhält man schließlich für den Widerstand [7, 8]

ρ(T ) ∝ log−2(T/TK). (0.1)
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Abbildung 0.1.: In dieser Abbildung wird der
Kondo-Effekt im Widerstand von verschiedenen
MoNb Legierungen gezeigt, welche als Störstel-
len 1% Eisen (Fe) enthalten [7].

Dabei wird die für das Kondo-Modell
typische Energieskala TK – die Kondo-
Temperatur – definiert, welche für Metal-
le bei etwa 8K liegt. Ist die Temperatur
im Bereich der Kondo-Temperatur, diver-
giert der für den Widerstand erhaltene
Ausdruck in Gleichung (0.1), was zum Zu-
sammenbruch der Störungstheorie führt
und Kondo-Problem genannt wird. Ein
Ausweg aus diesem Dilemma wurde letzt-
lich durch K. G. Wilson 1975 mit der nu-
merischen Renormierungsgruppe (NRG)
gefunden [9] (siehe auch Kaptitel 2). Mit
dieser ist es auch möglich, den Wider-
stand für beliebig tiefe Temperaturen zu
berechnen. Dabei stimmen die Ergebnisse
qualitativ mit den Experimenten überein.
Der Widerstand wird korrekt berechnet, der für tiefe Temperaturen konstant wird. Etwa
20 Jahre später wurde der Kondo-Effekt in Quantenpunkten wieder entdeckt [10].

Die heutige, populäre Nanotechnologie wurde in den späten 1960er Jahren durch
die Entdeckung der Molekularstrahlepitaxie in den Bell-Phone-Laboratorien eingelei-
tet. Diese erlaubt es, künstliche Halbleiterkristalle herzustellen, die mit verschiedenen
Halbleitermaterialien Schicht für Schicht zu einem Kristall gezüchtet werden [11, 12].
Die wurde zunächst vor Allem dazu verwendet, wichtige Bauelemente wie Dioden und
Transistoren herzustellen. Die verschiedenen Eigenschaften der Halbleitermaterialen,
wie zum Beispiel unterschiedliche Energielücken, führen dazu, dass die Elektronen sich
nach dem Zusammensetzen der verschiedenen Halbleiter in einem modulierten Poten-
tial befinden. In bestimmen halbleitenden Heterostrukturen entsteht dabei durch das
Zusammensetzen an der Grenze zwischen zwei Halbleitern, die unterschiedliche Band-
lücken besitzen, ein Dreieckspotential im Leitungsband, in dem sich die Leitungselek-
tronen ansammeln. Dies friert einen Freiheitsgrad ein und führt zur Bildung eines soge-
nannten zwei-dimensionalen Elektronengases (2DEG) [13]. Durch die Entwicklung der
Elektronenstrahllithographie in den 1980er Jahren ist es möglich, zusätzliche Elektro-
den (Top-Gates) auf dem Kristall aufzubringen. An den Elektroden wird eine Spannung
angelegt, mit der man das 2DEG einsperren kann. Dabei entsteht ein Quantenpunkt.
Um diesen befinden zwei Elektronenreservoire. Zwischen diesen beiden Elektronenreser-
voiren liegt die Spannung Vb an („bias voltage“), die einen Elektronenfluss durch den
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Abbildung 0.2.: In Abbildung 0.2(a) (http://marcuslab.harvard.edu/research.shtml) ist eine
Halbleiterstruktur zu sehen, auf welcher Top-Gates aufgebracht wurden, wodurch es möglich ist
das 2DEG, das sich in der Grenzschicht zwischen den beiden verschiedenen Halbleitermaterialien
befindet, zu manipulieren. In Abbildung 0.2(b) ist erklärt, wie es zur Bildung des 2DEG kommt.
Durch das Angleichen der Fermienergie und der Bänder Ev und Ec in beiden Halbleitern wird das
Potential für das Leitungsband Ec derart modifiziert, dass sich Elektronen in einem Dreieckspoten-
tial ansammeln, was zu einem Einfrieren eines Freiheitsgrades führt. Mit den Top-Gates lassen sich
weitere Freiheitsgrade der Elektronen einfrieren, was zur Bildung des Quantenpunktes führt.

Quantenpunkt ermöglicht (siehe Abbildung 0.5(a)). Diese Geometrie bietet nun die
Möglichkeit, die Leitfähigkeit dieser kleinen Region zu messen. Dabei kann man experi-
mentell überprüfen, welchen Einfluss die Stärke der Barrieren auf die Leitfähigkeit hat.
Der Quantenpunkt hat dabei diskrete Energieniveaus wie ein Atom, was zu massiven
Modifikationen der Leitfähigkeit führt [14] (siehe Abbildung 0.5(a)). Unter anderem
kann man in diesen Geometrien den Kondo-Effekt in der Leitfähigkeit messen.
Die Grundlage dafür ist der Ein-Elektron-Transistor, in dem ein einzelnes Elek-

tron durch den Quantenpunkt transmittiert wird und die Barrieren stark eingestellt
werden. Dieses Phänomen der Coulomb-Blockade wurde von M. A. Kastner 1992 [13]
entdeckt und führt zu Peaks in der Leitfähigkeit des Quantenpunkts in Abhängigkeit
von der Gate-Spannung (siehe Abbildung 0.3(a)). Es lässt sich folgendermaßen klassisch
erklären: Man braucht eine bestimmte Energie um ein Elektron dem Quantenpunkt hin-
zuzufügen, welche durch die Kapazität des Quantenpunkts bestimmt ist. Zum Beispiel
kostet es die Energie EC(N), um N Elektronen auf den Quantenpunkt zu bringen. Mit
der Gate-Spannung kann diese Energie modifiziert werden. Durch Ändern der Gate-
Spannung Vg kann die Energie EC(N + 1) so modifiziert werden, dass man eine La-
dungsenergieentartung EC(N) = EC(N +1) erzeugt, was dazu führt, dass ein Elektron
ohne zusätzliche Energie den Quantenpunkt betreten und wieder verlassen kann. An
diesen Entartungspunkten beobachtet man einen Peak in der Leitfähigkeit. Außerdem
wird durch weiteres Erhöhen der Gate-Spannung Vg die Besetzungszahl N des Quan-
tenpunkts nach N + 1 geändert [13, 15, 16]. Wird neben der Gate-Spannung Vg die
am Quantenpunkt anliegende Spannung Vb verändert, erhält man schließlich die soge-
nannten Coulomb Diamanten für die Leitfähigkeit (Abbildung 0.3(b)). Die Coulomb
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Abbildung 0.3.: In Abbildung 0.3(a) sind die Coulomb Peaks der Leitfähigkeit des Quantenpunktes
in Abhängigkeit von der Gate-Spannung Vg dargestellt. Die Peaks sind dabei quasiperiodisch mit
einer Periode proportional zu EC angeordnet. Verändert man zusätzlich die angelegte Spannung
Vb am Quantenpunkt, ergibt sich die 2-dimensionale Diamantstruktur für die Leitfähigkeit. Dabei
kennzeichen die schwarzen Regionen eine Leitfähigkeit G = 0 und die weiß-grauen Ränder einen
Peak in der Leitfähigkeit [17, 18].

Diamanten kennzeichnen dabei Regionen, mit konstanter Elektronenanzahl N auf dem
Quantenpunkt und mit einer Leifähigkeit G = 0. An den Grenzen der Diamanten ändert
sich die Elektronenanzahl entweder nach N − 1 oder N + 1 und führt zu einem Peak in
der Leitfähigkeit, da nun die Energieentartungspunkte von beiden Spannungen Vg und
Vb abhängen (Abbildung 0.3). Der Ein-Elektron-Transistor bietet also die Möglichkeit
die Anzahl an Elektronen auf dem Quantenpunkt zu kontrollieren. An diesem Punkt
kommt der Kondo-Effekt wieder ins Spiel, welcher die Leitfähigkeit des Quantenpunkts
stark beeinflussen kann. Um diesen messen zu können, müssen zunächst die Barrieren
geschwächt werden, was dazu führt, dass Elektronen durch den Quantenpunkt tunneln
können. Außerdem muss die Ladungsenergie, die man benötigt um ein Elektron auf den
Quantenpunkt zu bringen, groß sein im Vergleich zur Kondo-Temperatur [19] (siehe
Kapitel 2). Dabei werden die Energieniveaus als virtuelle Zwischenzustände genutzt.
Das führt dazu, dass man in Regionen, in denen der Quantenpunkt mit einer unge-
raden Anzahl an Elektronen besetzt ist, einen effektiven Spin beobachtet, der wie in
einem Metall mit den Leitungselektronen wechselwirkt. Während aber in einem Metall
das Erhöhen der Streurate zu einem Anstieg des Widerstandes führt, wird in einem
Quantenpunkt die Leitfähigkeit durch den Kondo-Effekt erhöht, da hier eine erhöhte
Streurate eine erhöhte Transmission von Elektronen durch den Quantenpunkt bedeu-
tet. Diese erhöhte Transmissionsrate wird Kondo-Resonanz genannt. Tatsächlich konnte
D. Goldhaber-Gordon 1998 [19] (Abbildung 0.4) am MIT den Kondo-Effekt in einem
halbleitenden Ein-Elektron-Transistor messen. In solchen Transistoren ist die Ladungs-
energie EC ≈ 1K− 10K und die Kondo-Temperatur liegt bei etwa TK ≈ 0.5K. Die Ent-
deckung hat dazu geführt, dass der Kondo-Effekt wieder verstärkt sowohl theoretisch
als auch experimentell untersucht wurde [16, 18, 20–23]. In Kapitel 2 wird erläutert, wie
der Transport von Elektronen durch den Quantenpunkt mit Hilfe der Transmissions-
matrix (T -Matrix) beschrieben werden kann (siehe Abbildung 0.5(a)). Unter anderem
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Abbildung 0.4.: In dieser Abbildung ist der
Kondo-Effekt in einem Ein-Elektron-Transis-
tor zu sehen. Durch die Coulomb-Blockade
wird dieser abwechselnd mit einer geraden
und ungeraden Elektronenanzahl besetzt. Für
ungerade Anzahl bleibt ein Nettospin übrig,
mit dem Leitungselektronen wechselwirken
können, was zum Kondo-Effekt führt, wenn
die Temperatur gesenkt wird. Ein Absenken
der Temperatur führt außerdem zu schärfe-
ren Peaks der Coulomb-Blockade, da ther-
mische Anregungen unwahrscheinlicher wer-
den [17, 19].

wird für das Kondo-Modell die Relation zwischen Leitfähigkeit und T -Matrix erklärt.

Mit den heutigen Methoden der Nanotechnologie kann man eine Vielzahl derarti-
ger Experimente realisieren. Dabei kann man Quantenpunkte aus Carbon-Nanotubes
(CNTs) herstellen und diese miteinander koppeln (siehe Abbildung 0.5). Die Ladungs-
energie der Quantenpunkte hat dabei mit immer kleiner werdenden Quantenpunktgeo-
metrien weiter zugenommen. So betragen typische Ladungsenergien in Quantenpunkten
aus CNTs etwa EC ≈ 10K− 100K und die Kondo-Temperatur beträgt TK ≈ 4K. Dies
führt das dazu, dass man den Kondo-Effekt immer besser beobachten kann und zeigt,
dass die Elektronen immer stärker korreliert sind, je kleiner die Quantenpunktgeometri-
en werden. Dies bietet den Anlass, das Wissen, welches man in den 1980er Jahren über
den Kondo-Effekt gewonnen hat, heute zu nutzen, um die Physik in Quantenpunkten
zu verstehen. Dabei kann man neue theoretische Methoden entwickeln und direkt mit
Experimenten vergleichen und testen. In dieser Diplomarbeit werden in Kapitel 3Majo-
rana Fermionen als Hilfsteilchen genutzt, um eine diagrammatische Störungstheorie
zu definieren, welche die Wechselwirkung des Spins des Quantenpunkts mit den Spins
der Leitungselektronen beschreibt. In Anhang A ist eine allgemeine Kurzeinführung in
die diagrammatische Störungstheorie zu finden. In den Kapiteln 3 und 4 wird schließ-
lich gezeigt, wie man die Diagrammtik für die T -Matrix verwenden kann. Dabei wird
die T -Matrix in eine Random Phase Approximation (RPA) entwickelt, wo nur die füh-
renden, logarithmischen Beiträge aufsummiert werden und die Kondo-Wechselwirkung
J renormieren. Desweiteren wird gezeigt, wie man die RPA für die T -Matrix im Ma-
gnetfeld anwendet. Dabei erzeugt das Magnetfeld einen zusätzlichen Zeemanterm im
Hamiltonoperator, welcher die Kopplung eines Spins an das angelegte Magnetfeld be-
schreibt. Der Zeemanterm führt schließlich zur Zeemanaufspaltung der Kondo-
Resonanz. Die Ergebnisse der RPA ohne und mit Magnetfeld werden schließlich mit
DM-NRG (Density-Matrix Numerical Renormalization Group) und NRG (Numerical
Renormalization Group) Rechnungen für die T -Matrix im Kapitel 4 verglichen. Für den
Fall ohne Magnetfeld wird gezeigt, dass die RPA äquivalent zum „poor man’s scaling“
ist [7, 24]. Für ein angelegtes Magnetfeld wird die DM-NRG angewandt, welche eine
Verallgemeinerung der NRG ist. Die DM-NRG Rechnungen werden dabei mit „Flexible
DM-NRG“durchgeführt (http://www.phy.bme.hu/ dmnrg/, [25]). Die Zeeman Ener-
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(a) Theoretisch (b) Experimentell

Abbildung 0.5.: In Abbildung 0.5(a) ist schematisch dargestellt, wie man den Elektronentransport
durch den Quantenpunkt in einem Modell beschreiben kann. Der Elektronentransport wird durch
die Potentialdifferenz Vb zwischen den beiden Elektronreservoiren links und rechts getrieben. Die
Energieniveaus des Quantenpunkts werden dabei als virtuelle Zwischenzustände genutzt und können
durch die Gate-Spannung Vg geändert werden. In Abbildung 0.5(b) ist eine Rasterkraftmikroskopauf-
nahme http://marcuslab.harvard.edu/research.shtml von zwei gekoppelten Quantenpunkten in
einem CNT zu sehen. Mit Hilfe der Top-Gate Spannungen an TGR, TGL und TGM werden die Bar-
rieren und mit SGL und SGR wird die Anzahl der Elektronen auf dem jeweiligen Quantenpunkt
kontrolliert, was den Elektronenfluss durch den Quantenpunkt beeinflusst.

gie des Zeemanterms definiert eine zusätzliche Energieskala, welche die NRG in Frage
stellt [26]. Um das zu überprüfen, wird das RPA Resulat für die T -Matrix mit den
DM-NRG Rechnungen und mit schon durchgeführten Rechnungen [27, 28] für verschie-
dene Verhältnisse B/TK verglichen. Als letztes wird in Kapitel 4 auch das ferroma-
gnetische Kondo-Modell im endlichen Magnetfeld diskutiert, welches Relationen zum
S = 1 Kondo-Effekt hat [29–31], welcher erst vor kurzem in einem molekularen Ein-
Elektron-Transistor entdeckt wurde [18, 32]. Am Ende dieser Diplomarbeit wird dann
in Kapitel 5 noch die Rolle der Spinrelaxationsrate diskutiert, welche mit Hilfe der
Dyson-Gleichung (siehe Anhang A) zu den Majorana-Propagatoren hinzufügt wird. Die
Spinrelaxationsrate hilft dabei, Divergenzen in der RPA zu beseitigen.

xi





1. Introduction

In solid-state physics the electrical conductance G and resistivity ρ = G−1 have always
been an important properties and are usually well described by Ohm’s law I = G · V .
This law relates the current I linearly to the applied voltage V . In classical physics,
the transport of electrons is described by the Drude model, where electrons are scat-
tered by impurities embedded in the crystal. These scattering events are described
phenomenologically by a mean scattering time τ . With the advent of low temperature
physics in the beginning of the 20th century unexpected behaviour of the conductance
of macroscopic samples was observed, i.e. superconductivity and the Kondo effect. For
some metals, called superconductors, the electrical conductance becomes infinite if they
are cooled down below a certain critical temperature (typically 4.2K-16K). It was H.
K. Onnes who discovered this behaviour for the first time in 1911 at the university
Leiden in mercury. A second important effect is the so-called Kondo effect which was
observed in the early 1930s. It describes an unexpected logarithmic decrease of the con-
ductance below a certain temperature (5K-10K) [1, 2]. The explanation of these two
effects required a further development of quantum mechanics and statistical physical [3]
and after a few decades the two phenomena were understood. In 1957 the BCS-theory
explains the superconductivity using an attractive electron-electron interaction which
leads to the Cooper instability. [4]. Furthermore, the semi-classical Boltzmann equa-
tion explains different distributions to the conductance, i.e. electron-phonon interaction,
electron-electron interaction and impurity-scattering [1]. J. Kondo was able to explain
the Kondo effect using the Boltzmann equation and assuming a phenomenological spin-
spin interaction between the conduction electrons and an impurity in 1964 [7, 8]. This
interaction has been explained later when the formation of magnetic moments in metals
was studied. The so-called Anderson model [5] describes the interaction of electrons
and magnetic impurities embedded in a Fermi sea. This term is given by JS · s which
describes interaction between the spin S of the impurity with the spin s of the con-
duction electrons being spin dependent. Perturbation theory in second order for the
relaxation time explains finally the logarithmic decrease of the conductance of met-
als. This logarithmic anomaly is only observed for a certain range of temperatures
described by the Kondo temperature TK . The Kondo temperature occurs in the resis-
tivity ρ(T ) =∝ log−2 T/TK . For a metal it is typically 5K-10K. If the temperature is
lowered further, the measured conductance saturates while the result obtained by apply-
ing perturbation theory does not describe this observation. It is even worse because the
result diverges which indicates that the perturbation theory breaks down. This is called
the Kondo problem and it is one of the first real many-body effects in solid-state physics.
Due to the spin-spin scattering the electrons can not anymore be treated independently
from each other – they are correlated by the impurity spin dynamics. The Kondo tem-
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perature separates the model into the regime T � TK where the electrons are weakly
correlated and the regime T � TK where the electrons are strongly correlated and
where perturbation theory breaks down. The Kondo problem was finally solved by K.
Wilson 1975 who developed the powerful numerical renormalization group (NRG) [7, 9].
Using this technique allows one to calculate the conductance for all temperatures and
the results agree quantitatively with experimental results. About 20 years later the
Kondo effect in quantum dots was detected leading to its revival [10, 16].

The advent of molecular-beam epitaxy in the late 1960s (developed at the Bell Tele-
phone laboratories) was the starting point for the realization of quantum dots. It
became possible to grow artificial semiconductor crystals and the nanotechnology be-
gan [11, 12], because using this technique these crystals are formed atomic layer by
atomic layer. The ability to switch abruptly between different semiconductor materials
allows to create manifold sandwich structures, i.e. semiconducting diodes and transis-
tors. Since each material has different energy bands and Fermi energies the sandwich
structure produces a modulated one-dimensional potential for the electrons (see Fig-
ure 1.1(b)) where one degree of freedom is frozen. The electrons can only move in a
plane. Within this plane, the electrons can move freely with different in-plane momenta,
giving the electrons a continuous energy dispersion. This gives rise to the so-called two
dimensional electron gas (2DEG) [1, 14]. Another important experimental technique of
the ongoing miniaturization is electron beam lithography which allows to define electric
gates with a precision of several hundreds of nanometers on the top of the crystal. The
2DEG can now be modified with the help electric top-gates so that the electrons can
be confined to a small region within the plane. This small region has discrete energy
levels like an atom. Due to this property, a confined 2DEG is also called artificial atom
or quantum dot. The size and form of the quantum dot can be controlled by the fab-
rication techniques. Additionally, a voltage Vb is directly applied to the 2DEG which
defines a potential difference between the two electron reservoirs, so that a current can
flow through the quantum dot (see Figure 1.2(a)). With the help of the top-gates the
current through the quantum dots can be modified (Figure 1.1(a)). Tuning the top-gate
voltages leads to a variety of different experimental set-ups, i. e. the strength of the
barriers between the 2DEG and the quantum dot can be controlled [14].

The Kondo effect was finally detected in the single electron transistor which is one
amongst many applications of quantum dots [14]. In this configuration the quantum
dot is weakly coupled to the leads and for sufficient low temperatures Coulomb blockade
peaks in the conductance occur [13]. This phenomenon allows to control the number
of electrons on the quantum dot. The Coulomb blockade can be understood classically
because the number N of electrons on the dot is a good quantum number. It is assumed
that it costs the electrostatic energy E(N) to add N electrons to the dot. If E(N+1) =
E(N) – a situation which is called a charge degeneracy point (obtained by shifting the
energy levels of the dot by tuning the gate voltage Vg (Figure 1.2(a))) – one electron can
hop on and off the dot without paying any energy so that at each degeneracy point a
peak in the conductance is observed. However, these peaks are broadened by tunneling
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Figure 1.1.: Figure 1.1(a) shows a semiconducting heterostructure where a 2DEG is formed between
two different semiconducting layers. The diagram in Figure 1.1(b) illustrates the formation of a
2DEG. Putting two semiconductors with different energy gaps together leads to a small triangle in
the conduction band where electrons are accumulated. This freezes one degree of freedom of the
electrons and they are confined in a plane – the 2DEG. On the top of the created heterostructure
electric gates are defined using electron beam lithography (see Figure 1.1(a)). The bias voltage
defines a potential difference between the two electron reservoirs so that a current can flow through
the dot (http://marcuslab.harvard.edu/research.shtml).

and thermal effects [13, 15]. These tunable properties of the quantum dots can be used
to recover certain effects that are observed in solids. For example, one can bring the
dot into a configuration where an odd number of electrons is on the dot, which leads
to an unpaired spin. It turns out that if the dot is strongly coupled to the leads the
results can be understood in the context of Kondo physics. In this configuration the
quantum dot geometry corresponds to an embedded artificial magnetic impurity
in a Fermi sea – as it was shown before in metals. The quantum dot geometry allows
to measure electrons tunneling through the dot leading to the conductance. Thus the
higher scattering rate which stems from the Kondo effect increases the conductance,
while the higher scattering rate increases the resistivity of metals for low temperatures.
The rise in the scattering rate due to the Kondo effect is called Kondo resonance. The
Kondo resonance in the low temperature conductance of a single electron transistor
was detected for the first time in 1998 by Goldhaber-Gordon at the MIT [19] where
he used a semiconducting heterostructure (see Figure 1.1(a)). In such structures the
Kondo temperature is usually TK ≈ 0.5K and the charging energy is EC ≈ 1K− 10K.
Recently, carbon-nanotubes (CNTs), which are rolled-up sheets of graphene have been
become very popular to form quantum dots where top gates are also used to confine
electrons (see Figure 1.2). The typical size of a CNT is around 100nm. Typically the
Kondo temperature is TK ≈ 4K and the charging energy is EC ≈ 10K − 100K. This
allows to observe the Kondo effect more clearly in a CNT [18].

The Kondo effect is one of the best understood many-body models in condensed
matter physics and there are a variety of techniques to treat the Kondo problem, even
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Figure 1.2.: Figure 1.2(a) illustrates how electrons tunnel from the left to the right lead by using the
energy levels of the quantum dot as intermediate states. The black solid lines separate the quantum
dot from the leads and the strength of these barriers can be controlled by top-gates. The gate voltage
Vg controls the number of electrons on the dot and the bias voltage Vb defines a potential difference
between the two leads so that current can flow. In Figure 1.2(b) an atomic force microscopy picture
(www.spie.org/x8587.xml?ArticleID=x8587) of a CNT quantum dot is shown. This geometry is
called a double quantum dot. With the gates SGL, SGR the number of electrons on the two dots
can be controlled and with the three top-gates TGL, TGR and TGM the coupling between the dots
and the coupling to the electron reservoirs is controlled. With these top-gates a lot of different
quantum dot geometries can be realized with different conductances.

exact solutions. In the ongoing miniaturization, correlations between the electrons
become more and more important. This can be understood from the increasing charging
energies due to the higher capacity for decreasing size of the quantum dot. The Kondo
model is a prototype model for strongly correlated electrons which helps to understand
and test newly developed techniques [14, 16, 18, 20–23]. In this thesis the magneto-
conductance in the Kondo regime with a ferromagnetic and anti-ferromagnetic Kondo
coupling J will be discussed in a theoretical framework and the results will be compared
to corresponding experimental set-ups where an additional magnetic field is applied to
the impurity [27, 28, 33, 34]. The magnetic field involves a Zeeman term in the
Hamiltonian which describes the coupling of the spin and the magnetic field. The
consequences for the applied methods such as the NRG and the experiments will be
discussed.
In chapter 2 a review of the Kondo effect in quantum dots is given. We will explain

how to describe the electron transport through the quantum dot using perturbation
theory. We will further review how the NRG works. In addition, typical experimental
results will be compared with NRG and perturbation theory results so that the Kondo
problem becomes clearer. The Kondo problem will be further discussed in the presence
of a magnetic field. This leads to the Zeeman term in the Kondo Hamiltonian which
has to be treated by using the density matrix renormalization group (DM-NRG). This
method is a generalization of the NRG for the Kondo model at finite magnetic field [26].
In chapter 3 the Majorana fermion formalism will be explained. The spin S of

the impurity will be represented by Majorana fermion propagators which will enable
us to include the spin relaxation time by Dyson’s equation. This involves an intro-
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duction on how the Majorana fermion can be used in many-body perturbation theory
where the most important details are summarized. This introduction will also show the
advantages of using this technique, i.e. how to apply Wick’s theorem (see appendix A).
Then, in chapter 4 it will be shown how the T -matrix can be expanded into a Random

Phase Approximation (RPA). It will be illustrated how the RPA for T -matrix can be
carried out for the both the cases, with and without magnetic field. The result at finite
magnetic field will lead to the discussion of the Zeeman splitting of the Kondo
resonance. Additionally, the RPA result of the T -matrix is compared to DM-NRG
calculations of the T -matrix which will evoke a thorough discussion of the two applied
methods. The DM-NRG results were calculated by using the “Flexible DM-NRG” code
(http://www.phy.bme.hu/ dmnrg/, [25]). In the end of chapter 4 the T -matrix will be
discussed for ferromagnetic Kondo coupling J where the perturbation theory does not
break down. The result of the DM-NRG and the RPA for this case will be compared
to experimental results where the underscreened S = 1 Kondo effect in a molecular
transistor has been observed [32]. We will show that there is a connection between the
underscreened S = 1 Kondo effect and the ferromagnetic S = 1

2 Kondo effect which
was already found in the 1980s by P. Nozières [30].

The spin relaxation rate will finally be included into the discussed in chapter 5
where it will be calculated to lowest non-vanishing order using Dyson’s equation. The
spin relaxation rate will be used to discuss the magnetic susceptibility for the Kondo
model at finite magnetic field which will complete the discussion of the benchmark of
the RPA and the DM-NRG. It will be eventually seen that the spin relaxation rate
helps to cut divergences in the RPA.
In the last chapter 6, the results of this diploma thesis will be summarized and an

outlook will be given.

In order to increase the readability of the thesis technicals details can be found in
the appendices. In appendix A one can find a short introduction to zero-temperature
Green’s functions where concepts like Feynman diagrams, Dyson’s equation and Wick’s
theorem are summarized. This appendix shows the importance of Wick’s theorem for
many-body techniques. For more details we refer to Ref. [35–40]. Then, in appendix B
the expression of the T -matrix for the Kondo model is derived. This expression is then
calculated in this diploma thesis using Majorana fermions and DM-NRG. The calcula-
tion of the polarization diagram (see chapter 4) and the self-energies (see chapter 5)
is done in appendix C. We also refer to the list of the most important symbols and
abbreviations given in appendix D.
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2. The Kondo effect in quantum dots

In this chapter the conductance of quantum dots in the Kondo regime will be dis-
cussed. In the first part of this chapter we will illustrate how perturbation theory can
be used to describe the electron transport through the quantum dot. A quantum dot
has several energy levels which are coupled to two electron reservoirs with a contin-
uous density of states. Furthermore, there are interactions between the electrons on
the quantum dot. The number of energy levels and the strength of the interactions
can dramatically change the conductance. In the second part of this chapter we will
introduce the Anderson model, where a single energy level is coupled to the electron
reservoirs. The interactions in this model are described by the Coulomb repulsion U for
a double occupied energy level. The low energy physics of the Anderson model opens
a tunneling channel for the electrons which increases the conductance logarithmically.
This enhancement of the conductance is the Kondo resonance and leads to the Kondo
problem. The Kondo problem has been solved by K. G. Wilson’s NRG. The NRG is
a non-perturbative method to describe the electron transport through the dot. In the
last part of this chapter the steps of the NRG will be explained.

2.1. Transport theory and the T -Matrix

In this section we are going to show how perturbation theory can be used to describe
the electron transport. In Figure 2.1 it is illustrated how the quantum dot geometry
can be formalized. The coupling of the quantum dot to the two electron reservoirs
is described by tunneling amplitudes which are determined by the strength of the
barriers. The energy levels and interactions in the quantum dot are described by the
Hamiltonian HD and the reservoirs electrons in the right or left by the Hamiltonians

HL HR

t∗RtL

tRt∗L

HD

Vg

Figure 2.1.: This Figure shows the quantum dot which is coupled to two leads. HD describes the
energy levels of the quantum dot and HR (HL) describes the free electrons on the left (right) lead,
respectively. The quantum dot is coupled to the two leads by tunneling terms tR and tL which
describe the tunneling amplitudes between the dot and the leads. The energy levels of the dot can
be shifted by applying a gate voltage Vg. This allows to change the number of electrons residing on
the dot.
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HR or HL respectively. Electrons which tunnel from one lead through the dot to the
other lead will contribute to the conductance. We want to describe these processes
in the following using perturbation theory. Therefore, we separate first of all them
into sequential tunneling and co-tunneling. The former describes a direct tunneling of
the electrons and thus corresponds to a classical description. Co-tunneling events are
processes where the energy levels of the quantum dots are used as intermediate states
when the electrons tunnel from the right to the left lead. The number of co-tunneling
events increases for a stronger coupling of the quantum dot to the leads. We want to use
perturbation theory to describe the rate of electrons tunneling through the quantum
dot. This rate finally determines the conductance. The probability for a transition
from an initial state |i〉 to a final state |f〉 is expanded into a perturbation series
in the tunneling Hamiltonian Ht which is switched on adiabatically. For more details
about perturbation theory in quantum mechanics we refer to different introductions, i.e.
Ref. [41–43]. Since the strength of the coupling is adiabatically increased the eigenstates
of the Hamiltonian H0 = HL +HR +HD are the unperturbed eigenstates used in the
perturbation series. The corresponding eigenvalues are given by H0|i〉 = Ei|i〉. In the
interaction representation (see appendix A) the probability P for a transition is given
by[37]

P = |〈f |i(t)〉|2 = 2π |〈f |T |i〉|2 δ (Ef − Ei) t, (2.1)

where the T -matrix is given by

T = V +
1

Ef −H0 + i0+
T . (2.2)

The positive damping rate 0+ represents the causality of the adiabatically switched-on
coupling. Calculating this rate leads to the conductance of the quantum dot where the
T -matrix describes all orders of tunneling processes. This allows to describe many-body
transport phenomena. Equation (2.1) can also be seen as a generalization of Fermi’s
golden rule [37]. The quantum dot is coupled to leads which consist of free electrons.
Thus, the quantum numbers of the matrix elements in equation (2.1) are given by the
spin σ and the momentum k of the initial and final states.

2.1.1. Coulomb blockade

The Coulomb blockade phenomenon occurs when the quantum dot is weakly coupled to
the two leads. This can be realized experimentally by tuning the top-gates between the
leads and the quantum dot to very high potentials. (Figure 2.2(b)). In this limit the
transport can be described classically by an electrostatic energy E(q) which depends
on the charge q [13, 15, 16]. The quantum dot which is weakly coupled to the two
leads can be mapped on to an equivalent circuit with capacitors CR, CL and Cg (see
Figure 2.2(a)). The electrostatic energy E(q) in this circuit reads

E(q) =
q2

2C
− qCg

C
Vg, (2.3)
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(a) Classical circuit
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(b) Sketch of the top-gates

Figure 2.2.: Figure 2.2(a) shows the classical circuit with the total capacitance C = CR + CL + Cg
of the system. Vg is the gate voltage which allows modify to the charging energy. In Figure 2.2(b)
it is shown how the top-gates deplete the 2DEG into the finite region in the middle which is called
the dot. One can control the coupling to the leads via the voltages VR and VL.

where C = CR + CL + Cg is the total capacitance of the quantum dot. This classical
expression for the energy can be used to find the Hamiltonian for the model. Using the
correspondence principle of quantum mechanics [16, 42] leads to

HD =
∑

nσ

εnd
†
nσdnσ + EC(N −N0)2, (2.4)

where εn labels the eigen-energies of the single particle states of the quantum dot, EC
the charging energy, N =

∑
nσ dnσ the number of electrons on the quantum dot and

N0 =
CgVg
e the occupancy of the quantum dot which depends on the gate voltage

Vg. The operator d†nσ (dnσ) creates (destroy) an electron on the energy level n with
spin σ and follows usual fermionic anti-commutation rules. The eigenenergies of the
Hamiltonian HD in equation 2.4 depend on the number of electrons N on the dot and
are given by E(N). This eigenenergy defines the needed energy to add N electrons
on the dot. The energy for adding one electron can be changed with the gate voltage.
If the energies E(N) and E(N + 1) are equal, it costs no energy to add an electron.
This situation is called a charge degeneracy point which explains the single electron
transistor [13, 15]. If the mean spacing δE between the single particle energies εn is
small compared to the electrostatic EC , quasi-periodic peaks in the conductance G are
measured by changing the gate voltage Vg with a period which is proportional to EC .
The resulting Coulomb blockade peaks are broadened by thermal effects and tunneling
events. Changing additionally the bias voltage Vb leads to the typical diamond structure
of the conductance G. Each diamond contains a different number of electrons residing
on the quantum dot. The Coulomb peaks and diamonds are shown in Figure 2.3.

2.1.2. Beyond the classical Coulomb blockade

If the voltages of the top-gates are tuned in such a way that the quantum dot is strongly
coupled to the two leads (see Figure 2.2(b)), co-tunneling events become important. In
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Figure 2.3.: This Figure shows the typical Coulomb blockade peaks (Figure 2.3(a)) and diamonds
(Figure 2.3(b)). The dark areas of the diamonds describe a constant number of electrons on the
quantum dot and the conductance is zero. The bright areas of the diamonds indicate the change of
the number of electrons on the quantum dot with a finite conductance.

this regime higher-orders terms in perturbation theory have to be taken into account.
For instance, in second order there are two different possibilities for tunneling events:
either 1.) an electron can tunnel from the left lead on the dot and then an electron
tunnels from the dot to the right lead or 2.) an electron firstly tunnels from the dot to
the right lead and then an electron tunnels from the left lead on the dot. During these
tunneling processes spin-flip processes can occur which lead to the Kondo effect. Fur-
thermore, the tunneling processes can be classified into elastic and inelastic processes.
Inelastic second order tunneling events change the energy of the dot, i.e. the result is
created electron-hole pair on the dot. In such a process the energies of the initial and
final states differ. In Figure 2.4(a)-(c) these processes are sketched. The contribution
to the conductance for low temperatures of inelastic second order processes is propor-
tional to T 2 (temperature) while the contribution of elastic processes is a constant. In
general these contributions modify only weakly the conductance and we will see later
how the latter modifies the conductance strongly for low temperatures.
This section is finished with an example. The conductance G of a single non-inter-

acting energy level εd symmetrically coupled to two reservoirs is given by [44]

G(Vb, T ) ∝ 4

T

1

cosh2((εd − Vb)/2T )
, (2.5)

The result is a peak broadened with increasing temperature T and centered around
εd. In the following we want to discuss co-tunneling contributions to the conductance.
This peak has the same form as the Coulomb blockade peaks in Figure 2.3(a).

2.2. Conductance in the Kondo regime

In this section we show how the Anderson model leads to the Kondo model and how
this model modifies the conductance. The example of a single non-interacting level has
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(a) Inelastic co-tunneling

εF
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(b) Elastic co-tunneling

εF
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↑↓

(c) Spin-flip co-tunneling

Figure 2.4.: In 2.4(a) an inelastic co-tunneling process is shown where an electron tunnels from the
left lead onto a vacant energy level of the quantum dot while another electron tunnels out of the
quantum dot leaving behind an electron-hole pair on the quantum dot. In 2.4(b) an elastic co-
tunneling process is sketched where the initial and final states are the same and finally in 2.4(c) an
elastic co-tunneling process with spin-flip is shown which gives rise to the Kondo effect.

been discussed with equation (2.5) and as we have seen it results in a Coulomb blockade
behaviour. The Anderson model assumes that the quantum dot has one energy level
coupled to the two leads. The interaction is described by a constant Coulomb repulsion
U for double occupancy of the dot. The aim is to derive the relation between the
conductance and the T -matrix [22, 45] for such geometries. The discussion will show
that the conductance is strongly modified by the Kondo effect.

2.2.1. Anderson model

The Hamiltonian consists of three different terms (2.6)-(2.9)). The right and the left
lead contain free electrons given by

HR;L =
∑

kσ

εkc
†
R;L kσcR;L kσ , (2.6)

where R (L) labels the right (left) lead respectively. The operator c†Rkσ creates one
electron in the right lead with momentum k and spin σ. The operators c†Rkσ and cRkσ
follow usual anti-commutation rules for i, j ∈ {R,L} given by

{
cjk1σ1 , c

†
ik2σ2

}
= δi,jδσ1,σ2δk1,k2

{
cjk1σ1 , cik2σ2

}
=
{
c†jk1σ1 , c

†
ik2σ2

}
= 0.

(2.7)

We use the Anderson model to describe the quantum dot [5, 6, 37]:

HD =
∑

σ

εdd
†
σdσ + Un↑n↓, (2.8)

where d†σ is a fermionic operator obeying anti-commutation rules. The operator d†σ
creates an electron on the quantum dot with spin σ, nσ = d†σdσ is the number of
electrons with spin σ, and U is the Coulomb repulsion when the dot is occupied by
two electrons. The tunneling terms are described by a tunneling Hamiltonian with the
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tunneling amplitudes tR,L. As already mentioned they do not depend on energy and
the tunneling Hamiltonian is given by

HT =
∑

kσ

(
tRc
†
Rkσdσ + tLc

†
Lkσdσ + h. c.

)
. (2.9)

The coupling between the leads and the dot broadens the energy level εdv and is called
hybridization ΓR;L = πρ0 |tR;L|2.
The historical Anderson model with particle-hole symmetry where one energy level

is coupled to the left electron reservoir is sketched in Figure 2.5. When the Fermi level
εF and the energy level εd are defined as εF = 0 and εd = −U

2 the model is particle-hole
symmetric. Before we discuss this it is shown how the energy level coupled to two
leads can be mapped on to the historical Anderson model. This can be achieved by
applying a unitary transformation in the R-L-space. The unitary transformation is
defined through [22, 37]

(
ckσ
ψkσ

)
=

1√
|tL|2 + |tR|2

(
t∗L t∗R
−tR tL

)(
cLkσ
cRkσ

)
, (2.10)

leading to the transformed tunneling Hamiltonian HT

HT =
∑

kσ

√
|tL|2 + |tR|2

(
c†kσdσ + h. c.

)
. (2.11)

If we compare the tunneling term with a model where only one reservoir is coupled
to the quantum dot we conclude that this term leads only to a modified hybridization.
This equation shows that electrons which are created by ψ†kσ can not tunnel onto the dot
and stay free. Electrons created by c†kσ can tunnel onto the dot and only the spectral
function of these electrons is changed by the interaction. Thus, the transformation
separates the quantum dot coupled to two leads into two different channels. One
of them describes free electrons and the other describes a single electron reservoir
coupled to the quantum dot. This justifies to drop the index R or L of the operators
describing the free electrons. The transformation has shown that it suffices to discuss
the historical Anderson model where only the left lead is coupled to the impurity as
shown in Figure 2.5. We use a flat-band density of states for the conduction electrons:

ρ(ω) =
1

2D
Θ(D2 − ω2) = ρ0Θ(D2 − ω2). (2.12)

It can be seen in Figure 2.5 that the energy level is occupied by one electron for a
sufficient strong Coulomb repulsion U compared to the broadening ΓL of the energy
level εd. This is the magnetic phase of the Anderson model1. The critical value where
a magnetic moment with spin S = 1

2 is formed is given by Uc ≈ πΓL. This can be
understood as a competition between the hybridization and the Coulomb repulsion.

1The energy level εd has to be below the Fermi level.
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Figure 2.5.: In this Figure an energy level εd is coupled to an electron reservoir. The density of states
of the conductions electrons is ρ(ω) = 1

2D
:= ρ0. The energy level can be occupied by zero, one

or two electrons. Charging the energy level with two electrons costs the Coulomb energy U . The
tunneling t broadens the energy level εd with width ΓL. The situation where one electron occupies
the energy level corresponds to a magnetic impurity interacting with the conduction electrons. If
the Coulomb repulsion U is big compared to ΓL the energy level is occupied in average by one
electron which gives rise to the Kondo model.

For values U � Uc the resonance is centered around the Fermi energy and for U � Uc
the resonance splits into two resonances centered around εd and εd+U which are called
Hubbard bands [44]. In the next step we are going to sketch how the Anderson model
can be projected into the low energy sub-space. This will lead to an effective spin-spin
interaction in the low energy limit.

2.2.2. Kondo model

The Kondo model turns out to be an effective Hamiltonian which describes the low
energy physics of the Anderson model. In 1966 J. R. Schrieffer and P. A. Wolff [46]
cancelled out the high energy states where the energy levels are occupied by two or zero
electrons by projecting the Hamiltonian HD into the low energy subspace, where only
one electron is residing on the energy level. For the original Anderson model where one
electron reservoir is coupled to the impurity one obtains the effective Hamiltonian [7, 46]

Heff = −
∑

k1k2σ1σ2

∣∣∣t
∣∣∣
2
(

(c†k1σ1dσ1)(d†σ2ck2σ2)

εd + U
+

(d†σ2ck2σ2)(c†k1σ1dσ1)

−εd

)
, (2.13)

where the high energy levels are only occupied virtually and the excitation energies
are given in the denominator. The first term describes the process between the double
occupied and the single occupied subspace. The second term describes the process
between the non-occupied and the single occupied subspace. In the language of the
T -matrix these are transmission processes in second order. Rewriting the effective
Hamiltonian leads to the Kondo model, where the interactions are described by the
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effective Hamiltonian. Regarding the free electrons described by H0 leads to

HKondo =
∑

kσ

εkc
†
kσckσ +

J

2
Sd ·

∑

k1k2σ1σ2

c†k1σ1τ σ1σ2ck2σ2 , (2.14)

where τ denotes the vector τ =
(
τx, τy, τ z

)T formed by the three Pauli matrices
and τ σ1σ2 labels the matrix elements of the Pauli matrices [41, 43]:

τx =

(
0 1
1 0

)
, τy =

(
0 −i
i 0

)
, τ z =

(
1 0
0 −1

)
. (2.15)

Usually, the abbreviation c†0σ =
∑
k c
†
kσ and the local spin-density s

s =
1

2

∑

σ1σ2

c†0σ1τ σ1σ2c0σ2
(2.16)

of the conduction electrons are introduced. The interaction term in the Kondo Hamil-
tonian HKondo can thus be rewritten as Heff = JS · s. The interaction constant J in
this derivation is given by

J = 2|t|2
(

1

|εd|
+

1

εd + U

)
= 8
|t|2
U
, (2.17)

which is always positive in the Anderson model, i.e. the coupling between the two
spins is always anti-ferromagnetic. The effective Hamiltonian describes the interactions
HI of the Kondo model. The Kondo Hamiltonian will be written from now on as
HK = H0 +HI. The consequences of this interaction for the conductance is the subject
of the remaining parts in this chapter. We mention that the Kondo Hamiltonian is a
simplification of the Anderson model and that it describes its low energy limit.

2.2.3. Relation between the conductance and the T -matrix

The conductance is a physical property which can be measured in an experiment. In
the next step we are going to show how the conductance is related to the T -matrix
which describes the transmission processes. This relation justifies to discuss only the
T -matrix. The conductance can be evaluated in a linear response regime which will be
done in the following by using the Kubo formula [37, 39]

G = lim
ω→0

1

ω

∫ ∞

0
eiωt 〈[I(t), I(0)]〉 dt, (2.18)

with the current operator:

I =
e

2

d

dt
(NR −NL) . (2.19)

It describes the number of electrons which flow from the right to the left reservoir
per time unit. If one uses the unitary transformation defined in equation (2.10) for
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the current operator in the Kubo formula, two particle correlation functions will occur
such as [21, 22] 〈

c†kσ(t)Ψkσ(t)Ψ†kσ(0)ckσ(0)
〉
. (2.20)

With the help of Wick’s theorem (see appendix A), the correlation function can be
expressed as a product of free retarded Green’s functions

GRΨkσ(ω) =
1

ω − εk + i0+
(2.21)

and full Green’s functions

GRkk′σ(t− t′) = −iΘ(t)
〈{
ckσ(t), c†kσ(0)

}〉
. (2.22)

The conductance G of the quantum dot is given by a convolution of Fermi distribution
functions nF (εk) = 1/(eβ(εk−µ) + 1) and the Green’s functions [21]:

G ∝ lim
ω→0

ω

∫
dεk (nF (εk + ω)− nF (εk))G

′′R
Ψkσ(εk)G

′′R
kk′σ(εk) (2.23)

where G′′RΨkσ(ω1) and G′′R
kk′σ

(ω1) are the imaginary parts of the corresponding retarded
Green’s function, respectively. This definition is convenient and will be used from now
on in this work for all functions, i.e. the T -matrix. The full Green’s function is usually
written as [45]

GRkk′σ(ω) = GR0kσ(ω)δk,k′ +GR0kσ(ω)T Rkk′σ(ω)GR0k′σ(ω) , (2.24)

where T R
kk′σ

(ω) denotes the matrix elements of the retarded T -matrix. The Green’s
function GR0kσ(ω) indicates free propagation of the conduction electrons. For a local
interaction such as the Kondo interaction, the matrix elements of T -matrix do not
depend on k. The interpretation of this equation is the following: A Green’s function
describes the probability amplitude that a particle which is created with momentum k
and spin σ at time 0 can be removed at time t with momentum k′ and spin σ. If there are
no interactions the momentum k is conserved. The first term describes thus no scattered
particles. The second term describes in principle all possible scattering processes by
the T -matrix, i.e. multiple scattering. Equation (2.24) is therefore a generalization of
equation (2.2), where Green’s functions are used for perturbation theory. This equation
for the T -matrix can also be used to describe inelastic scattering [45, 47]. With the
optical theorem [43] it is possible to calculate the total and the elastic cross section. The
generalized equation can be used to evaluate the conductance G. The first term does
not contribute to the conductance and the second term gives the important relation
between the T -matrix and the conductance which is given by

G =
2e2

h

4|tL|2|tR|2
(|tL|2 + |tR|2)2

∫ ∞

−∞
dεk

(
−dnF (εk)

dεk

)
1

2

∑

σ

[
−πρ0T

′′R
σ (εk)

]
. (2.25)
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The T -matrix of the Kondo model is derived in appendix B and will be discussed in the
next chapter. Alternatively, the conductance for the Anderson model is given by [37]

G = e2
∑

σ

∫ ∞

−∞

dεk
2π

ΓLΓR

ΓL + ΓR
A(dσ, εk)

(
−dnF (εk)

dεk

)
, (2.26)

where ΓR;L = 2π|tR;L|2ρ0 is the hybridization and A(dσ, εk) is the spectral function
of the quantum dot. It is quite remarkable that the conductance of the quantum dot
is determined by the spectral function. The spectral function can be derived from
the retarded Green’s function GRdσ which describes the propagation of electrons on the
dot. The conductance of the quantum dot thus is determined by local properties. The
retarded Green’s function of the electrons residing on the dot is given by

GRdσ = −iΘ(t)
〈{
dσ(t), d†σ(0)

}〉
, (2.27)

which is related to the spectral function A(dσ, εk) by (see also appendix A)

A(dσ, εk) = −2G
′′R
dσ (εk). (2.28)

Y. Meier and N. S. Wingreen [37, 48] calculated the current through a quantum dot
for finite bias voltages using Keldysh Green’s functions [49, 50] and obtained

I = e2
∑

σ

∫ ∞

−∞

dεk
2π

ΓLΓR

ΓL + ΓR
A(dσ, εk) (nF (εk − µL)− nF (εk − µR)) , (2.29)

from which the differential conductance dI
dV can be calculated. Further, it can be seen

that in the limit of small voltages V the result in equation (2.26) is obtained. All these
result have in common that they are limited by the unitary limit 2e2

h .

2.3. The Kondo problem

The Kondo resonance is one of the most important hallmarks of the Kondo effect and
leads to the Kondo problem [7] which will be discussed in this section. The Kondo
resonance is centered around the Fermi level and is broadened by TK – the Kondo
temperature. The Kondo temperature separates the physics in different regimes. In the
weak-coupling regime where the temperature T � TK the Kondo coupling J remains
small and perturbation theory is valid. When T � TK the coupling J becomes very big
and perturbation theory is not valid anymore which is known as the Kondo problem.
The two regimes are connected by the cross-over regime where perturbation theory
begins to break down. It will be shown how the numerical renormalization group
(NRG) [7, 9] solves the Kondo problem. Before we discuss this in detail the Kondo
effect in metals is discussed.
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2.3.1. Kondo effect in metals
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Figure 2.6.: This Figure shows the Kondo effect in the resis-
tivity ρ(T ) as a function of the temperature T of different
kinds of MoNb-alloys containing 1% Fe [7].

We want to begin this section
with a short review of the Kondo
effect in metals where it was
observed the first time in the
1930s [7]. The Kondo effect can
be observed in diluted magnetic
alloys such as Fe in Au or MoNb
which is shown in Figure 2.6.
The logarithmic increase of the
resistivity for low temperatures
in called Kondo effect. We have
seen that the Anderson model de-
scribes how magnetic moments
are formed in those alloys. The
spin of the conduction electrons
interacts with the spin of the
magnetic moment. This interac-
tion leads to an additional scat-
tering. In metals scattering events raise the resistivity which can be calculated with
the help of the Boltzmann equation [1]. The inverse of the momentum relaxation time

1

τ(k)
=

cimp

(2π)2

∫
dk′δ(k − k′)|Tkk′σ|2(1− cos(Θ′)) (2.30)

describes the effect of scattering events on the conduction electrons, where cimp is the
impurity concentration. This allows to calculate the resistivity. In first oder perturba-
tion a constant momentum relaxation is obtained. This leads to an additional term for
the residual resistivity of the metal. Second order perturbation theory of the T -matrix
leads to the resistivity

ρ(T ) ∝ − log

∣∣∣∣
T

D

∣∣∣∣ . (2.31)

J. Kondo was the first who calculated the relaxation time in second order perturbation
theory and by doing so he managed to explain the Kondo effect [8]. The calculated
resistivity in equation (2.31) diverges for temperature T → 0. This indicates that the
perturbation theory is not valid for all temperatures leading to the Kondo problem.

2.3.2. Weak-coupling regime

In this subsection we further discuss the Kondo problem. The T -matrix of the Kondo
Hamiltonian describes spin-flip processes of all orders. We expand the imaginary part
T ′′R(ω) of the retarded T -matrix into a perturbation series. Each term can be used for
equation (2.25) to calculate the conductance of the quantum dot in the Kondo regime.
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The first contribution in the perturbation series of T (1)′′R is given by T (1)′′R
σ (ω) ∝ J

and the more interesting second order T (2)′′R contribution is given by

T (2)′′R
σ (ω) ∝ J2 log

∣∣∣∣
D

ω

∣∣∣∣ . (2.32)

If one looks carefully at each order of the perturbation one asserts that the logarithmic
divergence appears in every order n > 2 as

T (n)′′R
σ (ω) ∝ Jn logn−1

∣∣∣∣
D

ω

∣∣∣∣+ Jn logn−p
∣∣∣∣
D

ω

∣∣∣∣ with p < n− 1. (2.33)

The leading logarithmic contributions of each order can be summed up which results
in a geometric series

T ′′Rσ (ω) = J
∑

n

[
ρ0J log

∣∣∣∣
D

ω

∣∣∣∣
]n

=
J

1− ρ0J log
∣∣D
ω

∣∣ . (2.34)

In this procedure (the leading logarithmic approximation) the Kondo interaction J
is renormalized and which is equivalent to the renormalization group (RG) or poor
man’s scaling [24]. The renormalization starts with a Hamiltonian describing the high
energy physics. Since we are interested in the low energy physics the idea is to find a
transformation for the Hamiltonian which removes the high energy states and absorbs
it into a Hamiltonian with the same form but different parameters. In the poor man’s
scaling approach the high energy states are integrated out step by step. This is done
by reducing the half-band width D by δD and absorbing it into the Kondo coupling J .
In both cases the Kondo coupling J is renormalized in the following way:

ρ0JR =
ρ0J

1− J log
∣∣D
ω

∣∣ =
1

log
∣∣∣ ωTK

∣∣∣
; TK = De

− 1
ρ0J , (2.35)

where the Kondo temperature TK has been defined and where the Boltzmann constant
is kB = 1. The remarkable point which kept physicists busy is the divergence of
the renormalized Kondo coupling J when the energy reaches the range defined by the
Kondo temperature. Since perturbation theory works only for small interactions J the
divergence indicates firstly the breakdown of the perturbative calculation and defines
secondly a range where the perturbation theory is valid. This is called weak-coupling
regime.
The summation of leading logarithms corresponds to an accumulation of spin-flip

processes which leads to the Kondo resonance which is a narrow peak centered at the
Fermi level εF and broadened by TK in the spectral function of the single energy level.
In the weak-coupling regime the conductance G(T ) is given by

G(T )

G(0)
=

3π2

16

1

log2
∣∣∣ TTK

∣∣∣
, (2.36)
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where it is normalized. The result is valid for T � TK in accordance with discussion
given above. The divergence describes only qualitatively the Kondo resonance in the
conductance. In reality the conductance saturates for very low temperatures (the strong-
coupling regime) and tends to the unitary limit 2e2

h . The increasing Kondo coupling J
indicates a new physics for low temperatures which is called the strong-coupling regime.
K. G. Wilson found a solution to describe the cross-over regime (1975) by developing
the numerical renormalization group (NRG) [9]. Using this method leads to results
which agree qualitatively with experiments! In the following we will briefly explain the
NRG and then we will turn to the discussion of the strong-coupling regime.

2.3.3. Numerical renormalization group (NRG)

Today, the non-perturbative NRG method is used for a wide range of systems. Since
the basic idea in 1975 it has been developed and improved so that it can be applied to
systems where a bath of non-interacting fermions or bosons is coupled to a quantum
dot with arbitrary interactions. We are using the above introduced Anderson model
(see equation (2.8)) to illustrate how the NRG method can be used and follow the
introduction given by R. Bulla et al. in [51]. Furthermore, the above used flat-band
approach is not crucial for the NRG, i.e. the spectral function ρ(ω) can depend on ω.
However, the flat-band approach is again used to keep the introduction clearer and
thus the spectral function is given by ρ(ω) = ρ0Θ(D2−ω). The method consists of five
steps:

1. Logarithmic division of the continuous density of states

2. Logarithmic discretization of the continuous density of states

3. Mapping of the discrete model on to a semi-infinite chain

4. Iterative diagonalization

5. Discussion of fixed points and dynamical properties

From the logarithmic division to the semi-infinite chain (steps 1 -3)

The spectral function of the reservoir electrons where the half-band width is D = 1 is
separated logarithmically by

xn = ±Λ−n, n = 0, 1, 2, . . . (2.37)

into intervals with a width dn which is given by

dn = Λ−n − Λ−n−1 = Λ−n
(
1− Λ−1

)
. (2.38)

The width decreases for energies around the Fermi level and thus the resolution for
low energies increases. The spectral function ρ0 of the electrons can be discretized by
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introducing a complete set of orthonormal functions Ψ±np(ε) within each interval

Ψ±np(ε) =

{
1√
dn
e±ωnpε if xn−1 < ±ε < xn

0 else
(2.39)

where ωn = 2π/dn and p can take all integer values between −∞ and ∞. This corre-
sponds to a Fourier transformation of the states which describe electrons in the lead.
The states as defined in equation (2.39) are the so-called Wannier-states and are the
basis for the logarithmic discretization. It turns out that the p 6= 0 states couple only
to the p = 0 states with a prefactor (1 − Λ−1) and not at all to the impurity. In the
limit Λ → 1 this coupling between the p 6= 0 and p = 0 vanishes. Here, the first
approximation of the NRG is done where the p 6= 0 modes are neglected which is valid
for Λ → 1. But this limit violates the separation of scales. As a compromise the
discretization parameter Λ ≈ 2 is chosen which often produces very good results. The
resulting Hamiltonian consists of discrete energy states which couple to the impurity.
This Hamiltonian can further be mapped on to a semi-infinite chain by using a standard
tridiagonalization procedure. The chain is given by

H = HD + t
∑

σ

(
c†0σdσ + d†σc0σ

)
+
∑

nσ

tn

(
c†nσcn+1σ + c†n+1σcnσ

)
, (2.40)

where HD is the dot described by the Anderson model (equation (2.8)), d†σ (dσ) creates
(destroys) an electron on the quantum dot, and c†nσ (cnσ) creates (destroys) an electron
on the n-site of the chain with spin σ. The parameter t is the tunneling coupling of
equation (2.9) describing the coupling between the impurity and the first site of the
chain. The parameters tn ≈ 1

2(1+Λ−1)Λ−
n
2 for n� 1 are the tunneling terms between

the different sites of the chain which describes the conduction electrons. It is very im-
portant to remark that the tunneling amplitudes obtained during the tridiagonalization
procedure decrease exponentially with n. This ensures the scale separation and allows
the iterative diagonalization of the Hamiltonian to work. These steps are sketched in
Figure 2.7 on page 20.

Iterative diagonalization (step 4)

The semi-infinite chain can be used for an iterative renormalization group where the
usual renormalization scheme HN+1 = R(HN ) is used. The transformation R trans-
forms the chain consisting of N + 1 sites into one which consists of N + 2 sites:

HN+1 =
√

ΛHN + Λ
N
2

∑

σ

tN

(
c†NσcN+1σ + c†N+1σcNσ

)
(2.41)
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0 1−1 Λ−1−Λ−1 Λ−2−Λ−2

ρ0

ω

(a) Logarithmic division of the density of states ρ0

0 1−1

ρ0

ω

(b) Logarithmic discretization of ρ0

t t0 t1 t2 t3

(c) The resulting semi-infinite chain

Figure 2.7.: This Figure shows the initial steps of the NRGmethod exemplified for a flat-band density
of states. In Figure 2.7(a) the density of states is divided into logarithmic intervals. After a Fourier
transformation one can show that only discrete energies couple to the impurity. This logarithmic
discretization of ρ0 is shown in Figure 2.7(b). In the last step the semi-infinite chain is visualized.
Only the first site of the chain couples to the impurity (Figure 2.7(c)) and the tunneling elements
tn decrease exponentially with increasing N .
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where HN can be obtained equation (2.40),

HN = Λ
(N−1)

2


HD + t

∑

σ

(
c†0σdσ + d†σc0σ

)
+

N−1∑

n=0,σ

tn

(
c†nσcn+1σ + c†n+1σcnσ

)

 ,

(2.42)
with the starting Hamiltonian

H0 = Λ−
1
2

[
HD + t

∑

σ

(
c†0σdσ + d†σc0σ

)]
. (2.43)

for the renormalization scheme. From these equations one can see that adding one
site corresponds to a Hamiltonian which describes lower energies. Furthermore, it is
important that the scales of the Hamiltonian are well separated which is ensured by
tn ≈ 1

2(1 + Λ−1)Λ−
n
2 for Λ � 1. The idea is to diagonalize the Hamiltonian HN after

each step N
HN |r〉N = EN (r)|r〉N , (2.44)

where |r〉N is the eigenstate and r ∈ {1, 2, ...Ns} where Ns is the dimension of the
corresponding Hilbert space of the N -th iteration. With the help of this basis the new
basis for the N + 1 step can be constructed

|r; s〉N+1 = |r〉N ⊗ |s(N + 1)〉, (2.45)

where |s(N + 1)〉 is the basis of the added site defined as

|s(N + 1)〉 = |0, 0〉, | ↑, 0〉, |0, ↓〉, | ↑, ↓〉. (2.46)

The matrix elements of the Hamiltonian HN+1 in the basis are given by

HN+1(rs; r′s′) =N+1 〈r; s|HN+1|r′; s′〉N+1 (2.47)

and have to be diagonalized by a unitary matrix. The eigenvalues and eigenstates are
obtained from the Schrödinger equation

HN+1|ω〉N+1 = EN+1(ω)|ω〉N+1. (2.48)

During the iterative diagonalization the dimension of the Hilbert space increases expo-
nentially. The second approximation in the NRG procedure is to truncate the dimension
of the Hilbert space where the lowest eigenvalues Ns′ (s′ < s) are kept and the other
eigenvalues are discarded which limits the maximum size of the Hilbert space to Ns′ .
The idea is that higher eigenvalues than Ns′ describe the high energy physics which can
be neglected if one is interested in the low energy physics. In practice the truncation
value is varied in order to test how it affects the result of the NRG. If it does not vary
the result too much the truncation scheme is a suitable approximation which eventually
makes the numerical diagonalization possible. In the case of a fermion reservoir which
is coupled to the quantum dot the reliability of NRG result depends only on the two
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parameters Ns′ and Λ. If Λ is too big there is a very good separation of the energy
scales but the resolution is very poor leading to wrong results because the first approx-
imation is not valid. In the limit Λ → 1 the discretization is exact but the separation
of the energy scales is very bad and makes NRG instable because the truncation tends
to Ns′ → ∞. Thus, Λ ≈ 2 is a compromise. Using symmetries in the Hamiltonian
which separates the full matrix into block-diagonal sub-matrices make the diagonaliza-
tion more efficient.

Renormalization group flow (step 5a)

The renormalization group flow describes the behaviour of the eigenvalues EN (r) as
a function of the iteration number N and involves a discussion of fixed points. The
renormalization group flow for the Anderson model is given in Figure 2.8 and shows
how the eigenvalues are changed from high energies to low energies. The case where the
spectrum only remains unchanged for several iterations is called an unstable fixed point.
The case where the spectrum stays the same for all higher iterations is called stable
fixed point. (For more details about fixed points see [52]). The physics changes from
a free orbital (FO) to a local moment (LM) behaviour and eventually to the strong-
coupling (SC) regime. One can use the fixed points to obtain an effective Hamiltonian.
Doing so one finds for the LM behaviour that the effective Hamiltonian is indeed given
by equation (2.14). The entropy S is also given in the flow diagram. While for the FO
there are 4 possible states, there are only two possible states for the LM because the
high energy states are only occupied virtually. The ground-state is achieved in the SC
regime where the conduction-electrons and the spin of the impurity are in a complex
singlet state. From this point it can be seen that high entropy states tend to be unsta-
ble for low energies. It turns out that behaviour of the ground-state of the Anderson
model matches the one of a Fermi liquid.

Spectral functions (step 5b)

In the last step the NRG results are used to calculate physical properties. This will be ex-
emplified for the normalized spectral function of the impurity ρdσ(ω, T ) = − 1

πG
′′R
dσ (ω, T )

where the retarded Green’s function of the impurity is given by

GRdσ(ω, T ) = −i
∫
dtΘ(t)

〈{
dσ(t), d†σ(0)

}〉
. (2.49)

In statistical physics all interesting physical properties can be calculated using the
density matrix %(T ) [53] if one knows all eigenvalues Er as well as all eigenstates |r〉 of
the full system

%(T ) =
1

Z(T )

∑

r

e−βEr |r〉〈r|, Z(T ) =
∑

r

e−βEr , (2.50)
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Figure 2.8.: This Figure shows the flow of the lowest energy levels for even iteration numbers N .
The eigenvalues are scaled with Λ to make them visible in this plot for higher iteration numbers
N . The physics can be separated into three different regimes: The free orbital regime (FO), the
local moment regime (LM) and the strong-coupling regime (SC). The LM regime is achieved after
N ≈ 18 iterations and the SC regime after N ≈ 65 iterations which can be seen from the change
of the spectrum. If the energy levels remain constant in a certain range one has a fixed point. The
fixed points of the FO- and the LM-regime are unstable, the one of the SC-regime is stable. This
means that the energy levels have the same value after 140 iterations as they have after about 65
iterations.

where Z(T ) is the partition function. This can be used to write down the Lehmann
representation of the normalized spectral function ρdσ

ρdσ(ω, T ) =
1

Z(T )

∑

r,r′

|Mr,r′ |2
(
e−βEr + e−βEr′

)
δ(ω − (Er′ − Er)), (2.51)

with the many-body matrix elements Mr,r′ = 〈r|dσ |r′〉. The Lehmann representation
can be used for any other operator, i.e. the T -matrix which will be discussed in the
next chapters of this work. The iterative diagonalization of the Hamiltonians HN in
the NRG method give eigenvalues ENr and eigenstates |r〉N on a characteristic energy
scale ωN

ωN =
1

2
(1 + Λ−1)Λ−

(N−1)
2 . (2.52)

In the Lehman representation two different competing energy scales appear – the tem-
perature T and the frequency ω. This makes the calculation of dynamic properties
more complicated because the NRG only works for one energy scale. The limit of
T → 0 or ω → 0 neutralizes this competition of energy scales and the eigenvalues and
eigenstates can be used to calculate the relevant matrix elements. In the case of T = 0
the normalized spectral function ρdσ(ω) is given by

ρNdσ(ω) ≈ 1

ZN

(∑

r

|MN
r,0|2δ(ω + ENr ) +

∑

r′

|MN
0,r′ |2δ(ω − ENr′ )

)
, (2.53)

for each characteristic energy scale ωN with the ground state energy E0 = 0. In other
words, the spectral function is calculated from high energies (N = 0) to low energies
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(N ≈ 80). The matrix elements for each step are obtained recursively during the NRG
run so that only the initial matrix has to be known. In order to get a smooth curve of
the spectral function one performs a broadening of the given discrete points which has
to be done carefully. Typical broadening methods are the Gaussian broadening

PG(ω ± ENr ) =
1

ηN
√
π
e
−
[
ω±ENr
ηN

]2
(2.54)

and the logarithmic Gaussian broadening PLG which will be used in this work

PLG(ω ± ENr ) =
e−

b2

4

bENr
√
π
e
−
[
log(|ω|/ENr )

b

]2
. (2.55)

The Gaussian broadening is characterized by the broadening parameter ηN . Typical
values are η = 0.3ωN−0.7ωN . The logarithmic Gaussian broadening is characterized by
the broadening parameter b where typical values are b = 0.3−0.7. The broadening is a
rather technical process and there are further techniques which can improve the results.
With the z−averaging a lot more NRG data are obtained because data are mixed
together from different discretization intervals given by xn = ±Λ−n+z [54]. Another
problem occurs if there are sharp peaks in spectral functions. The z-averaging can
help to to improve the resolution of these peaks. Adjusting further the broadening
parameter depending on the behaviour of the curve leads to better resolved peaks.
There is an algorithm finding the optimal and smallest broadening parameter b [55] for
each region of the spectral function by using a superposition of the obtained peaks [56].
The broadening will be discussed again in more detail later when the spin-resolved
T -matrix has been calculated. This closes the explanation of the NRG and for more
details and other possible applications of it the many papers and introductions which
exists such as in Ref. [57, 58] are recommended.
For the Kondo interaction it turns out that the low-temperature behaviour of the

entropy Simp(T ), specific heat Cimp(T ) and magnetic susceptibility χimp(T ) (the sub-
script imp indicates the local property) behave like the ones of a Fermi liquid thus the
fixed point is a local Fermi liquid which is the subject of the next subsection.

2.3.4. Strong-coupling regime

The physical picture of the strong-coupling regime is the screening of the local spin
by the surrounding conduction electrons [44]. The effective interaction between the
conduction electrons and the spin of the impurity is given by JS · s with J > 0. In the
low energy limit where J becomes dominant the spin S of the impurity and the spin-
density s of the conduction electrons create a complicated many-body singlet which
also is the ground state. The first excited state is a triplet. The Kondo temperature
can also be interpreted as the energy gap between the ground state and the first excited
state (see Figure 2.9). The screening of the local spin can also be seen from the obtained
semi-infinite chain which was obtained in equation (2.40): As the coupling J becomes
stronger the electrons in the chain will avoid to hop onto the impurity. The physics
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weak-coupling T � TKstrong-coupling T � TK

Figure 2.9.: In this Figure the weak and the strong coupling regime are sketched. In the weak
coupling regime the impurity can be treated as a weak spin-dependent scattering center. For the
strong-coupling regime the spin of the electrons and the spin of the impurity are highly correlated
and form a complex singlet ground state. TK is the energy gap between this ground-state and the
first excited state.

is thus dominated by free electrons on a chain and the effect of the impurity becomes
a weak interaction thus the effect of the scattering can be expressed as a phase shift
δs. In the zero-temperature limit the unitary limit 2e

h for the conductance is obtained.
Finally, the conductance for T � TK is given by

G(T )

G(0)
= 1− π4

16

(
T

TK

)2

(2.56)

and the static spin susceptibility reads as follows

χimp(T = 0) =
1

4TK
, (2.57)

which defines the Kondo temperature TK . The T 2-behaviour of the conductance repre-
sents the life-time of the quasi-particles which occur in the Fermi liquid picture (see also
appendix A). The Kondo resonance can be destroyed for sufficiently strong magnetic
fields B or applied bias voltages Vb (see Figure 2.10). The energy which is defined by
these fields has to be larger than the energy defined by the Kondo temperature. In this
case the Kondo singlet can be destroyed. The temperature T smears out the Fermi-
distribution function in each lead, avoiding the formation of the Kondo resonance. The
differential conductance in the perturbative regime follows

dI

dV
∝ log2

∣∣∣∣
max(Vb, B, T )

TK

∣∣∣∣ . (2.58)

If one of the given energies exceeds the energy scale defined by the Kondo temperature
the calculation remains perturbative.

2.3.5. The Kondo effect in quantum dots

The Kondo effect in quantum dots has been detected the first time in 1998 by Goldhaber-
Gordon2 at the MIT [19, 59] in a single In the single electron transistor the discussed

2http://www.stanford.edu/group/GGG/kondo.html for Figure 2.11

25



Kondo resonance

0

2

4

A
d
σ
(ω

)
−U/2 εF = 0 U/2

(a) Spectral-function

B

L R

↑↓

(b) Magnetic field

V

L R

↑↓

(c) Electric field

Figure 2.10.: Figure 2.10(a) shows the Kondo resonance centered at the Fermi level εF with the
broadened energy levels at ±U/2. The Kondo resonance can be destroyed by applying an magnetic
field B if the magnetic field is strong enough which is shown in Figure 2.10(b). Sufficient strong
voltages Vb suppress the formation of the Kondo resonance as well (Figure 2.10(c)) because resonant
tunneling is suppressed.

Coulomb blockade and the Kondo effect occur at the same time. When the number of
electrons on the dot is odd there is an unpaired spin. This can be mapped on to the
Anderson model and the Kondo model. With decreasing temperature one can observe
an unusual behaviour of the measured conductance G of the quantum dot. With
decreasing temperature the Coulomb blockade peaks become narrower but otherwise
the conductance for an odd number of electrons increases due to the Kondo effect.
This experiment shows that quantum dots are indeed tunable objects where different
theoretical models (i.e. the Kondo effect) can be tested (see Figure 2.12 where also the
conductance is plotted in dependence of the gate and bias voltage leading to Coulomb
diamonds and the Kondo resonance for zero bias.) electron transistor. The possibility to
tune quantum dots into the Kondo regime gave rise to other experiments [18, 23, 60, 61].
For example it is possible to measure the influence of a magnetic field on the Kondo
resonance and compare it theoretical predictions. In this work we want to calculate the
T -matrix with an applied magnetic field.
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Figure 2.11.: This Figure shows the Kondo effect
and the Coulomb blockade in quantum dots. For
Vg ≈ −145mV and Vg ≈ −115mV there is an an
even number of electrons on the quantum dot and
the conductance decreases with decreasing temper-
ature – the Coulomb blockade. For Vg ≈ −130mV
an odd number of electrons resides on the dot is
odd and the conductance increases with decreasing
temperature – the Kondo effect [17, 19].
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Figure 2.12.: In the plot on the right hand side the NRG is compared to the weak-coupling and
strong-coupling regime. On the left hand side the differential conductance is given and again the
Coulomb diamonds can be seen. For odd occupancy of the quantum dot the Kondo resonance
appears at zero bias. The NRG fits very well with the experimental data (N. Roch 2009 [17, 18]).

2.4. Summary

In this section we have seen how the Kondo effect can strongly modify the Coulomb
blockade peaks of a quantum dot. These peaks are broadened by thermal effects and
tunneling. The Coulomb blockade can be understood classically and can be observed
in an isolated quantum dot and allows to control the number of electrons via the gate
voltage. For strongly coupled dots, higher order tunneling events become important
which are described by the T -matrix. Second order tunneling events contribute only
weakly to the conductance in the limit of low temperatures. In the case of an odd
occupancy the quantum dot is described by the Anderson model where only a single
interacting energy level is coupled to the leads. The low energy physics of the Anderson
model is determined by the effective Kondo model which describes conduction electrons
interacting with a magnetic impurity. This opens a new channel for electrons to tunnel
from one lead to the other one leading to a strong increase of the conductance in the
limit of low temperatures. Thus, the Kondo effect can only be detected in a quantum
dot occupied by an odd number of electrons. For both the Anderson and Kondo model
the T -matrix plays a major role because it is related to the conductance G by

G =
2e2

h

4|tL|2|tR|2
(|tL|2 + |tR|2)2

∫
dεk

(
−dnF (εk)

dεk

)
1

2

∑

σ

[
−πρ0T

′′R
σ (εk)

]
. (2.59)

Further, the Kondo temperature TK can be interpreted as the binding energy of the
singlet between the spin of the conduction electrons and the local moment. The Kondo
temperature separates the conductance into the weak-coupling regime (T � TK) where
the perturbation theory is valid and the strong-coupling regime (T � TK) where a local
Fermi liquid behaviour is detected. In the weak coupling regime the conductance and
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the differential can be described by

G(T,B) ∝ 1

log2
∣∣∣max(T,B)

Tk

∣∣∣
and

dI

dV
∝ 1

log2
∣∣∣max(T,B,V )

Tk

∣∣∣ (2.60)

where B correspond to the energy scale which is defined by the Zeeman splitting. It
should be mentioned that the reliability of the NRG is in question when a Zeeman term
occurs in the impurity Hamiltonian thus we are going to use the DM-NRG which is a
generalized NRG for dynamical quantities [26]. The DM-NRG runs were carried out
with “Flexible DM-NRG3” which uses the idea of A.I. Toth et al. [25]. In this work we
will come back to the discussion of the role of the magnetic field in chapter 4.

In this chapter we used an single energy level Anderson model but quantum dots can
also be described by multi-level Anderson models where the Hamiltonian of the dot is
given by [51]

HD =
∑

iσ

εiσd
†
iσdiσ + EC(N − 〈N〉)2 − JHS2, (2.61)

where N is the operator of the total number of electrons, 〈N〉 is the mean value of that
number and JH is the Hund’s exchange. In the case of a two-level quantum dot the
measured transport properties show new physics. The relevant energies for this dot are
the level spacing δ = ε2− ε1, the Hund exchange JH and the charging energy EC . The
S = 1 can be observed on quantum dots with an even number of electrons when the
energy level spacing δ < 2JH . This makes the triplet of the two electrons on the dot the
ground-state. By changing the gate voltage the quantum dot can be tuned to S = 0
(ground-state is the singlet of the two electrons on the dot) [61] and the Kondo effect
vanishes. This has been done in a recent work, leading to the underscreened Kondo
effect [32], and will be discussed later in chapter 4.

3http://www.phy.bme.hu/ dmnrg/
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3. Majorana fermion diagrammatics

In this chapter we are going to introduce the Majorana fermion diagrammatics. It will
be particularly exemplified how the diagrammatics works for the Kondo Hamiltonian.
The aim is to expand the T -matrix of the Kondo model into a perturbation series. The
problem is that the T -matrix consists of spin operators following more complicated
commutation rules than usual fermionic operators and Wick’s theorem can not be
applied for spin operators. Wick’s theorem is very central for many-body perturbation
theory. It allows to rewrite the Green’s functions of the interacting system in terms of
free single particle Green’s functions [36]. Using the Majorana fermions for spin S = 1

2
operators will circumvent this problem and will finally allow to use Wick’s theorem. We
will introduce Matsubara Green’s functions which can be used to calculate properties of
the many-body quantum system at finite temperature [37]. The full Matsubara Green’s
function can be expressed in terms of free Matsubara Green’s functions. This defines
a perturbation theory for the spin-dynamics.

3.1. Matsubara Green’s functions

For the evaluation of correlation functions at finite temperature the zero-temperature
formalism has to be modified. A finite temperature leads to excitations out of the
ground-system of the system. An average for two given operators A and B at finite
temperature in statistical quantum physics is given by [37]

CAB(t, t0) = − 1

Z
Tr [exp (−βH)A(t)B(t0)] , (3.1)

where Z is the partition function given by Z = Tr[exp(−βH)]. Tr[· · · ] denotes the trace
of the operator between the brackets. The correlation is calculated between the times
t and t0. It is very complicated to expand the expression in equation (3.1) directly in a
perturbation series as it is done for zero-temperature Green’s functions. The solution
is to introduce a imaginary-time [36, 37]. This modifies the Schrödinger equation for
the time-evolution operator U(t, t0). Replacing the time t by t → −iτ leads to the
following equation for the imaginary-time evolution operator

∂τUI(τ, τ0) = −VI(τ)UI(τ, τ0). (3.2)

The transformation for the operators in the interaction picture with imaginary times
is given by VI(τ) = exp(τH0)V exp(−τH0) and solving equation (3.2) leads to

UI(τ, τ0) = Tτ exp

(
−
∫ τ

τ0

dτ1VI(τ1)

)
. (3.3)
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Using the properties of the imaginary-time ordering operator Tτ and transforming equa-
tion (3.1) to imaginary times, one obtains the Matsubara Green’s function

GAB(τ, τ0) = −〈Tτ [A(τ)B(τ0)]〉, (3.4)

which can be expanded into a series of terms, averaged over the free system. This
expansion is the basis for the next section, and it is given by

GAB(τ, τ0) = −〈Tτ [UI(β, 0)AI(τ)BI(τ0)]〉0
〈UI(β, 0)〉0.

(3.5)

This equation allows us to use similar Feynman-diagrams as introduced in appendix A.
How the are used for the Kondo Hamiltonian is discussed below. The denominator of
equation (3.5) cancels the non-linked diagrams of the numerator leading to the linked-
cluster theorem [37].

3.1.1. Properties of Matsubara Green’s functions

In this subsection the most important properties of the Matsubara Green’s function in
equation (3.4) are summarized and the Feynman rules are explained. The Matsubara
Green’s function depends only on time differences

GAB(τ, τ0) = GAB(τ − τ0), (3.6)

where τ > τ0 and −β < τ − τ0 < β. The periodicity of the Matsubara Green’s function

GAB(τ + β) = ±GAB(τ) (3.7)

enables one to develop the Green’s function into a discrete Fourier series with the
following notation:

GAB(τ) =
1

β

∞∑

n=−∞
e−iωnτGAB(iωn)

GAB(iωn) =

∫ β

0
dτeiωnτGAB(τ)

(3.8)

where ωn = 2nπ
β are called bosonic and ωn = π(2n+1)

β fermionic Matsubara frequencies.
In this work we will use iωb as bosonic, iωn and iνj as fermionic Matsubara frequencies.
In the real-time formalism we are dealing with a Fourier-transformation in the time-
domain while in the imaginary-time formalism the coefficients of the Fourier series in
equation (3.8) have to be calculated. A typical expression in this work will be a product
of two Green’s functions

G1(τ)G2(−τ) = ,

1

2

τ 0

(3.9)
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where G1 and G2 are fermion Matsubara Green’s function. Such expressions occur
when a local interaction is given such as the interaction in the Kondo Hamiltonian.
This expression can be expanded into a discrete Fourier series

∫ β

0
dτeiωbτG1(τ)G2(−τ) =

1

β2

∑

ν1,ν2

∫ β

0
ei(ωb−ν1+ν2)τG1(iν1)G2(iν2)

=
1

β

∑

ν2

G1(iν2 + iωb)G2(iν2)eiν20+ ,

(3.10)

This example shows the conservation of energies at each vertex but in the language of
Matsubara frequencies [37]. The incoming Matsubara frequencies have to be the same
as the outgoing ones. Is the interaction non-local the momentum k is also conserved
at each vertex. This sum over frequencies in equation (3.10) can be evaluated using
the theory of analytic functions. If a contour is defined, which encloses all fermion
frequencies z = iν2 and the analytic region of the two Green’s functions in the example,
the sum can be rewritten

1

β

∑

ν2

G1(iν2 + iωn)G2(iν2)eiν20+ = − 1

2πi

∫

C
dznF (z)G1(z + iωn)G2(z)ez0

+
, (3.11)

where 0+ regularizes the integral. The Fermi distribution nF (x) has poles at each
fermion Matsubara frequency and the residue is 1

β . In the case of free fermion Green’s
functions the summation has to be done over simple poles zj with z = iν2.

G1,2 =
∏

j

1

z − zj
. (3.12)

In this case the contour is a circle which covers the entire complex plane (see Figure 3.1).
The contour integral has a value of zero due to the regularization of the integral and it
follows that the sum over the frequencies iωn is given by [37]

1

β

∑

ν2

G1(iν2 + iωn)G2(iν2)eiν20+ =
∑

j

Resz=zj [G1(z + iωn)G2(z)]nF (zj)e
zj0

+
,

(3.13)
where Res [· · · ] indicates the residue of the functions between the brackets. For bosonic
frequencies similar steps with the Bose-Einstein-distribution function nB(x) can be
carried out. Next, we will discuss the connection between the retarded (advanced)
Green’s function and the Matsubara Green’s function with the analytical continuation.

Lehmann representation of Matsubara Green’s function and the analytical
continuation

The Matsubara Green’s function can be expanded into the eigenstates of the Hamilton
operator. Since the Hamiltonian is given in second quantization, the grand-canonical
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Im[z]

Re[z]

C : |z| → ∞

z = z1

z = z2

z = z3

Figure 3.1.: This Figure shows how the sum over simple poles of free imaginary time Green’s func-
tions can be evaluated. The red circle encloses all poles and due to the infinite small exponential
factor this contour integral gives zero.

ensemble is appropriate for the thermal average. The Matsubara Green’s function is
given in this representation by

GAB(τ) = − 1

Z

∑

n,m

e−βEn〈n|A|m〉〈m|B|n〉eτ(En−Em). (3.14)

Performing a Fourier transformation leads to the Lehmann representation. Assuming
that A and B are fermion operators and replacing iωn by z gives the Green’s function
which in the entire complex plane is defined by

GAB(z) =
1

Z

∑

n,m

〈n|A|m〉〈m|B|n〉
z + En − Em

(
e−βEn − e−βEm

)
. (3.15)

This result states that the Matsubara Green’s function and the zero-temperature Green’s
function are not independent. The Matsubara Green’s function is an extension of the
Green’s function to the entire complex plane from which the retarded Green’s function
can be obtained by replacing iωn → ω+i0+ and vice versa. This follows if one compares
the Lehmann representation of the real-time Green’s function and the imaginary time
Green’s function. Further, the advanced Green’s function can be obtained by replac-
ing iωn → ω + i0+ in the Matsubara Green’s function and vice versa (see Figure 3.2).
Another important concept is the Kramers-Kronig relation, which relates the real part
and the imaginary-part of a function, given by

Re(GR(ω)) =
1

π
P

∫
Im(GR(ε))

ε− ω , (3.16)
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Re[z]

Im[z]

G(iωn) → GR(ω)

G(iωn) → GA(ω)

iωn → ω + i0+

iωn → ω − i0+

Figure 3.2.: This Figure summarizes how the analytic continuation works. The Matsubara Green’s
function is defined in the entire complex plane except for the real-axis. If the Lehmann representa-
tion of the retarded (advanced) Green’s function is compared with that of the Matsubara Green’s
function, one can conclude that the retarded (advanced) Green’s function can be obtained by re-
placing iωn → ω + i0+ (iωn → ω + i0+) in the Matsubara Green’s function.

Another important property for all the discussed Green’s function is

GR,AAB (ω) = Re(GAB(ω))± i coth

(
βω

2

)
Im(GAB(ω)), (3.17)

which is an indication of the fluctuation-dissipation-theorem. The property relates the
retarded (advanced) Green’s functions GRAB (GAAB) to the Green’s function GAB. If the
temperature goes to zero T → 0, coth(βx) is given by sign(x).

3.2. Kondo interaction and Majorana fermions

In this section a diagram technique for the Kondo problem is introduced using Majorana
fermions. First of all we make the problem of spin operators clearer. We want to
show what happens if the usual perturbation theory is applied to a simple spin-spin-
correlation function χz(τ) = 〈Sz(τ)Sz(0)〉 or to the more complicated T -matrix

Tσ(τ) = −J
2
〈Sz〉 − J2

4

〈
Tτ

[
c0σ1

(τ)τ σσ1 · S(τ); c†0σ2(0)τ σ2σ · S(0)
]〉
. (3.18)

The interaction term of the Kondo Hamiltonian is given by JS · s where S is the spin
of the impurity and s the local spin-density of the conduction electrons. We expand
the spin-spin correlation function into a perturbation series

χz(τ) = −〈Tτ [UI(β, 0)Sz(τ)Sz(0)]〉0
〈UI(β, 0)〉0

, (3.19)
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where the imaginary time evolution operator is given by

UI(β, 0) =

∞∑

n=0

(−1)n

n!

∫ β

0
dτ1 · · ·

∫

0
βdτnTτ [JnSτ1s(τ1) · · ·S(τn)s(τn)] . (3.20)

The averages which occur in the perturbation series are very cumbersome to evaluate
since Wick’s theorem can not be applied due to the complicated algebra [41]

[
Si, Sj

]
= iεi,j,kS

k, (3.21)

where εi,j,k is the Levi-Civita symbol. The idea is to rewrite the spin as an operator of
two fermionic operators. One example are Abrikosov’s pseudo-fermions [62] where the
spin S is rewritten by

S =
1

2
f †σ1τ σ1,σ2fσ2 , (3.22)

where τ denotes the three Pauli matrices. A very hard restriction is the condition
nf = 1, which means that there is only one particle in one state and this necessary that
the formalism works. This can be used for the spin S for the interaction-term of the
Kondo Hamiltonian and in the spin-spin-correlation function which becomes a usual
two particle interaction. The problem occurs for the T -matrix if the pseudo-fermions
are used. If the spin is here rewritten using equation (3.22), it is very hard to do
perturbation theory for the T -matrix because it consists of six fermion operators or in
other words a three particle Green’s functions. In the following we want to introduce
Majorana fermions and to show how these fermions can be used to express the spin-spin
correlation function in terms of a Majorana fermion propagator and the T -matrix in
terms of a two particle Green’s functions. The calculation of a two particle Green’s
function is much easier to perform than the one of a three particle Green’s function.

3.2.1. Majorana fermions

Majorana fermions are well known in particle physics. The starting point for particle
physics and relativistic quantum theory is very often Dirac’s equation from which the
usual fermions, also called Dirac fermions, can be derived using the usual Pauli matrices.
This derivation also leads to the first picture of particles and holes, i.e. electrons and
positrons. In a more thorough study of Dirac’s equation, one will find, that there is also
the possibility to use the Majorana representation. In this representation one ends up
with real fermionic fields i.e. particles are their own anti-particles [63]! This property
will be encountered in the following beside other properties, which will eventually allow
to rewrite the T -matrix as a two particle Green’s function. Spin-operators are rewritten
by

S = − i
2
η × η , (3.23)

where η = (η1, η2, η3) is a triplet of Majorana fermions which satisfy {ηa, ηb} = δab.
One advantage is for instance that the Hilbert space has not to be restricted because
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S2 = 3
4 is fulfilled following from the given definitions [64, 65]. In the case where a

Hamiltonian H describes the dynamics of the spin operator S we introduce a single
Dirac fermion Φ which is defined in a completely different Hilbert space and commutes
with H and η. This means that the single Majorana fermion Φ is a constant of motion
with a fixed magnitude Φ2 = 1

2 and it anti-commutes with all other fermions. The
following two identities are important and can be verified quickly

η = 2ΦS, S = Φη . (3.24)

One can choose for example Φ = −2iη1η2η3 and verify the demanded properties. One
can think that S = Φη is of limited use for the interaction term in the Kondo Hamilto-
nian because Φ depends on η but we can rewrite the spin operators in terms of a Ma-
jorana fermion multiplied with a constant fermionic field Φ in the spin-spin-correlation
function. The constant fermionic field Φ commutes with all operators in the Kondo
Hamiltonian and so it can be pulled out of the average. The Majorana fermions can
be used to define Majorana fermion propagators which are given by

Gij(τ) = −〈Tτ
[
ηi(τ)η†j(0)

]
〉. (3.25)

and the resulting matrix can also have non-diagonal elements depending on the inter-
action. The fermionic field Φ can be used to define the free propagator GΦ which is
given by

GΦ(τ) = −〈Tτ
[
Φ(τ)Φ†(0)

]
〉. (3.26)

These two propagators can be used for the spin-spin correlation function where Wick’s
theorem can be applied

χz(τ, 0) = −〈Tτ [Sz(τ)Sz(0)]〉 = −
〈
Tτ

[
Φ(τ)η3(τ)Φ†(0)η†3(0)

]〉
= GΦ(τ)Gη3(τ).

(3.27)
This equation shows that the spin-dynamics can be expressed by a Majora
fermion propagator [64, 66, 67]!
In the next step the interaction in the Kondo Hamiltonian is rewritten and it shown

how the diagrammatics works using Majorana fermion propagators. We remember that
the Kondo Hamiltonian is given by

HK =
∑

kσ

εkc
†
kσckσ +

J

2

∑

σ1σ2

c†0σ1τ σ1σ2c0σ2
· S.

The spin S of the quantum dot is rewritten using Majorana fermions. This is firstly
illustrated for the interaction term c†0↑c0↓S

x and the illustration is secondly used to
generalize the procedure for the other terms. The spin Sx reads in terms of Majorana
fermions Sx = −iη2η3. The correlation-function C23 is defined to find the vertex after
the transformation

C23 = −
〈
Tτ

[
c0↓(τ)η2(τ)c†0↑(0)η†3(0)

]〉
. (3.28)
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Although Majorana fermions are real we distinguish formally η† and η. This step makes
the diagrammatics clearer because it is expressed in terms of particle and holes [68].
But it is important to regard this choice in all the following calculations. The vertex
can be found if the correlation function C23 is expanded into first order perturbation
theory where the rewritten interaction-term −ic†↑c↓η2η3 is used as

C
(1)
23 (τ) = −i

∫ β

0
dτ1

〈
Tτ

[
c0↓(τ)η2(τ)c†0↑(0)η†3(0)c†0↑(τ1)η†2(τ1)η3(τ1)c0↓(τ1)

]〉
. (3.29)

At this stage it can be seen that Wick’s theorem can be applied. The contractions are
given by

C
(1)
23 (τ) = −i

∫ β

0
dτ1

〈
Tτ


c0↓(τ)η2(τ)c†0↑(0)η†3(0)c†0↑(τ1)η†2(τ1)η3(τ1)c0↓(τ1)



〉

0

,

(3.30)
and can be expressed according to the introduced perturbation theory as a convolution
of free propagators

C
(1)
23 (τ) = −i

∫ β

0
dτ1G0c↑(τ − τ1)G0c↓(τ1)G02(τ − τ1)G03(τ1). (3.31)

Furthermore, we mention that the interaction term of this example can be written as
−ic†↑c↓η

†
2η3 or −ic†↑η2†η2c↓ and that the Kondo coupling J/2 has to be multiplied to

both the terms.
The result can be used to define the vertex where the spin of the conduction electrons

is changed from ↓ to ↑ and Majorana fermion 3 is destroyed and 2 is created and can
be represented diagrammatically

3

↑ ↓

2

− iJ
2C23 =

(3.32)

where the imaginary time evolves from the right to the left. This can be used for all the
other terms in the Kondo Hamiltonian by rewriting the spin S of the impurity, where
Sx = −iη2η3, Sy = −iη3η1 and Sz = −iη1η2 which causes the given different vertices

HK1 =

(−iJ
2

)(
c†0↑c0↓ + c†0↓c0↑

)
η†2η3

+

(− J

2

)(
c†0↑c0↓ − c

†
0↓c0↑

)
η†1η3

+

(−iJ
2

)(
c†0↑c0↑ − c

†
0↓c0↓

)
η†1η2.

(3.33)
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2

− iJ
2

1

↓ ↑

3

J
2

2

↓ ↓

1

iJ
2

2

↑ ↓

3

iJ
2

3

↑ ↓

1

J
2

1

↑ ↑

2

iJ
2

2

↓ ↑

3

iJ
2

3

↓ ↑

1

−J
2

1

↓ ↓

2

− iJ
2

Figure 3.3.: In this Figure all possible vertices defined by the interaction Hamiltonians HK1 and
HK2 are shown. Dashed lines represent the entering or leaving Majorana fermion and solid lines
the entering or leaving electrons. In a given Feynman diagram, one has to check the value of the
vertex.

But there is also another possibility to write the co-tunneling spin-flip processes due to
the anti-commutation rule in equation (3.23) which changes the sign of the Majorana
fermions when they are commuted and it is given by

HK2 =

(
iJ

2

)(
c†0↑c0↓ + c†0↓c0↑

)
η†3η2

+

(
J

2

)(
c†0↑c0↓ − c

†
0↓c0↑

)
η†3η1

+

(
iJ

2

)(
c†0↑c0↑ − c

†
0↓c0↓

)
η†2η1.

(3.34)

These free vertices are represented diagrammatically Figure 3.3 and will be used for
the following perturbation theory.
Majorana fermions do not have an energy dispersion law in the given Hamiltonian.

The free Majorana fermion propagators are given by

G0j(iωn) = −
∫ β

0
dτeiωτ 〈Tτ

[
η1(τ)η†1(0)

]
〉0 =

1

iωn
. (3.35)
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The full propagator can be expanded for example up to second order as

i

σ2 σ2σ1

1 1
1

G01(τ) = + τ1τ2 + · · · .

(3.36)

where i ∈ {2, 3}. In the next step the analytical expression is derived for that diagram.
The second order correction is given by

G(2)
η (τ) = −1

2

∫ β

0
dτ1

∫ β

0
dτ2

〈
Tτ

[
HI(τ1)HI(τ2)η(τ)η†(0)

]〉
0
, (3.37)

where the linked cluster theorem [37] has to be considered (see appendix A). It reduces
the number of possible contraction. We remember: The contraction

〈
η(τ)η†(0)

〉
0
is

cancelled by the denominator in the definition of the perturbation series of the Green’s
functions. The derivation is again illustrated for the Majorana fermion i = 1 using the
vertex 1→ 2 is used. This leads to

G(2)
η (τ) =− 1

2

J2

4

∫ β

0
dτ1

∫ β

0
dτ2

×
〈
Tτ

[
c†0σ(τ1)η†2(τ1)η1(τ1)c0σ(τ1)c†0σ(τ2)η†1(τ2)η2(τ2)c0σ(τ2)η1(τ)η†1(0)

]〉

0

=
J2

8

∫ β

0
dτ1

∫ β

0
dτ2G0c(τ2 − τ1)G0c(τ1 − τ2)

×
〈
Tτ

[
η†2(τ1)η1(τ1)η†1(τ2)η2(τ2)η1(τ)η†1(0)

]〉

0

=− J2

8

∫ β

0
dτ1

∫ β

0
dτ2G01(τ1)G01(τ − τ2)

×G0c(τ2 − τ1)G0c(τ1 − τ2)G02(τ2 − τ1)︸ ︷︷ ︸
Ση(τ2−τ1)

(3.38)

The conjugated process gives the same contribution thus a factor 2 has to be multi-
plied. We conclude that the second order Feynman diagram in equation (3.36) can be
translated into an analytical expression using i = 2 for the internal Majorana fermion
propagator which is given by

G(2)
η (τ) =− J2

4
G01(τ − τ2)G01(τ1)

×
∑

σ

∫ β

0
dτ1

∫ β

0
dτ2Gc0σ(τ1 − τ2)Gc0σ(τ2 − τ1)G02(τ2 − τ1),

(3.39)
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where the label 0 indicates free propagators. Further, the free local conduction electron
propagator Gc0σ is given by

G0cσ(iωn) =

∫ ∞

−∞

ρ(ε)dε

iωn − ε
:= G0c(iωn), (3.40)

where ρ(ε) is the density of states of the conduction electrons and the spin-label is
dropped because the given propagator does not depend on the spin. In this work we
are using a flat-band spectral density

ρ(ω) =
1

2D
Θ(D2 − ω2),

thus the imaginary part of the retarded conduction electron Green’s function is given
by

G
′′R
0c (ω) = −ρ0πΘ(D2 − ω2). (3.41)

In agreement with the introduced Green’s functions formalism, the retarded Green’s
function can be obtained by analytical continuation. The diagram given in equa-
tion (3.36) can be summed up in Dyson’s equation leading to the relaxation time of
the spin of the impurity. Dyson’s equation is given by

+= Σ

τ 0

,

τ 0 τ τ2 τ1 0

(3.42)
where the double dashed line represents the full and the single dashed line the free
Majorana fermion propagator. The self-energy diagram Ση(τ) can be used for all the
Majorana fermion propagators because all the free Majorana fermions propagators are
equal. The resulting self-energy is given by

Ση(τ) = −4
J2

4
Gc0(−τ)G0c(τ)G0η(τ)︸ ︷︷ ︸

Π0η(τ)

= −J2G0c(−τ)Π0η(τ),

(3.43)

where the factor 4 indicates that there are 4 different self-energy diagrams in second
order. The external free Majorana fermion propagators of the self-energy are given
for instance by G0η1(τ) so that only i = {2, 3} are allowed and further, two different
spins for the conduction electron can be taken into account, thus there are four self-
energy diagrams. Using the vertices of the rewritten Kondo interaction leads to the
same vertex for all of them giving the factor 4 in equation (3.43). Additionally, the
polarization diagram Π0η(τ) was defined which is calculated in appendix C.1 and can
be used for the calculation of the self-energy at finite temperatures. The retarded
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Figure 3.4.: In this Figure, the real- and the imaginary part of the self-energy for the Majorana
fermion is shown. The functions are calculated using J = 0.145 for the Kondo coupling and D = 1
for the half-band width. The imaginary part part consists only of linear functions and therefore the
real part has a logarithmic behaviour see Appendix C.2. Such a term is called Korringa-term [64].

self-energy ΣR
η is then obtained by analytical continuation and the self-energy can be

included to the retarded Majorana fermion propagator via Dyson’s equation

GRη (ω) =
1

ω − ΣR
η (ω)

. (3.44)

The self-energy is given in lowest non-vanishing order by

Ση(τ) = ,

σ1

σ2

η 0τ

(3.45)

which is the same diagram as in equation (3.36).

3.2.2. The magnetic susceptibility

The self-energy can now be used to derive the magnetic susceptibility

χ1(τ) = GΦ(τ)Gη1(τ). (3.46)

The derivation of that diagram can be see as an further example how Matsubara sums
are evaluated. The diagram is given in Fourier-space by

χ1(iωn) =
1

βπ2

∑

iν1

∫ ∞

−∞
dω1

∫ ∞

−∞
dω2G

′′R
Φ (ω1)G

′′R
η1 (ω2)

1

iωn − ω1

1

iωn − iν1 − ω2

=
1

π

∫
dω2G

′′R
η1 (ω2)

1
2 − nF (−ω2)

iωn − ω2
.

(3.47)
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The retarded imaginary part of the susceptibility is obtained by analytical continuation.
Using

1

2
− nF (−x) = −1

2
tanh

(
βx

2

)
, (3.48)

the imaginary part of the susceptibility is given by

χ
′′R
1 (ω) = −1

2
tanh

(
βω

2

)
G
′′R
η1 (ω) (3.49)

The self-energy above can be included in the imaginary part of the retarded Majorana
fermion Green’s function

G
′′R
η1 (ω) =

ΣR′′
η (ω)

(
ω − ΣR′

η (ω)
)2

+
(
ΣR′′
η (ω)

)2 . (3.50)

3.2.3. The T -matrix

In this subsection we are going to show how the T -matrix can be rewritten using
Majorana fermions. It was shown that there are two possibilities to rewrite the spin
S in the T -matrix given in the second term of equation (3.18). The first possibility is
S = − i

2η × η which was used also for the interaction term in the Kondo Hamiltonian
and the T -matrix1 is given then by

Tσ(τ) = −J
2

8

〈
Tτ

[
c0σ1

(τ)τiσσ1ε
i,j,kηj(τ)ηk(τ); c†0σ2(0)τlσ2σε

l,o,pη†o(0)η†p(0)
]〉
, (3.51)

but this is again a three particle Green’s function and it is very complicated to expand
this into a perturbation series and calculate diagrams. The second possibility S = Φη
leads to

Tσ(τ) = −J
2

4

〈
Tτ
[
c0σ1

(τ)τiσσ1Φ(τ)ηi(τ); c†0σ2(0)τlσ2σΦ†(0)η†l (0)
]〉

= −J
2

4
GΦ(τ)

〈
Tτ

[
c0σ1

(τ)τiσσ1ηi(τ); c†0σ2(0)τlσ2ση
†
l (0)

]〉

︸ ︷︷ ︸
two particle Green’s function!

,
(3.52)

where only for the two particle Green’s functions a perturbation theory has to be applied
which will be done in the next chapter. The two particle Green’s function is multiplied
by the free fermionic propagator GΦ.

1We neglect for the discussion the average 〈Sz〉 of the T -matrix because the average is only a number
and we want to describe the dynamics of T - matrix.
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3.3. Summary

In this chapter it was explained how Matsubara Green’s functions containing spin
operators can be expanded into a perturbation series with the help of Majorana fermions
where Wick’s theorem can be applied. In this work we are using Majorana fermions for
the Kondo Hamiltonian were the spin S of the quantum dot is rewritten by S = − i

2η×η.
This leads to usual vertices in the diagrammatics, where a Majorana fermion and a
conduction electron are destroyed and created (see Figure 3.3). The spin in correlation
functions such as the T -matrix is rewritten by S = Φη which has the advantage that
the T -matrix becomes a two particle Green’s function. It was shown that for pseudo
fermions the T -matrix remains a three particle Green’s function. Further, the usage
of Majorana fermions ensures the property S2 = 3

4 which is not the case when pseudo-
fermions are used where a restriction of the Hilbert space is needed. This restriction
makes the calculation of diagrams harder to calculate. The motivation is thus for using
Majorana fermions that a visible diagrammatics is tested where the spin relaxation can
be included properly.
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4. Random phase approximation (RPA)
for the T -matrix

In this chapter the T -matrix is expanded into a perturbation series using Majorana
fermions. We will be inspired by the Random Phase Approximation (RPA) for the
interacting electron-gas, where the density-density correlation function of electrons is
calculated by summing up the polarization diagram. This leads to a screening of the
Coulomb interaction potential. For the interacting electron-gas the RPA is valid for
the high-density limit, where the polarization diagram is the leading diagram in each
order [4, 37]. In this chapter we are going to use only free propagators and will discuss
the T -matrix in both the cases without and with magnetic field B. The latter will
evoke a thourough discussion of the magneto-conductance of the quantum dot where
the RPA will be compared to DM-NRG calculations.

4.1. RPA for B = 0 with free propagators

The T -matrix is given according to chapter 3 by

Tσ(τ) = −J
2

4
GΦ(τ)

〈
Tτ

[
c0σ1

(τ)τ iσ1σηi(τ); c†0σ2(0)τ jσσ2η
†
j(0)

]〉
, (4.1)

where Wick’s theorem and the definition for the propagator of the independent Majo-
rana fermion is used. The T -matrix separates into the independent Majorana fermion
propagator GΦ(τ) and a usual response function. In the following the perturbation
theory is applied for the response function function while GΦ stays a constant of mo-
tion and is omitted in all diagrams. The response function in the T -matrix is given
diagrammatically by

〈σ1ηiσ2ηj〉

σ2

ηj

σ1

ηi

,
〈
Tτ

[
c0σ1

(τ)τ iσ1σηi(τ); c
†
0σ2

(0)τ jσσ2
η†j (0)

]〉
=

(4.2)

where the box represents all the interactions. We are going to carry out the RPA for
these interactions. Since there are three different Majorana fermions, in principle nine
different expansions have to be carried out. For each of this response functions a leading-
log summation is performed. Here it is assumed that the polarization diagram (bubble
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〈σ1ηiσ2ηj〉

σ2

ηj

σ1

ηi

δσ1,σ2

δi,j

+

σ1

i j

σ2

+

σ1

i

σ3

k j

σ2

+ · · · .=

Figure 4.1.: In this Figure, the RPA-expansion of the response function of the T -matrix is shown. It
is assumed that the polarization diagram in each order has the main contribution to the series and
other diagrams are sub-leading. The polarization diagram is the product of a Majorana fermion
propagator Gη and a conduction electron propagator.

diagram) has the main contribution to the perturbation series, because diagrams with
crossing lines produce sub-leading diagrams in each order. In Figure 4.1 the expansion
of one response function is shown. The polarization diagrams are summed up to infinity
while the other diagrams with crossing lines are neglected. It is expected that a similar
result like the usual leading-log summation is obtained (see chapter 2).

In the following the derivation of the RPA for the response functions is done in three
steps. First of all, Wick’s theorem is applied so that one gets sure about the signs and
vertices-values in the series. Then, in the second step the Fourier transformation of the
response functions is derived and it is shown that the convolutions in each order of the
perturbation series separate into products. In the last step, all diagrams are summed
up and a geometric series will be found. The section ends with a discussion of the
RPA-result.

4.1.1. Wick’s theorem for the response functions

In this chapter Wick’s theorem is applied for the response function and it is shown how
the vertices can be used to find the pre-factors and the signs of the diagrams. For the
first contribution to the series Wick’s theorem has to be applied for the four operators
in the response function. Since the Majorana fermions and the conduction electrons
are defined in different Hilbert spaces, there is only one possible contraction given by

Π
(0)
σ1,i

(τ) =

〈
Tτ


c0σ1

(τ)τ iσ1σηi(τ)c†0σ2(0)τ jσσ2η
†
j(0)



〉

0

= −τ iσ1στ iσσ1G0cσ1(τ)G0ηi(τ).

(4.3)

Although the free conduction electron propagator does not depend on the spin we keep
it here to find the correct pre-factors for the polarization diagrams. For the following
discussion the response functions are rewritten as a matrix so that the prefactor of the
product of the two matrix-elements of the Pauli-matrices can be read off faster. The
product is given by τ iσ1στ

i
σσ1i

and is determined by the spin of the conduction electron
propagator. Using the following abbreviation for the response functions introduced in
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equation (4.2) for the matrix allows to write T↑(τ) more compactly

M(τ) =



〈↓ η1 ↓ η1〉 i〈↓ η1 ↓ η2〉 〈↓ η1 ↑ η3〉

−i〈↓ η2 ↓ η1〉 〈↓ η2 ↓ η2〉 −i〈↓ η2 ↑ η3〉
〈↑ η3 ↓ η1〉 i〈↑ η3 ↓ η2〉 〈↑ η3 ↑ η3〉


 , (4.4)

leading to the following form of the T -matrix

T↑(τ) = −J
2

4
GΦ(τ)

(
1, 1, 1

)
·M(τ) ·




1
1
1


 . (4.5)

We want to carry out the RPA for the matrix M and discuss the first two orders.
The zeroth order matrix M (0) is given by

M (0) =



−G0c↓(τ)G0η1(τ) 0 0

0 −G0c↓(τ)G0η2(τ) 0
0 0 −G0c↑(τ)G0η3(τ)


 . (4.6)

For the first order perturbation theory in the Kondo coupling we can use the vertices
defined in chapter 3. This is exemplified with the same example as before where the
vertex

3

↑ ↓

2

− iJ
2C23 =

(4.7)

is defined. This vertex can be used for the response function −i〈↓ η2 ↑ η3〉. The
corresponding first order diagram is given by

↑

2 3

↓

,

(4.8)

where the vertex occurs in the middle of the diagram over which is integrated. The
corresponding analytical expression is given by

Π
(1)
2,3,↑,↓(τ) = −J

2

∫ β

0
dτ1

〈
c0↑(τ)η2(τ)c†0↓(0)η†3(0)c†0↑(τ1)η†2(τ1)η3(τ1)c0↓(τ1)

〉
0

= −J
2

∫ β

0
dτG0c↓(τ1)G0c↑(τ − τ1)G02(τ − τ1)G03(τ1).

(4.9)

The values of the vertices for the other diagrams are obtained in the same way and are
all given by −J

2 , thus the matrix M is given in first order by

M (1) =




0 Π
(1)
1,2,↓,↓(τ) Π

(1)
1,3,↓,↑(τ)

Π
(1)
2,1,↓,↓(τ) 0 Π

(1)
2,3,↓,↑(τ)

Π
(1)
3,1,↑,↓(τ) Π

(1)
3,2,↑,↓(τ) 0


 . (4.10)
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This expression looks more scary than it is, because the conduction electron propagators
do not depend on the spin. The free Majorana fermion propagators are further all equal
giving one bubble diagram

Π0η(τ) = G0c(τ)G0η(τ). (4.11)

The first correction can be written as a convolution

Π(1)(τ) = −J
2

∫ β

0
dτ1Π0(τ − τ1)Π0(τ1) := −J

2
[Π0 ∗Π0] (τ), (4.12)

where the convolution is defined as [· ∗ · ∗ · ∗ . . . ] (τ). This can be used to write down
the RPA-expansion of the T↑-matrix up to first order

T↑(τ) =
J2

4
GΦ(τ)

[
3Π0η +

J

2
6Π0η ∗Π0η + . . .

]
(τ). (4.13)

The factors 3 and 6 stem from equation (4.5) where the zeroth and first order of the
matrix M are used. The Fourier transformation of the first convolutions are given by

Π(0)(iωb) =
1

β

∑

ν1

G0η(−iν1 + iωb)G0c(iν1)

and

Π(1)(iωb) =
1

β

∑

ν1

G0η(−iν1 + iωb)G0c(iν1)
1

β

∑

ν2

G0η(−iν2 + iωb)G0c(iν1)

=
(

Π(0)(iωb)
)2
,

(4.14)

where iωb is a bosonic Matsubara frequency. Higher order convolutions also separate
into a product of bubble diagrams which can be shown by induction. In the next section
the pre-factors are found by using recursive relations between the coefficients. In the
end of the section a more systematic way is presented how these pre-factors can be
derived.

4.1.2. Geometric series

In this paragraph we show how the RPA can be carried out systematically. Therefore,
the structure of the diagrams has to be further discussed and it is shown how the
coefficients in the sum can be obtained via a recursion. This recursion can be found by
using the following rules:

• In principle, there are only two different response-functions. The first type is
a response-function where the same Majorana fermion or conduction electron
enters and leaves the interacting region (gray box of the T -matrix). These are
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an = an = 2bn−1

· · ·1 2 1

· · ·1 3 1

bn = bn = an−1 + bn−1

· · ·1 2 2

· · ·1 3 2

n

0

1

2

3

4

an bn 3an + 6bn

1 0 3 · 20

0 1 3 · 21

1 2 3 · 22

3 2 3 · 23

5 6 3 · 24

Figure 4.2.: On the left hand side, the recursion is represented diagrammatically. The an represent
according to the definition in this work the diagonal response-functions and it suffices to analyze
one of this type, where the Majorana fermion, labeled by 1 enters and leaves. The same can be
done for bn, where the Majorana fermion 1 enters and 2 leaves. For each of these types, there are
two possible processes for the next diagram which is calculated before. These relations are given
in the middle of the Figure and together with the initial conditions given in equation (4.15) the
coefficients for each order can be calculated and are given up to fourth order on the right hand side.

the diagonal terms of the matrix given in equation (4.4) and are labeled with an.
The 3 diagonal terms lead to 3an. The second type is a response-function where
different Majorana fermions and conduction electron with flipped spin enter and
leave the interacting region. These processes are labeled with bn. These terms
are given by the non-diagonal terms of the matrix in equation (4.4) thus 6bn.

• For the spin-flip processes exists the following rule which simplifies the diagram-
matics. The spin of the conduction electron is always related to a certain Ma-
jorana fermion. If the index i, j, k, ... of the Majorana fermions is 1 or 2 the
spin σ1, σ2, σ3, ... of the electron can only be spin-down in the expansion of the
response-function. If the index number of the Majorana fermion is 3, the spin has
to be spin-up. This rule reduces the number of possible diagrams and it suffices
only to keep the Majorana fermion indices for the recursion (see Figure 4.2).

Following these rules the T↑-matrix up to first order perturbation theory reads

T↑(τ) =
J2

4
GΦ(τ)

[
(3a0 + 6b0)Π0η +

J

2
(3a1 + 6b1)Π0η ∗Π0η + . . .

]
(τ)

=
J2

4
GΦ(τ)

∞∑

n=0

(3an + 6bn)

(
J

2

)n
[Π0η ∗ · · · ∗Π0η]︸ ︷︷ ︸

(n+1) times

(τ),
(4.15)

where a0 = 1, b0 = 0, a1 = 0 and b1 = 1. Figure 4.2 leads to the assumption that the
coefficients in the series are given by

3an + 6bn = 3 · 2n, (4.16)

which can be verified by induction using the discovered recursion rules. This is quite
remarkable and leads to a usual geometric series. Using this result the T -matrix is
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given by

T↑(τ) =
3J2

4
GΦ(τ)Πη(τ), (4.17)

where Πη(τ) is determined by the geometric series obtained above

Πη(τ) =
∞∑

n=0

Jn [Π0η ∗ · · · ∗Π0η]︸ ︷︷ ︸
(n+1) times

(τ). (4.18)

For each order there is a convolution of n + 1 polarization diagrams. In the last para-
graph it was illustrated that the first two orders separate into products after expanding
the convolution into a Fourier series. This can be used to show that higher order con-
volutions also separate into products so that the geometric series can be finally carried
out leading to

Πη(iωb) =
Π0η(iωb)

1− JΠ0η(iωb)
(4.19)

where bosonic Matsubara frequencies occur in the polarization diagrams.
Before the polarization diagram is discussed in detail a more systematic way is given

to obtain the geometric series in the last equation. The relation between the coefficients
in Figure 4.2 can also be written as a matrix equation given by

(
an
bn

)
=

(
0 2
1 1

)
·
(
an−1

bn−1

)
=

(
0 2
1 1

)n
·
(
a0

b0

)
. (4.20)

This can be used to rewrite the series in Fourier space

3Πη(iωb) = Π0η

(
3, 6

)
·
∞∑

n=0

(
an
bn

)(
JΠ0η

2

)n

= Π0η

(
3, 6

)
·
∞∑

n=0

(
0 2
1 1

)n
·
(
a0

b0

)(
JΠ0η

2

)n

= Π0η

(
3, 6

)
·
(

1− JΠ0η

2

(
0 2
1 1

))−1

·
(

1
0

)

=


 Π0η

(1− JΠ0η)
(

1 +
JΠ0η

2

)


 (3, 6

)
·
(

1− JΠ0η

2 JΠ0η
JΠ0η

2 1

)
·
(

1
0

)

=
3Π0η

1− JΠ0η
,

(4.21)

where Π0η := Π0η(iωb). This is the same result as obtained before. In the first step,
the term 3an + 6bn were rewritten as a scalar product of two vectors. Then, we used
the recursion relation written as a matrix. This led to expression where only the first
coefficients a0 and b0 are needed. The final result can be found using

(
a b
c d

)
=

1

ad− cb

(
d −b
−c a

)
. (4.22)
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In the last step, the Fourier transformation T↑(iωn) is calculated and it is given by

T↑(iωn) =
3J2

4

1

β

∑

iν1

GΦ(iν1)Π(iωn − iν1)

=
3J2

4π2

∫ ∞

−∞
dω1

∫ ∞

−∞
dω2G

′′R
Φ (ω1)︸ ︷︷ ︸

=−πδ(ω1)

Π
′′R(ω2)

1

β

∑

iν1

1

iν1 − ω1

1

iωn − iν1 − ω2︸ ︷︷ ︸
=−nF (ω1)+nB(−ω2)

ω2−iωn

=
3J2

8π

∫ ∞

−∞
dω2Π

′′R
η (ω2)

1 + 2nB(−ω2)

ω2 − iωn
,

(4.23)

where iωn of the Fourier transformation is a fermionic Matsubara frequency. Since one
is interested in the imaginary part of the retarded T -matrix the analytic continuation
iωn → ω + i0+ is carried out and the result is given by

T ′′R↑ (ω) = −3J2

8
coth

(
βω

2

)
Π
′′R
η (ω)

= −3J2

8
coth

(
βω

2

)
Im

(
ΠR

0η(ω)

1 + JΠR
0η(ω)

)
.

(4.24)

This result is valid for any Π(iωb) and this can be understood in the context of the
dissipation-fluctuation theorem which is in agreement with the given analytic properties
of Green’s functions in chapter 3. In this case Π

′′R
η (ω) can be derived from

= Π0η(τ)= G0η(τ)G0c(τ).
τ 0

η (4.25)

If the limit temperature T → 0 is taken, the functions coth(βx) and tanh(βx) be-
come sign(x). The polarization diagram which provides the main contribution to the
perturbation series is calculated in appendix C.1 and given by

ΠR
0η(ω) =

ρ0

2
log

(∣∣∣∣
ω2 −D2

ω2

∣∣∣∣
)

+ iπ
ρ0

2
sign(ω)Θ(ω2 −D2) (4.26)

This leads to the final result for T -matrix which is given by

T ′′R↑ (ω) = −3J2

16

πρ0(
1− J

2 ρ0 log
∣∣∣D2−ω2

ω2

∣∣∣
)2

+ J2

4 π
2ρ2

0

(4.27)

This subsection ends with a short summary of the most important steps of the evalua-
tion of the RPA result, which will be adapted to the T -matrix at finite magnetic field
in the next section:
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1. The T -matrix was rewritten by using Majorana fermions for spin operators. This
separates the T -matrix into a free Majorana fermion propagator GΦ and different
response functions which consist of conduction electron Gc and Majorana fermion
propagators Gη

2. We used the conservation of the total spin which relates the spin of the conduction
electron with certain Majorana fermions. This simplified the diagrammatics and
enabled us finally to find the recursion rule between the coefficients in the RPA-
series (see Figure 4.1).

3. The T -matrix consists of two different types of response functions. The first
type corresponds to processes where the same Majorana fermions enter and leave
the interacting region and the second type to processes where different Majorana
fermions enter and leave the interacting region.

4. The summation of the two different response-functions can be done systematically
using recursion-relation between the pre-factors of the different orders in the
perturbation series. In fact, in this case here, the summation led to a typical
geometric series when a RPA is carried out.

5. T↓ can be obtained by using T↑(ω) = T↓(ω) which follows from Kramers degener-
acy.

4.1.3. Result

In this section we discuss the result which is obtained by performing a RPA for the
T -matrix. In the weak-coupling regime, which is given by D � ω � TK , this result
can be rewritten using the Kondo temperature TK leading to

−πρ0T
′′R
↑ (ω) ≈ 3π2

16

1

log2
∣∣∣ ωTK

∣∣∣+ π2

4

. (4.28)

This result confirms that the RPA and using Majorana fermions for the T -matrix
is equal to poor man’s scaling (renormalization of the Kondo coupling) in the weak-
coupling regime where the small constant term in the denominator in equation (4.28)
is negligible. But the this term helps us to cut the divergence for ω ≈ TK . This
difference between the two derivations (RPA and poor man’s scaling) stems from the
fact, that in the RPA the imaginary part of the polarization diagram is not neglected
for the renormalization of JR(ω). However, as a hallmark of the Kondo problem the
strong-coupling regime can not be achieved with the RPA for the T -matrix, even with
the small constant term in the denominator of equation (4.28). This can be seen from
the large deviations from the NRG-calculation for low energies where the NRG describes
the cross-over and the strong-coupling regime well. The T -matrix is given in Figure 4.3
where it is compared with a NRG-run for the T -matrix. Additionally, we gave the
result of the local Fermi liquid and it can be clearly seen that the RPA does not match
it.
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Figure 4.3.: RPA compared to leading log summation, Fermi liquid and NRG. It can be seen that
the RPA agrees with the poor man’s scaling result.

4.2. RPA for B 6= 0 with free propagators

In this section we want to discuss the RPA for the T -matrix in the presence of a
magnetic field and compare it with DM-NRG calculations. This serves as benchmark
for the Majorana fermion diagrammatics and the DM-NRG calculations. As already
mentioned in chapter 2 the reliability of the NRG is in question. Since the T -matrix
is related to the conductance of the quantum dot the T -matrix at finite magnetic field
describes the magneto-conductance. We will begin therefore this section with a short
review of experiments on the magneto-conductance.

4.2.1. Experimental set-up

When the effect of an applied magnetic field is studied in an experiment, quantum dots
formed from carbon nanotubes have advantages relative to quantum dots formed from
semiconducting heterostructures. Beside the already discussed higher Kondo tempera-
tures in these dots they have also a large Landé-factor g ≈ 2. The coupling of a spin
S to a magnetic field B is given by the Pauli-equation which can be derived from the
Dirac equation and the coupling reads

Hz ∝ −gS ·B, (4.29)

where the energy is lowered when the magnetic field B is parallel to the spin S. This
energy is the Zeeman energy and has to be bigger than TK . TK is the binding energy
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Figure 4.4.: The experimental data for this graph are obtained by N. Roch [17, 18, 61] where the
differential magneto-conductance in the Kondo regime was measured. It shows the critical field for
the splitting at B ≈ 5T .

of the ground-state of the anti-ferromagnetic Kondo model [33, 34] which has to be
exceeded by the Zeeman energy. This leads to two experimental boundary conditions:

• Kondo temperature has to be larger than the accessible temperature so that one
can observe the Kondo resonance

• A large g leads to a Zeeman energy that is larger than the energy-scale defined
through the Kondo temperature

For the theoretical discussion we put the Zeeman energy in the definition of the magnetic
field ||B||. There is a disagreement between the measured critical magnetic field and
the predicted theoretical one [28, 33].

4.2.2. The Kondo interaction in the presence of a magnetic field

The applied magnetic field affects the spin of the conduction electrons and of the
impurity. Since the Fermi energy is defined as zero and the magnetic field is applied in
the negative direction of the z-axis B = −Bêz leads to the Zeeman term [41]

HZ = BSz +
B

2

∑

kσ

σc†kσckσ, (4.30)

The focus is on the regime where TK � B � D so that the Zeeman splitting can be
observed. The magnetic field leads to a renormalized half-band width which is given
by DR = D−B ≈ D. This effect can be neglected since B � D and the old half-band
width can be used and the second term in equation (4.30) drops out. The magnetic
field thus only affects the spin S of the quantum dot.
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4.2.3. Transformation of the Majorana fermions and RPA

The additional Zeeman term in the Kondo Hamiltonian is given by

HZ = BSz = −iBη1η2, (4.31)

where B is measured in units of the Zeeman splitting. If the spin is rewritten using
Majorana fermions the Majorana fermion propagator Gij(τ) has non-diagonal elements
which makes it more difficult to carry out the RPA for the T -matrix. The idea is
to transform the Majorana fermions so that the propagator becomes diagonal. The
Kondo Hamiltonian can be rewritten by using the ladder-operators S+, S−, and the z-
component of the total spin operator Sz with S± = Sx± iSy. The Kondo Hamiltonian
is given using the ladder-operators by

HK =
J

2

(
c†0↓c0↑S

+ + c†0↑c0↓S
−
)

+
J

2

(
c†0↑c0↑ − c

†
0↓c0↓

)
Sz. (4.32)

The Majorana fermion propagator becomes diagonal by introducing

f † =
1√
2

(η1 + iη2),
{
f †, f

}
= 1. (4.33)

The ladder-operators are given after this transformation by

S+ = Sx + iSy = η3(η1 + iη2) =
√

2η3f
†,

S− = Sx − iSy = (η1 − iη2)η3 =
√

2fη3,
(4.34)

and the z-component of the total spin operator by

Sz = −ff † +
1

2
, (4.35)

where terms f †f † and ff give zero, because the Pauli-principle which forbids more than
one fermion in one state. The Kondo Hamiltonian is given after this transformation1

by

HK = −J
2

√
2
(
c†0↓c0↑f

†η3 + c†0↑c0↓η
†
3f
)

+
J

2

(
c†0↑f

†fc0↑ − c
†
0↓f
†fc0↓

)
(4.36)

and the Zeeman term is given by

Hz = Bf †f − 1

2
B, (4.37)

where the last term of the Zeeman term is only a constant and is thus dropped from
now on. Further, the transformation leads to two different fermionic propagators which
are given by

Gf (iωn) =
1

iωn −B
, Gη3(iωn) =

1

iωn
, (4.38)

1The term ∝ J
4
c†0σc0σ was dropped since it corresponds to a weak external potential scattering term.

This term becomes important for the self-energy in second order (see chapter 5).
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where Gf is a Dirac fermion and Gη3 is the unchanged part of the original Majorana
fermion propagator and the label 3 can be dropped and we will use Gη as Majorana
fermion propagator. Next, the T -matrix is transformed using f and η. As an inter-
mediate step the matrix M(τ) which was defined above in equation (4.5) is rewritten
by

(
1, 1, 1

)
·M(τ) ·




1
1
1




=
(
1, 1, 1

)
·



〈↓ η1 ↓ η1〉 i〈↓ η1 ↓ η2〉 〈↓ η1 ↑ η3〉

−i〈↓ η2 ↓ η1〉 〈↓ η2 ↓ η2〉 −i〈↓ η2 ↑ η3〉
〈↑ η3 ↓ η1〉 i〈↑ η3 ↓ η2〉 〈↑ η3 ↑ η3〉


 ·




1
1
1




=
(
1, 1

)
·
(
〈↓ (η1 − iη2) ↓ (η1 + iη2)〉 〈↓ (η1 − iη2) ↑ η3〉
〈↑ η3 ↓ (η1 + iη2)〉 〈↑ η3 ↑ η3〉

)
·
(

1
1

)
,

(4.39)

where the colors show which terms were combined. The new form allows to apply the
given transformation-rules and the T -matrix transforms to

T↑(τ) = −J
2

4
GΦ(τ)

(
2〈↓ f ↓ f †〉+

√
2〈↓ f ↑ η〉+

√
2 〈↑ η ↓ f †〉+ 〈↑ η ↑ η〉

)
, (4.40)

For those 4 response functions the RPA is carried out in the following. To clarify the
procedure of the RPA in the case of the magnetic field we want to take a look at the first
two orders of perturbation theory. In zeroth order there are two different polarization
diagrams given by

= Π0(τ) = G0η(τ)G0c(τ).
τ 0

= Π0f (τ)= G0f (τ)G0c(τ)
τ 0

f

η
(4.41)

Thus, the zeroth order is given by

T (0)
↑ (τ) = −J

2

4
GΦ(τ) (−2Π0f (τ)−Π0η(τ)) , (4.42)

The second order diagrams can be obtained by using the vertices defined in equa-
tion (4.32). They correspond to the vertex where a f -fermion is destroyed and the
η-Majorana fermion is created or vice versa, and are given by −

√
2J2 in both the cases.

The first order perturbation theory contributions to the T -matrix are thus given by

T (1)
↑ (τ) = −J

2

4
GΦ(τ)(−2)J

∫ β

0
dτ1Π0η(τ − τ1)Π0f (τ1), (4.43)
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Figure 4.5.: This Figure shows the four response-functions in the RPA up to second order. It can be
seen, that the off-diagonal elements do not contribute in zeroth order. In each order the diagrams
represent a convolution or in Fourier space a product of the two different polarization diagrams Π0f

and Π0. The recursion allows to sum them up systematically.

which also separates into in product in Fourier space. The two different diagrams which
contribute to the series are shown up to second order in Figure 4.5. In the next step it
is demonstrated that again a recursion can be found which allows to carry out the RPA.
The response-function contributing to the T -matrix in equation (4.40) can be classified
into two groups. The coefficients of the first group are defined as an and correspond
to a response-function where the Dirac fermion f enters and leaves. The coefficients
of the second group are defined as bn where the fermion which enters the interacting
region is different from the leaving fermion. As before there is an important relation
between the spin of the conduction electrons which occurs in the polarization diagram
and the corresponding fermion propagator and this relation states that the f Dirac
fermion propagator occurs with the spin-down and the η with the spin-up conduction
electron propagator in the polarization diagram. This relation helps us again to use
only f and η to find the recursion relation between the coefficients. These definitions
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an = an = Π0f (
√
2bn−1 + an−1)

· · ·f f f

· · ·f η f

bn = bn =
√
2Π0an−1· · ·η f f

Figure 4.6.: This Figure shows graphically the recursion-relation between the coefficients which enter
the RPA for the response-function. The coefficients for the first response-function in (4.40) are
labeled with an, the two in the middle are composed to bn and the last term can be rewritten, so
that an can be used for it. The Figure shows the coefficient n and which transitions are allowed, so
that one can find the recursion relation. For an there are two possible vertices, one where f stays
f and the other where η is created. On the other hand, for bn there is only one allowed process
because there is no vertex where η is destructed and created.

are used in Figure 4.6 which makes the role of the coefficients clearer. The coefficients
are used to define the sum of the different response functions.
The RPA-summation for the third response-function can be rewritten as

〈↑ η ↑ η〉 = −Π0η − 2Π2
0η

∞∑

n=2

an−2

(
J

2

)n

= −Π0η − 2

(
JΠ0η

2

)2 ∞∑

n=0

an

(
J

2

)n
,

(4.44)

which allows to use to the coefficients an in the summation and avoids to define a third
coefficient where the Majorana fermion η would enter and leave the interacting region
of the response function.
The blue terms of the T -matrix (see Figure 4.5) represent a response functions where

the fermion which enters the interaction region differs from the leaving fermion thus
they can be summed up using the coefficients bn

√
2
(
〈↑ η ↓ f †〉+ 〈↓ f ↑ η〉

)
= −2

√
2
∞∑

n=0

bn

(
J

2

)n
. (4.45)

Since the blue terms provide the same contribution to the series they can be written as
sum with factor 2.
The green term of the T -matrix corresponds to a response function where the f Dirac

fermion enters and the leaves the interacting region and therefore the coefficients an
are used for the RPA

2〈↓ f ↓ f †〉 = 2
∞∑

n=0

an

(
J

2

)n
. (4.46)

Using these rewritten contributions the four response functions in the T -matrix are
summed up by

Π(iωn) = −Π0η − 2

∞∑

n=0

(
J

2

)n (
1 +

(
JΠ0η

2

)2
,
√

2
)
·
(
an
bn

)
. (4.47)
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The recurrence relation between the coefficients can be read-off from Figure 4.6 and is
given by

(
an
bn

)
=

(
Π0f

√
2Π0f√

2Π0η 0

)
·
(
an−1

bn−1

)
=

(
Π0f

√
2Π0f√

2Π0η 0

)n
·
(
a0

b0

)
(4.48)

The initial values are given by a0 = Π0f , b0 = 0, which can be seen from Figure 4.5.
Applying the systematic summation of the polarization diagrams gives

Π = −Π0η −
(
A, 2

√
2
) ∞∑

n=0

(
Π0f

√
2Π0f√

2Π0η 0

)n(
Π0f

0

)(
J

2

)n

= −Π0η −
(
A, 2

√
2
)(

1− J

2

(
Π0f

√
2Π0f√

2Π0η 0

))−1(
Π0f

0

)
.

(4.49)

Inverting the matrix, where 1 is the 2× 2 identity matrix gives

(
1− J

2

(
Π0f

√
2Π0f√

2Π0η 0

))−1

=

1

1 + J
2 Π0f − J2

2 Π0ηΠ0f

·
(

1 Π0f
J
2

√
2

Π0η
J
2 1− J

2 Π0f

)
.

(4.50)

Calculating the matrix-vector product by using the relation between the T ′′R(ω)-matrix
and the function Π

′′R(ω) leads to

T ′′R↑ (ω) = −J
2

4

1

2
coth

(
βω

2

)
Im

(
Π0η + 2Π0f + 3

2JΠ0fΠ0η

1− J
2 Π0f − J2

2 Π0ηΠ0f

)
, (4.51)

which gives is limit B = 0 (where Π0η = Π0f ) the same result as before

T ′′R↑ (ω) = −J
2

4

1

2
coth

(
βω

2

)
Im

(
3Π0η

(
1 + J

2 Π0η

)

(1− JΠ0η)
(
1 + J

2 Π0η

)
)

= −J
2

4

1

2
coth

(
βω

2

)
Im

(
3Π0η

1− JΠ0η

)
.

(4.52)

The polarization diagrams Π0η and Π0f are given by the following two expressions with
a magnetic field B > 0 (see appendix C.1)

Π0η(ω) =
ρ0

2
log

∣∣∣∣
D2 − ω2

ω2

∣∣∣∣+ i
1

2
πρ0 sign(ω)

Π0f (ω) = ρ0 log

∣∣∣∣
D +B − ω
B − ω

∣∣∣∣+ iπρ0θ(ω −B).

(4.53)

The final result which will be discussed in the next paragraph is shown in Figure 4.7.
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Figure 4.7.: This graph shows equation (4.51) and the corresponding asymptotes which are obtained
in equation (4.57). It can be seen that the spin-resolved T -matrix is antisymmetric due to the
different polarization diagrams and the peak is centered at B which is related to the Zeeman
splitting of the Kondo resonance.

4.2.4. RPA-result with free propagators

In this section the result of the derived formula is discussed and compared with DM-
NRG-calculations of the T -matrix. First of all we want to discuss the asymmetric
asymptotes from Figure 4.7 in the high energy limit which is given by D � ω � B or
D � −ω � B. Since in the analytic result for Π0f (ω) only has an imaginary part for
ω > B we obtain according to the sign of ω

Π0f (ω) ≈ρ0 (log(x) + iπ) D � ω � B

Π0f (ω) ≈ρ0 log(x) −D � ω � B.
(4.54)

Π0η(ω) is given by

Π0η(ω) ≈ρ0

(
log(x) + i

π

2

)
D � ω � B

Π0η(ω) ≈ρ0

(
log(x)− iπ

2

)
−D � ω � B,

(4.55)

where sign(ω) changes the sign of the imaginary part and for all four expressions the
abbreviation x = D

ω is used. These limits are taken for the derived formula for the
ΠR(ω)-matrix. Then, the imaginary part Π

′′R(ω)-matrix is developed for 1
log(x) → 0

which gives only in leading order

Π
′′R(ω) ≈− π 5

2J2ρ0 log2(x)
D � ω � B

Π
′′R(ω) ≈ π

1

2J2ρ0 log2(x)
−D � ω � B.

(4.56)

Taking these limits for the evaluated formula for the T -matrix agrees with the result
which has been found by A. Rosch, T. A. Costi, J. Paaske and P. Wölfle in 2003 by
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applying the functional renormalization group (fRG) [27, 69]:

−πρ0T
′′R
↑ (ω) ≈π2 5

16 log2
(∣∣∣ ωTK

∣∣∣
) D � ω � B

−πρ0T
′′R
↑ (ω) ≈π2 1

16 log2
(∣∣∣ ωTK

∣∣∣
) −D � ω � B.

(4.57)

The result is an asymmetric behaviour far away from the shifted resonance. Without a
magnetic field the resonance is around ω = 0 and with a magnetic field it is shifted in
this case to ω = B which can be only observed when the quantum dot is in the Kondo
regime. The suppression of the Kondo resonance is also present because the maximum
of the curve is far away from the unitary limit (see Figure 4.7).
In the following the calculated formula for the T -matrix is compared with DM-

NRG-calculations. For all the DM-NRG-calculations the half-band width D = 1 and
the Kondo coupling J = 0.145 were chosen so that the Kondo temperature TK =
1.0 · 10−6. Further, we kept only the first 320 states. The spectral functions ob-
tained by the DM-NRG are compared to the one evaluated with the RPA and free
propagators. The DM-NRG spectral functions are broadened with different parame-
ters b = 0.55, 0.65, 0.75, 0.85 (for the explanation of the broadening see chapter 2).
The DM-NRG and RPA results are benchmarked for different ratios of B

TK
. We begin

the discussion for sufficient high magnetic fields where the ratio B/TK = 5 · 104 and
B/TK = 4 ·103. In this case it can be seen that the RPA agrees well with the DM-NRG
for energies ω 6= B. For ω = B we observe a disagreement between the RPA and the
DM-NRG. The peak of the RPA is very sharp and diverges. In contrast the peak of
the DM-NRG is large (see Figure 4.8). In chapter 5 we will clarify the discussion of the
deviations at the peak. We mention that the DM-NRG calculation has an insufficient
resolution at the peak which leads to a too large peak and the RPA result is too narrow
since the spin relaxation time has not been included. However, the divergence at ω = B
is very slow which is in agreement with Ref. [27] and we conclude that the result should
be between the two.
For smaller ratios B

TK
one can observe an artefact in the RPA result for small energies

For decreasing magnetic field the range, where the RPA result is valid, becomes more
and more smaller and we observe big deviations from the DM-NRG result and the
unitary limit (see Figure 4.9). The origin of this artefact is discussed in the next
subsection. In Figure 4.10 the T -matrix is plotted 2-dimensional as T (ω,B). It can
be seen clearly that there is a linear Zeeman splitting of the Kondo resonance for high
magnetic fields. Due to the divergence in the resonance in RPA-result of the T -matrix
values exceeding 0.03 are set to 0.03. In the limit of weak magnetic fields this result
is not valid any more and the RPA does not match the experiment where a critical
magnetic field is observed for the splitting (compare Figure 4.10 with Figure 4.11).
The conclusion of this intermediate discussion is that the Zeeman splitting energy

has to be sufficiently big where the RPA-evaluation is valid. If it is too small the
perturbation theory breaks down which is related to the Kondo problem. Furthermore,
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Figure 4.8.: In the graph we see that the RPA agrees well with the DM-NRG except at ω ≈ B. If
B/TK is sufficiently high the RPA works well.
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Figure 4.9.: These graphs show more clearly what happens for the RPA result when max(B,ω)� TK
is not true. This indicates the break-down of the perturbation theory and is related to the Kondo
problem.
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Figure 4.10.: This Figure shows a 2-dimensional plot of the imaginary part of the retarded T -matrix.
One can see very well the expected Zeeman splitting of the Kondo resonance in high magnetic fields.
For too small values of the magnetic field the evaluation of the T -matrix is not any more valid so
one has to treat the plot very carefully.
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Figure 4.11.: In this Figure two different experiments where the differential magneto-conductance
is measured are shown. In both the experiments it can be seen that a certain energy is needed to
break the Kondo singlet which explains the critical magnetic field.
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the effect of the spin relaxation time has to be discussed in order to get sure about the
behaviour of the T -matrix in the neighbourhood of the Zeeman shifted resonance.

4.2.5. The limits of the RPA

In this section we want to discuss the artefact for small ω in the RPA which can be
observed in the last section. In the absence of a magnetic field it was shown that the
RPA it equivalent to poor man’s scaling. The poor man’s scaling approach can be
interpreted as a one loop renormalization group scheme given diagrammatically by [69]

+ +=
(4.58)

which renormalizes the Kondo coupling J . The second-order diagrams give rise to the
logarithms. If this scheme is compared with the RPA for the T -matrix it can be seen
that the RPA does not include the particle-hole channel of the one-loop scheme. The
neglected particle-hole diagram in the RPA is given by

(4.59)

and becomes important for low energies. The leading contribution of that diagram is
given approximately by Π0η(ω)2Π0f (0). The approximation uses a decoupling of the
crossing lines from which the given expression can be obtained. This expression can
be used for the RPA result and this shows that the diagram is in fact important for
small energies and the artefact vanishes. We mention that this correction shows only
qualitatively that this diagram becomes important. Figure 4.12 further shows that the
approximation is too rough.

4.3. Ferromagnetic Kondo coupling and the RPA

In the last section we want to discuss the RPA-result with a ferromagnetic coupling.
The motivation is that the ferromagnetic S = 1

2 Kondo effect can help to understand
to the underscreened S = 1 Kondo effect with anti-ferromagnetic coupling. In this
section the relation between these two different Kondo effects is explained and verified
by comparing the RPA-result with the underscreened Kondo effect which has been
observed recently in a molecular single electron transistor [32, 61].

4.3.1. The underscreened Kondo effect

In 1980 P. Nozières and A. Blandin discussed the underscreened Kondo effect in real
metals [30] and earlier in 1978 D. M. Cragg and P. Lloyd [31]. The physical interpre-
tation is that the spin s = 1

2 of the conduction electron can not screen the spin S = 1
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Figure 4.12.: This result shows the corrected RPA with an approximated particle hole channel(p. h.
c. diagram) and without correction.

of the embedded magnetic impurity as it is the case where spin of the electrons is
anti-ferromagnetically coupled to the spin S = 1

2 of the magnetic impurity. This leads
to an uncompensated spin S = 1

2 of the impurity which is ferromagnetically coupled
to the spin s = 1

2 of the conduction electrons in the low-temperature limit. Thus, in
the low-temperature limit the physics of the underscreened anti-ferromagnetic S = 1
Kondo effect show the same behaviour as the ferromagnetic S = 1

2 Kondo effect. In the
ferromagnetic case the spin S of the impurity can be polarized with any B and thus
we expect that there is no critical magnetic field for the Zeeman splitting.

4.3.2. RPA and experiments

We compare again the RPA result with DM-NRG runs where the Kondo coupling
is changed to J = −0.138. This change of the sign changes dramatically the renor-
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Figure 4.13.: The two graphs show the RPA-result for ferromagnetic Kondo coupling for two dif-
ferent magnetic fields. It is compared to DM-NRG calculations of the T -matrix with different
broadening parameters.
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Figure 4.14.: On the left hand side the RPA-result is compared to DM-NRG calculations and on the
right hand side the total matrix is shown from which it can be seen that the splitting persists for
B → 0.

malization equation of the Kondo coupling and for low energies the Kondo coupling
remains small and tends even to zero which allows to apply perturbation theory for
the whole range of energies. From Figure 4.13 and Figure 4.14 it can bee seen that
indeed the curves do not change with B and have the same behaviour. Further, as ex-
pected the splitting is present when B tends to zero where we arrive at the RPA-result
in the absence of a magnetic field. The plot of the total T -matrix (see Figure 4.14)
shows again that there is the artefact for small ω which can be explained with the
neglected particle-hole channel diagram which completes the one-loop renormalization
group scheme. When the energy ω is in the vicinity of B a step in the T -matrix is
observed and it can be seen in the RPA result that there is a singularity which is related
to the neglected spin relaxation time discussed in the next chapter. If we compare a 2
dimensional plot of the T -matrix with the recent experiment carried out by W. Werns-
dorfer et al. [32] it can be seen that the Zeeman splitting is also present for B → 0 (see
Figures 4.15 and 4.16) The resolution of the NRG is again insufficient in the vicinity of
the magnetic field because there are not enough points. In the next section where the
role of the spin relaxation time is discussed this statement will be clarified.

4.4. Summary

In this chapter we have seen that the RPA for the T -matrix works well in the absence of
a magnetic field when the energy is in the weak-coupling regime ω � TK . It was shown
how the RPA can be performed systematically by introducing a recursive scheme which
renormalizes J in the same way as it does poor man’s scaling. For low energies the
RPA approach breaks clearly down because in the Kondo problem the strong-coupling
regime can not be matched with perturbation theory. Further, in the present of a
magnetic field the RPA became more complex because after the transformation we had
to deal with two different propagators in the diagrammatics. We adapted the recursive
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scheme for the T -matrix and obtained

T ′′R↑ (ω) = −J
2

4

1

2
coth

(
βω

2

)
Im

(
Π0η + 2Π0f + 3

2JΠ0fΠ0η

1− J
2 Π0f − J2

2 Π0ηΠ0f

)
, (4.60)

which was compared in detail for anti-ferromagnetic and ferromagnetic coupling with
DM-NRG calculations of the T -matrix. We stated that for max(B,ω)� TK the RPA
matches well the DM-NRG result but there is a problem for energies in the proximity
of B where the peak in the RPA result is too sharp and diverges slowly. This stems
from the neglected spin relaxation time which is discussed in the next chapter. It has
also been shown that the RPA at a finite magnetic field is not fully equivalent to a
one-loop renormalization scheme because the particle-hole diagram is neglected in the
RPA. This diagram is important to get rid of the artefact in the RPA for low energies.
Looking at the DM-NRG calculation we asserted that there are not enough points for
energies ω in the neighbourhood of B and the broadening of these points leads to a too
broad Zeeman peak. The assumption is thus that the real curve for the resonance in the
vicinity of B is between the two curves. The quality of the DM-NRG calculations might
be improved by using z-averaging where the NRG is carried for different discretization
parameters Λn+z which shifts the energy shells and more points are obtained [54].
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5. The spin-relaxation-time

The self-energy Ση was discussed in chapter 3 and calculated in appendix C.2. In this
chapter we are going to discuss the self-energy at finite magnetic field. Thus, we have
to include the two different self-energies Ση and Σf to the two propagators Gf and Gη.
Using Wick’s theorem will give the analytic expressions for both the self-energies. Then,
they will be used to discuss the magnetic susceptibility at finite magnetic field and the
analytic result is going to be compared to DM-NRG calculations which clarifies the
benchmark of the two methods. In the end, the spin elaxation time will be discussed
for the T -matrix.

5.1. Derivation of the self-energies Σf and Ση for B 6= 0

We use the Kondo interaction from equation (4.36) to evaluate the second-order order
contribution of the expansion of the full propagators

Gf (τ) = −
〈
Tτ

[
f(τ)f †(0)

]〉

Gη(τ) = −
〈
Tτ

[
η(τ)η†(0)

]
.
〉 (5.1)

According to the introduced concept of Green’s functions these corrections will be given
in terms of free propagators. For this purpose the imaginary-time evolution operator is
used in second order (see chapter 3) leading to the second-order contributions given by

G
(2)
f (τ) = −1

2

∫ β

0
dτ1

∫ β

0
dτ2

〈
Tτ

[
HI(τ1)HI(τ2)f(τ)f †(0)

]〉
0

G(2)
η (τ) = −1

2

∫ β

0
dτ1

∫ β

0
dτ2

〈
Tτ

[
HI(τ1)HI(τ2)η(τ)η†(0)

]〉
0
,

(5.2)

where the interaction in the Kondo Hamiltonian is given by

HI = −J
2

√
2
(
c†0↓f

†ηc0↑ + c†0↑η
†fc0↓

)
+
J

2

[∑

σ

σc†0σf
†fc0σ − σ

1

2
c†0σc0σ

]
. (5.3)

In the next two subsections the different possibilities for the self-energy-diagrams are
calculated.
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5.1.1. Self energy Σf

We want to begin with the self-energy diagrams for the propagator Gf . The first
possibility with interactions in second order is given by

G
(2.1)
f (τ) =− 1

2

J2

4

∑

σ

∫ β

0
dτ1

∫ β

0
dτ2

×
〈
Tτ

[
c†0σ(τ1)f †(τ1)f(τ1)c0σ(τ1)c†0σ(τ2)f †(τ2)f(τ2)c0σ(τ2)f(τ)f †(0)

]〉

0

=
1

2

J2

4

∑

σ

∫ β

0
dτ1

∫ β

0
dτ2G0c(τ1 − τ2)G0c(τ2 − τ1)

×
〈
Tτ

[
f †(τ1)f(τ1)f †(τ2)f(τ2)f(τ)f †(0)

]〉
0
.

(5.4)

There are two possible contractions. The average over the six fermionic operators f
separates into

〈
Tτ

[
f †(τ1)f(τ1)f †(τ2)f(τ2)f(τ)f †(0)

]〉

0

= −G0f (τ2 − τ1)G0f (τ2)G0f (τ1 − τ) (5.5)

and

〈
Tτ


f †(τ1)f(τ1)f †(τ2)f(τ2)f(τ)f †(0)



〉

0

= −G0f (τ1 − τ2)G0f (τ2 − τ)G0f (τ1) (5.6)

which give the same contribution to the integral in equation (5.4) and thus give a factor
2. Since the propagators do not depend on the spin, the sum over the spins

∑
σ gives

another factor 2 and the first integral in second order is given by

G
(2.1)
f (τ) = −J

2

2

∫ β

0
dτ1

∫ β

0
dτ2G0c(τ1 − τ2)G0c(τ2 − τ1)G0f (τ1 − τ2)︸ ︷︷ ︸

=Σ
(2.1)
f (τ2−τ1)

G0f (τ2−τ)G0f (τ1),

(5.7)
where the first contribution to the self-energy Σf is given Σ

(2.1)
f (τ2 − τ1).

68



The second possibility with interactions in second order is given by

G
(2.2)
f (τ) =− 1

2

J2

2

∫ β

0
dτ1

∫ β

0
dτ2

×
〈
Tτ

[
c†0↓(τ1)f †(τ1)η(τ1)c0↑(τ1)c†0↑(τ2)η†(τ2)f(τ2)c0↓(τ2)f(τ)f †(0)

]〉
0

=
1

2

J2

2

∫ β

0
dτ1

∫ β

0
dτ2G0c(τ1 − τ2)G0c(τ2 − τ1)

×
〈
Tτ

[
f †(τ1)η(τ1)η†(τ2)f(τ2)f(τ)f †(0)

]〉

0

=− J2

4

∫ β

0
dτ1

∫ β

0
dτ2G0f (τ2)G0f (τ − τ1)

×G0c(τ1 − τ2)G0η(τ2 − τ1)G0c(τ2 − τ1)︸ ︷︷ ︸
=Σ

(2.2)
f (τ2−τ1)

(5.8)

leading to the second contribution to the self-energy Σf . The third and last contribution
can be calculated from the second contribution. It is given by the conjugated process
leading to the same expression. This gives another factor 2. From this discussion we
conclude that the self-energy Σf consists of two different contributions is given by

Σf (τ) = −J
2

2
G0c(−τ) [G0f (τ)G0c(τ) +G0η(τ)G0c(τ)]

= −J
2

2
G0c(−τ) [Π0f (τ) + Π0η(τ)] .

(5.9)

If we look more carefully at the Hamiltonian in equation (5.3) there is a last contribution
to the self-energy whose diagram is given by

= Σcf

σ σ

(5.10)

which describes the interaction of conduction electrons with an external potential. The
external potential occurs because of the transformation f † = 1√

2
(η1 + iη2) (see chap-

ter 4). Until now, we omitted the interaction

−J
4

∑

σ

σc†0σc0σ

in the transformed Kondo Hamiltonian. This terms represents an external potential
scattering term and gives a constant contribution to the self-energy in second order.
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The diagram is given by the analytical expression

Σcf = −J
2

4

∫ β

0
dτG0c(τ)G0c(−τ). (5.11)

5.1.2. Self energy Ση

In this subsection we perform the same procedure as before for the second propagator
Gη. The first expression with interactions in second order is given by

G(2.1)
η (τ) =− J2

4

∫ β

0
dτ1

∫ β

0
dτ2

×
〈
Tτ

[
c†0↓(τ1)f †(τ1)η(τ1)c0↑(τ1)c†0↑(τ2)η†(τ2)f(τ2)c0↓(τ2)η(τ)η†(0)

]〉
0

=
J2

4

∫ β

0
dτ1

∫ β

0
dτ2G0c(τ1 − τ2)G0c(τ2 − τ)

×
〈
Tτ

[
f †(τ1)η(τ1)η†(τ2)f(τ2)η(τ)η†(0)

]〉
0

=
J2

4

∫ β

0
dτ1

∫ β

0
dτ2G0c(τ1 − τ2)G0c(τ2 − τ1)Gf (τ2 − τ1)

×
〈
Tτ

[
η(τ1)η†(τ2)η(τ)η†(0)

]〉
0
.

(5.12)

Since the fermionic Majorana fields are real η = η† the remaining average over those 4
fields leads to two different contributions given by

〈
Tτ

[
η(τ1)η(τ2)η(τ)η(0)

]〉

0

= −
〈
Tτ

[
η(τ)η†(τ2)

]〉
0

〈
Tτ

[
η(τ1)η†(0)

]〉
0

(5.13)

and
〈
Tτ

[
η(τ1)η(τ2)η(τ)η(0)

]〉

0

=
〈
Tτ

[
η(τ)η†(τ1)

]〉
0

〈
Tτ

[
η(τ2)η†(0)

]〉
0
. (5.14)

These two contributions can be used for equation (5.12). Changing the imaginary times
τ1 ↔ τ2 leads to

G(2.1)
η (τ) = −J

2

4

∫ β

0
dτ1

∫ β

0
dτ2G0c(τ1 − τ2)G0c(τ2 − τ1)

×G0η(τ − τ2)


G0f (τ2 − τ1)− G0f (τ1 − τ2)︸ ︷︷ ︸

=−G0f∗ (τ2−τ1)


G0η(τ1)

= −J
2

4

∫ β

0
dτ1

∫ β

0
dτ2G0η(τ − τ2)Σ2.1

η (τ2 − τ1)G0η(τ1),

(5.15)
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where the self-energy is given by

Σ2.1
η (τ2 − τ1) = G0c(τ1 − τ2) [Π0f (τ2 − τ1) + Π0f∗(τ2 − τ1)] . (5.16)

As before there is a second possibility G(2.2)
η (τ) which corresponds to a correction where

τ1 and τ2 are exchanged and thus gives a factor 2 for the diagram. We conclude that
the final result is given by

Ση(τ) = −J
2

2
G0c(−τ) [Π0f (τ) + Π0f∗(τ)] . (5.17)

5.1.3. Dyson’s equation

The two self-energies are computed in appendix C.2 and the results can be used to
correct the two propagators Gf (τ) and Gη(τ). We remember in Fourier space Dyson’s
equation separates into a product which is given by

+= Σ(iωn)

η, f η, fη, f η, f

(5.18)
where the double dashed lines are the full propagators Gf (τ) or Gη(τ), respectively,
and the single dashed lines the free propagators G0f (τ) or G0η(τ). Dyson’s equation
can be written as

Gf,η(iωn) =
1

[G0f,η]
−1 (iωn)− Σf,η(iωn)

(5.19)

or after the analytical continuation iωn → ω + i0+ with retarded propagators as

GRf,η(ω) =
1

[GR0f,η]
−1(ω)− ΣR

f,η(ω)
. (5.20)

The imaginary parts of the retarded Green’s functions are given by

G
′′R
f (ω) =

Σ
′′R
f (ω)

[ω −B − Σ
′R
f (ω)− Σcf ]2 + [ΣR′′

f (ω)]2

G
′′R
η (ω) =

Σ
′′R
η (ω)

[ω − Σ′Rη (ω)]2 + [ΣR′′
η (ω)]2

.

(5.21)

The self-energies are plotted in Figure 5.1 where Σ
′′R
η (ω) = 0 for |ω| ≤ B which leads

to a cut in the magnetic susceptibility too.
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Figure 5.1.: In these two Figures the self-energies in presence of a magnetic field are shown. The
self-energy Ση is cut at |ω| ≤ B due to the magnetic field. In this plot we have chosen B = 0.005
and B/TK = 5 · 104. This will consequently cut the magnetic susceptibility too. The self-energy Σf
is anti-symmetric. From this it can be seen that for the real part the self-energy Σcf is important
to obtain correctly Σ

′R
f (0) which shows the importance of that diagram.
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5.2. Discussion of the magnetic susceptibility

In this section the modified propagators are used to discuss the magnetic susceptibilities
χ3(τ) = −〈Tτ [Sz(τ)Sz(0)]〉 and χ+−(τ) = −〈Tτ [S+(τ)S−(0)]〉. The spin operators
are replaced by Sz = Φη, S+ =

√
2Φf † and S− =

√
2Φf (see chapter 4) leading to

χ3(τ) = GΦ(τ)Gη(τ)

χ+−(τ) = 2GΦ(τ)Gf (τ).
(5.22)

The imaginary parts of these susceptibilities χ′′R3 and χ′′R+− are given by

χ
′′R
3 (ω) = −1

2
tanh

(
βω

2

)
G
′′R
η (ω)

χ
′′R
+−(ω) = − tanh

(
βω

2

)
G
′′R
f (ω).

(5.23)

The two needed self-energies for the propagators Gf and Gη are computed in ap-
pendix C.2 and are given by

Σ
′′R
η (ω) =− J2

4
ρ0

∫ D

−D

[
Π
′′R
0f (ω1 + ω) + Π

′′R
0f∗(ω1 + ω)

]
(sign(ω1 + ω)− sign(ω1)) dω1

Σ
′′R
f (ω) =− J2

4
ρ0

∫ D

−D

[
Π
′′R
0f (ω1 + ω) + Π

′′R
0η (ω1 + ω)

]
(sign(ω1 + ω)− sign(ω1)) dω1,

(5.24)

from which the real part of the self-energies can be obtained by applying the Kramers-
Kronig relation. The three polarization diagrams are given by

Π
′′R
0η (ω) = π

ρ0

2
sign(ω)Θ(D2 − ω2) (5.25)

Π
′′R
0f (ω) = πρ0Θ(ω −B)Θ(D2 − (ω −B)2) (5.26)

Π
′′R
0f∗(ω) = −πρ0Θ(−ω −B)Θ(D2 − (ω +B)2) (5.27)

The self-energy Σcf is given by

Σcf = −J
2

4

∫ β

0
dτG0c(τ)G0c(−τ)

= −J
2

4
ρ2

0

∫ D

−D
dω1

∫ D

−D
dω2

nF (ω1)− nF (ω2)

ω1 − ω2

= −J
2

4
ρ2

02

∫ D

−D

∫ 0

−D

1

ω1 − ω2

=
J2

4
ρ0 log(4).

(5.28)

The susceptibilities are shown in Figure 5.2. The plots of the susceptibilities will help
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Figure 5.2.: These two graphs show the magnetic susceptibilities calculated with by the DM-NRG
and using Majorana fermions. For the DM-NRG we used the same parameters as before and in the
graphs only the result for the broadening parameter b = 0.55 is given. The magnetic susceptibility
in the upper plot is cut for energies below B. The magnetic susceptibility in the lower plot has a
sharp peak at B which is not very well resolved by the NRG and the optimal b-broadening (b-trick)
was applied [55]

us to understand the role of the spin relaxation time for the T -matrix. We assert, that
the analytical result for 〈SzSz〉 does not describe energies below B. The analytical
result shows a sharp resonance for 〈S−S+〉 in the analytical calculation. This peak
can not be well resolved by the NRG. We applied the b-trick which fits the optimal
broadening parameter for each part of the whole spectrum which leads to a better
resolved peak [55]. From this point it can be seen that the DM-NRG overestimates the
width of the resonance in the T -matrix. To verify this the DM-NRG calculation should
be extended using z-averaging [54] and b-trick.

5.3. Spin relaxation time for the T -matrix

The spin relaxation time is included to the T -matrix thus the free propagators G0f and
G0η are replaced by the dressed propagators Gf and Gη and the polarization diagrams
are given by

Π
′′R
f,η(ω) = ρ0

∫ ∞

−∞
Θ(D2 − (ω1 − ω)2) [nF (ω1)− nF (ω − ω1)]G

′′R
f,η(ω1) (5.29)

from which the real part can be obtained from the Kramers-Kronig relation. Figure 5.3
shows the inclusion of the spin relaxation time in lowest order to the T -matrix and
it can be seen that the divergence is cut but the peaks stays narrow. This can be
understood from the susceptibility 〈S−S+〉 where it can be seen that the self-energy
the resonance stays narrow compared to the result of the DM-NRG. We conclude that
the self-energy helps us to cut the divergence but there are higher order diagram which
are important. The discrepancy is however hard to estimate because we have shown
that the NRG lacks resolution at the Zeeman split Kondo resonance.

74



0

0.05

0.1

0.15
−
π
ρ
0
T

′′
R

↑
(ω

)

10−6 10−4 10−2 100

ω/TK

RPA

NRG 0.55

RPA + self-energy

(a) anti-ferromagnetic

0

0.005

0.01

0.015

−
π
ρ
0
T

′′
R

↑
(ω

)

10−6 10−5 10−4 10−3 10−2 10−1

ω/TK

RPA

RPA + self-energy

(b) ferromagnetic

Figure 5.3.: This plot of the T -matrix shows that the divergence is cut or reduced but we have
to include more self-energy diagrams to describe the resonance for the anti-ferromagnetic Kondo
model where the DM-NRG result is likewise questionable. For the ferromagnetic Kondo model the
singularity vanishes after the inclusion of the spin relaxation time.

5.4. Summary

The discussion of the self-energy shows that the resonance of the T -matrix is obtained
too narrow by the RPA and too broad by the DM-NRG. Further, the inclusion of
the second-order self-energy to the T -matrix is in question because the RPA for the
T -matrix renormalized the Kondo coupling J and the self-energy is calculated with
free vertices. Nevertheless, it can bee seen that the spin relaxation time is impor-
tant to understand the transport-properties of a quantum dot. It helps us to cut the
divergence which is clearly a problem of using lowest order perturbation theory for
the self-energy [66, 67]. The analytical result can be improved by summing up more
self-energy diagrams.
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6. Conclusion

6.1. Summary

In this work we have shown how the Kondo effect can emerge in quantum dots leading
to an anomalous logarithmic increase of the conductance at low temperatures. In
particular, the magneto-conductance which was in the focus of this work has been
shown to correspond to the situation where a magnetic field is applied to the impurity.
For the discussion the relation between the conductance and the T -matrix was used.
The T -matrix of the Kondo model describes the spin dynamics of the impurity and
the spin dynamics has been expressed by Majorana fermion propagators with following
advantages

• Wick’s theorem which can not be applied directly to spin operators can be applied
to Majorana fermions.

• T -matrix can be expressed as a usual response function which makes the pertur-
bation theory clearer.

• No restrictions of the Hilbert space are needed as it is the case for Abrikosov
pseudo-fermions.

• Dyson’s equation allows to discuss the spin relaxation time.

It was further shown that the NRG was the first method to correctly describe the
cross-over regime in the Kondo model while all perturbative methods fail due to di-
vergence of the Kondo coupling J for low energies. In absence of a magnetic field the
NRG produces results agreeing qualitatively with experiments. The discussion of the
T -matrix at finite magnetic field raises the question of the reliability of the NRG. The
applied magnetic field defines through the Zeeman energy a second energy scale. It was
seen that the problem is that the NRG does not describe the transitions from the ground
state to higher excited states in the first few iterations where only high energies are de-
scribed [26]. Thus, a more generalized technique namely the DM-NRG was applied to
calculate the T -matrix at finite magnetic field where we used the DM-NRG code written
by Ö. Legeza et al. [25] and which can by found on http://www.phy.bme.hu/~dmnrg/.
Those results have been compared to the RPA result of the T -matrix which was ob-
tained by using the Majorana fermion diagrammatic with free propagators. The eval-
uation of the RPA result was done in two steps. First, the RPA was carried out in
absence of a magnetic field, where the result matched the poor man’s scaling result.
We have shown a systematic way of the evaluation of the RPA and then, in the second
step we applied this procedure to the T -matrix at finite magnetic field. This result
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was discussed for anti-ferromagnetic and then for ferromagnetic coupling J . For the
anti-ferromagnetic Kondo model we asserted:

• For max(B,ω)� TK the RPA agrees well with DM-NRG result except for ω ≈ B
where the resonances of the two methods do not agree. The resonance obtained by
the DM-NRG computation is a large resonance while the resonance obtained by
the RPA is very narrow one which additionally diverges. Furthermore, there are
not enough points in the DM-NRG run for ω ≈ B which leads to an overestimated
width of the resonance after the broadening of the obtained delta peaks in the
Lehman representation of the T -matrix. On the other hand, for the RPA free
propagators were used neglecting the spin relaxation time from which is expected
that it cuts the divergence and enlarges the peak.

• The RPA result does not match the critical magnetic field for the Zeeman splitting
which is a property of the anti-ferromagnetic Kondo effect.

• The RPA procedure neglects the particle-hole channel diagram which becomes
important for low energies. The problem is that the RPA yields an artefact for
low energies where the T -matrix is increasing again. It could be shown, however,
that this artefact in the RPA vanishes using an approximation for the particle-hole
channel.

Then, we compared the ferromagnetic Kondo model at finite magnetic field with the
underscreened S = 1 anti-ferromagnetic Kondo model. The following interpretation
exists for the underscreened Kondo model. In contrast to the screened S = 1

2 Kondo
effect where the spin of the impurity is fully screened by the spin of the conduction
electrons, the spin S = 1 can not be fully screened. It remains a S = 1

2 which is
ferromagnetically coupled to the spin of the conduction electrons. The discussion of
the underscreened Kondo model is motivated by its recent observation in molecular
transistors. It should be mentioned again that the ferromagnetic Kondo model can
be fully described by the perturbation theory because the Kondo coupling J does not
diverge during the renormalization. We concluded for the RPA and the DM-NRG for
the ferromagnetic Kondo model:

• The RPA and the DM-NRG show a Zeeman splitting which remains for B → 0.
The RPA result at finite magnetic field converges to the RPA result at zero
magnetic field. The splitting for any magnetic field is present because there is
no Kondo singlet which has first to be destroyed before it can be split. The
ferromagnetically coupled spin can be polarized for arbitrary small B.

• The T -matrix shows again a behaviour that is fast varying at ω ≈ B. The result
of RPA and the DM-NRG differ at ω ≈ B which was quite remarkable. The
problem is here as before that there are not enough points for energies in the
neighbourhood of B. Thus the peak is too broad in the DM-NRG. The neglected
spin relaxation time leads here to the obtained singularity in the RPA for ω = B.
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These results were compared with the results obtained from a experimental study of
the molecular transistor [32]. In this experiment it has been found that the splitting of
the spectral function begins for small B leading to a differential conductance which is
also split for B → 0. This is the same physics as the ferromagnetic Kondo model with
S = 1

2 .
In the end of the work the role of the spin relaxation time was discussed. It was shown

which diagrams have to be summed up in Dyson’s equation. In particular the first non-
vanishing diagram was summed up which was found in second order perturbation theory.
We concluded that the spin relaxation time cuts the divergences. But unfortunately
it is only weakly enlarged so that it does not match the DM-NRG result. During the
discussion of the magnetic susceptibilities it was shown, that the DM-NRG results at
finite magnetic field are too large and the RPA results too narrow. This underlines
that the behaviour is between the DM-NRG and the RPA result.

6.2. Outlook

We can mention several points here. The ferromagnetic Kondo model at finite mag-
netic field can help to understand new physics where the spin is underscreened. The
underscreened Kondo effect has also been found in spin S = 1 molecules by J.J. Parks
et al. [70] and might be important for the conductance of atomic nano-contacts [71].
The problem of the resolution of the DM-NRG should be further discussed. Therefore,

improved techniques of broadening can be used such as b-trick where an optimal broad-
ening parameter is found leading to better resolved resonances [55]. The results can be
further improved by using z-averaging where much more points are generated [54].
In the Majorana diagrammatics the role of the neglected particle-hole channel has to

be discussed in more detail. This diagram has to be summed up to make the calculation
equivalent to a one-loop renormalization group. Furthermore, the self-energy of the Ma-
jorana fermion is questionable since the inclusion seems to be uncontrolled. Thus, the
technique has to be studied more thoroughly where the focus should be on whether
there is a way to perform a RPA for the self-energy. This could avoid some inconsis-
tencies due to the inclusion of the self-energy in second order to the RPA. Recently, S.
Kehrein has been calculated the susceptibilities and the T -matrix in a magnetic field
for the non-equilibrium Kondo model [72]. The susceptibilities obtained by equilibrium
Majorana Green’s function can also be extended to a non-equilibrium calculation using
the Keldysh formalism.

78



A. Zero temperature Green’s functions
and Fermi liquid theory

In this appendix Green’s functions will be introduced and they will be related to
the Fermi liquid picture where quasi-particles have the same properties as the non-
interacting Fermi gas [35, 37]. The idea is that the interaction is switched on adiabati-
cally and that there is a one-to-one correspondence between the eigenstates of the free
and the interacting system. We are going to show how interactions modify the free
electrons and in which regime the Fermi liquid picture is valid.

A.1. Schrödinger, Heisenberg and Interaction picture

Here three different but well known representations of quantum mechanics are intro-
duced [41]. Since perturbation theory is carried out in the interaction picture, it is
important to give a short summary of them. In general, the idea is to solve the time-
dependent Schrödinger equation and to find the time-evolution of the eigenstates.

A.1.1. Schrödinger picture

The Schrödinger picture is useful for time-independent Hamiltonians. This point is
very important for the solution. The solution of the Schrödinger equation i∂t|ψ(t)〉 =
H|ψ(t)〉 is given by

|ψ(t)〉 = e−iHt|ψ(0)〉, (A.1)

where |ψ(0)〉 indicates the initial state begins. In this picture the states are time-
dependent and the operators, which are measured, may be time-dependent.

A.1.2. Heisenberg picture

In the Heisenberg picture all the time-dependence is transferred to the operators. This
transformation is done by

〈ψ1(t)|A|ψ2(t)〉 = 〈ψ1(0)| eiHtAe−iHt︸ ︷︷ ︸
A(t)

|ψ2(0)〉, (A.2)

where A can be any operator which is measured. Again, the Hamiltonian does not
depend on time and also the states do not depend on time any more. In this picture
one has to solve the Heisenberg equation which is given by

Ȧ(t) = i [H,A(t)] + (∂tA)(t). (A.3)

The last part is only non-zero when the operator A has an explicit time-dependence.
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A.1.3. Interaction picture

This picture will be useful for the Green’s function method. If the Hamiltonian H can
be separated into H = H0 + V (t) and the eigenstates of H0 are known, this picture is
very powerful. Further, the Hamiltonian H0 does not depend on time. The states and
operators are transformed by

|Ψ(t)〉 = eiH0t|ψ(t)〉
AI(t) = eiH0tAe−iH0t

(A.4)

Using this transformation for the Schrödinger equation the time evolution is given by

i∂t|Ψ(t)〉 = VI(t)|Ψ(t)〉. (A.5)

After this transformation, only the interaction Hamiltonian V (t) affects the time evo-
lution of the transformed states. The solution of equation (A.5) is given by

|Ψ(t)〉 = U(t, t0)|Ψ(t0)〉

with

U(t, t0) =
∞∑

n=0

1

n!

(
1

i

)n ∫ t

t0

dt1 · · ·
∫ t

t0

dtnTt(VI(t1) · · ·VI(tn)) = Tt

(
e
−i
∫ t
t0
VI(t1)dt1

)
,

(A.6)

where Tt is the time-ordering operator, which occurs because time dependent Hamiltoni-
ans do not commutate at different times. Later, equation (A.6) will be used to develop
the Green’s function in a perturbation series. For this perturbation series, U(t, t0) has
some important properties:

U †(t, t0) = U−1(t, t0) = U(t0, t)

U(t, t1)U(t1, t0) = U(t, t0).
(A.7)

A.2. Green’s functions

The classical Green’s function occurs the first time in classical mechanics and classical
electrodynamic where the driven harmonic oscillator with friction or Poisson’s equation
is solved [37]. For the Schrödinger equation the Green’s function G(r1, t1, r2, t2) is
defined by the property

[i∂t −H(r1)]G(r1, t1, r2, t2) = δ(r1 − r2)δ(t1 − t2), (A.8)

where H(r1) is given by
H(r1) = H0(r1) + V (r1). (A.9)
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The full Hamiltonian is separated into a part H0, which is exactly solvable and the
interaction part V which is treated as perturbation. If the Green’s function in A.8 is
known, the solution for the Schrödinger equation

[i∂t −H0(r1)− V (r1)]Ψ(r1, t1) = 0 (A.10)

is given by the following convolution

Ψ(r1, t1) = Ψ0(r1, t1) +

∫
dt2

∫
dr2G(r1, t1, r2, t2)V (r2)Ψ0(r2, t2), (A.11)

where Ψ0(r1, t1) is the solution for the exact solvable part of the Hamiltonian. Unfor-
tunately, G(r1, t1, r2, t2) can not be found exactly in general. The retarded Green’s
function GR(r1, t1, r2, t2) is defined by

GR = −iΘ(t1 − t2)〈0|
{

Ψ(r1, t1),Ψ†(r2, t2)
}
|0〉, (A.12)

where Ψ†(Ψ) are fermion field creation (destruction) operators, respectively. They
create (destroy) an electron at time t at position r. Using equation of motion theory
and the anti-commuation rule of fermions{

Ψσ1(r1, t1),Ψ†σ2(r2, t2)
}

= δ(r1 − r2)δ(t1 − t2)δσ1,σ2
{

Ψ(†)
σ1 (r1, t1),Ψ(†)

σ2 (r2, t2)
}

= 0,
(A.13)

one can see that equation (A.12) solves equation (A.8). In the case of free fermions,
where the Hamiltonian H is bilinear H0 =

∑
kσ εkc

†
kσckσ, the retarded Green’s function

in Fourier-space G(kσ, ω) is given by

GR0 (kσ, ω) =
1

ω − εk + i0+
. (A.14)

The fermion field operators are related to the given fermion operators via a Fourier
transformation. The important corresponding spectral function A0(kσ, ω) and the nor-
malized spectral function ρ0(kσ, ω) are given by

A0(kσ, ω) = −2G
′′R
0 (kσ, ω) = 2πδ(ω − εk)

ρ0(kσ, ω) = − 1

π
G
′′R
0 (kσ, ω) = δ(ω − εk),

(A.15)

where G′′R = Im(GR). The spectral functions is a very sharp resonance for energy εk
of the particle. If scattering processes are switched on, represented by the interaction
V (r) above, the fermion particles will not stay in the state k. They will be scattered
out of this state so that again a relaxation time τ is introduced which broadens the
sharp peak. The retarded Green’s function GR(kσ, ω) with interaction is then given by

GR(kσ, t) ≈ −iΘ(t)e−iεkte−
t
τ . (A.16)

The corresponding spectral function is given by the following broadened form

A(kσ, ω) =
2
τ

(ω − εk)2 + ( 1
τ )2

. (A.17)
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A.3. Perturbation theory for the Green’s function

In this section it is shown how the Green’s functions can be expanded into a perturba-
tion series and that the Green’s functions of the interacting system can be expressed
by free Green’s functions with the help of the adiabatic principle. Further it will be
shown, how the relaxation time of the quasi-particles can be evaluated systematically
by using Dyson’s equation.

A.3.1. Adiabatic principle

For the beginning the potential V (t) is assumed to be spin-independent, i.e. spin-flip
processes are not possible. On this way, the introduction of Feynman diagrams is easier.
In many-particle quantum mechanics, the full Green’s function G is defined by

G(1, 2) = −i〈Φ0|Tt
(
ψ(1)ψ†(2)

)
|Φ0〉, (A.18)

where the abbreviation 1 = {r1, t1, σ1} is introduced. ψ(1) destroys a particle at
position r1 at time t1 and spin σ1. Likewise 2 = {r2, t2, σ2}, so that ψ†(2) creates a
particle at position r2 at time t2 and with spin σ2. The operators in equation (A.18)
are given in the Heisenberg picture and have the same properties as in equation (A.13).
The Green’s function can be interpreted as a propagator, giving the probability for a
transition of the particle from 2 to 1. The perturbation series of the Green’s function
is given by [35, 36, 38]

G(1, 2) =
〈Φ0|Tt

(
U(∞,−∞)Ψ(1)Ψ†(2)

)
|Φ0〉0

〈φ0|U(∞,−∞)|φ0〉0

=
〈Φ0|

∑∞
n=0

(−i
n!

)n ∫∞
−∞ dt1 · · · dtnTt

(
VI(t1) · · ·VI(tn)Ψ(1)Ψ†(2)

)
|Φ0〉0

〈φ0|
∑∞

n=0

(−i
n!

)n ∫∞
−∞ dt1 · · · dtnTt (VI(t1) · · ·VI(tn))) |Φ0〉0

,

(A.19)

where the expansion for the time-evolution operator in equation (A.6) was used, and it is
important to mention that the operators are all taken in the interaction representation.
The remarkable point is that the averages are taken in the system without interactions.
This comes from the adiabatic principle which states that the ground-state of a non-
degenerated system can not make transitions so that the ground-state of the interacting
and the free system only differ by a phase factor. In principle, this expansion for the
Green’s function can be done for any correlation of two operators, so that the fermion
creation and destruction operator in the definition are replaced. For example, one can
calculate a spin-spin correlator 〈Φ0|S(t)S(0)|Φ0〉.

A.3.2. Feynman diagrams

We want to introduce Feynman diagrams using a spin-independent interaction potential
which is given by

VI(t) =
1

2

∫
dr1dr2Ψ†(r1, t1)Ψ†(r2, t2)V (r1 − r2)Ψ(r2, t2)Ψ(r1, t1), (A.20)
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where V (r1 − r2) is the interaction potential which enters the Schrödinger equation.
Further, the spin-indices were neglected due to the spin-independent VI(t). Before
Feynman diagrams are discussed, Wick’s theorem is introduced, which states that the
average over 2n operators can be expressed by n averages over two operators [36, 38].
The following example should give the idea. The average of six operators, which occurs
with the given interaction potential in first order of the expansion in equation (A.19)

〈Tt(Ψ†(a)Ψ†(b)Ψ(b)Ψ(a)Ψ(1)Ψ†(2))〉 = 〈Tt(Ψ†(a)Ψ†(b)Ψ(b)Ψ(a)Ψ(1)Ψ†(2))〉
= G0(a, b)G0(b, a)G0(1, 2),

(A.21)

where the 0 indicated the free propagators. Further, this example shows the idea of the
linked cluster theorem. If the operators Ψ(1) and Ψ†(2) are contracted, one can only
contract operators of the time-evolution series U(∞,−∞). But this contractions also
occur in the denominator of the expansion equation (A.19), so that the integrals are
cancelled out and only the free propagator G0(1, 2) contributes. Finally, these two rules
enable one two draw Feynman diagrams and to find the concerning Feynman rules and
one can verify, that for the given interaction equation (A.20) the factor 1

n! is cancelled
out. Another important rule is, that each closed fermion loop contributes a factor (−1),
which can be seen in the following example

〈Ψ†(1)Ψ(1)Ψ†(2)Ψ(2)Ψ†(3) · · ·Ψ(n− 1)Ψ†(n)Ψ(n)〉

=〈Ψ†(1)Ψ(1)Ψ†(2)Ψ(2)Ψ†(3) · · ·Ψ(n− 1)Ψ†(n)Ψ(n)〉,
(A.22)

because the first and the last operator have to be anti-commuted in order to get the
propagator G0(n, 1). The interaction potential U(r1 − r2) is defined as U1,2 = U(r1 −
r2)δ(t1− t2). Doing so leads to different contributions to the perturbation series. Each
order can be represented graphically wih Feynman diagrams [35, 37, 38] using the
following rules:

1
U(2, 1) =

2

1
G0(2, 1) =

2

1
G(2, 1) =

2

. (A.23)

In Figure A.1 the popular Hartree and Fock contributions in first order perturbation
theory are given. They are obtained using the given rules above. Also it is integrated
over internal vertices. Further, if the system is invariant under translations, the Green’s
function can be defined in Fourier-space. This leads to conservation of momentum and
energy at each vertex, which is more intuitive and to very similar diagrams.
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4 12

3

1342
+HF =

Figure A.1.: This Figure shows the contributions in first order perturbation theory, the Hartree term
on the left hand side and Fock term on the right hand side.

A.3.3. Dyson’s equation and Fermi liquid theory

Dyson’s equation sums irreducible diagrams of different orders up to infinity. For ex-
ample in Figure A.2 the Hartree diagram of first order perturbation theory is summed
up. In the series, the factor of a free Green’s function and the Hartree diagram occurs.
The result is a geometric series. To do this more generally, the concept of irreducible
diagrams is introduced. A reducible diagram is the third contribution to the series in
Figure A.2, because one can cut it into two Hartree diagrams. An exampled of an
irreducible diagram is a diagram, which can not be cut into less complex diagrams. For
instance the given Hartree and the given Fock diagram are irreducible (see Figure A.1).
Figure A.3 shows the most important second order irreducible diagrams. All irreducible
diagrams can be summed up to infinity. An irreducible diagram is called Σ and equa-
tion (A.24) shows, how this summation can be done systematically. In principle, the
full Green’s function can be obtained on this way, because a lot of diagrams are summed

+ + +G = · · ·

Figure A.2.: The Hartree diagram of first order perturbation theory is summed up to infinity.
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+Σ(2) =

Figure A.3.: This Figure shows two irreducible diagrams in second order. The first one is a Hartree-
type diagram, also called sunrise-diagram and the second is a Fock-type diagram.

up. The full Green’s function is given by

= + Σ + Σ Σ + · · ·

= + .Σ

(A.24)
This graphical equation leads in frequence space to the important algebraic Dyson
equation [37], which is given by

G = G0 +GΣG0 =
1

G−1
0 − Σ

. (A.25)

Σ is called self-energy. The free retarded Green’s functionGR0 is given in equation (A.14).
The full retarded Green’s function is given by

GR(kσ, ω) =
1

w − εk − ΣR(k, ω)

=
1

w − εk − Σ′R(k, ω)− iΣ′′R(k, ω)
,

(A.26)

where Σ
′R denotes the real part and Σ

′′R the imaginary part of the retarded self-energy.
The imaginary part of the retarded Green’s function is related to the spectral func-
tion. The real part shifts the position of the pole. This can be understood as a
mass-renormalization of the particles due to the interaction. The imaginary part deter-
mines the life-time of the quasi-particles and the irreducible diagrams in second order
give the first contribution to this life-time. It can be shown that these diagrams lead
to [35, 37]

Σ
′′R ∝ E2

k, (A.27)

where the renormalized mass enters the energy-dispersion Ek. The energy-dispersion
helps us to find the range where the Fermi liquid picture is valid. The picture works,
when the quasi-particle peaks is not broadened too much so that the quasi-particle have
a exact energy-dispersion which can be used to calculate the properties of the Fermi gas.
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0

1

ρ
(ω

)
=
g b
(ω

)
+
ρ
q
p
(ω

)

Ek

quasiparticle (qp) peak ρqp(ω) ≈ Zkδ(ω − E~k)

incoherent background gb(w)

qp-weight

Zk

Figure A.4.: This Figure shows the quasi-particle peak centered at Ek with weight 0 < Zk < 1. The
incoherent background ensures that the spectral function remains normalized.

In other words if the weight Zk is in the vicinity of 1 the Fermi liquid picture works well.
It turns out for the Kondo model where a spin-dependent interaction term appears that
the ground-state is a local Fermi liquid liquid which can be seen from typical properties.
For instance a constant susceptibility or the T 2 term in the conductance which indicates
the relaxation time of the quasi-particles.
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B. Equations of motion technique and
the T -matrix

In this section the T -matrix is derived by using the equations of motion technique for
the zero-temperature Green’s function of the conduction electrons. The aim is to bring
the Green’s function of the conduction electrons to the equation which determines the
T -matrix given by

GRckk′σ(ω) = GR0kcσ(ω)δk,k′ +GR0kcσ(ω)T Rkk′σ(ω)GR0k′cσ(ω) (B.1)

From that result, the T -matrix can be transformed to imaginary-times. The full
Green’s function Gck,k′σ(t− t′) of the conduction electrons is determined by the Kondo-
interaction and G0ckσ describes free conduction electrons. The full Green’s function is
given by

G
ckk′σ

(t− t′) = −i
〈
Tt

[
ckσ(t)c†

k′σ
(t′)
]〉

= −iθ(t− t′)
〈
ckσ(t)c†

k′σ
(t′)
〉

+ iθ(t′ − t)
〈
c†
k′σ

(t′)ckσ(t)
〉
,

(B.2)

where Tt is the time ordering operator and the creation and annihilation operators are
given in the Heisenberg representation. The equation of motion for the Green’s function
of the conduction electrons is given by

i∂tGckk′σ(t− t′) = δ(t− t′)
〈{

ckσ(t), c†
k′σ

(t)
}

︸ ︷︷ ︸
δkk′

〉
+ i
〈
T
[[
H, ckσ

]
(t)c†

k′σ
(t′)
]〉
, (B.3)

where anti-commutation rules for fermions are used. The two following commutation-
rules for any operators A, B, C and D will be useful:

[AB,C] = A{B,C} − {A,C}B

and

[ABC,D] = A{BC,D} − {A,D}BC.
(B.4)

The Kondo-Hamiltonian HK = H0 + HI is given by the sum of a bilinear and an
interaction term

HK =
∑

kσ

εkc
†
kσckσ

︸ ︷︷ ︸
H0

+
J

2

∑

k1k2σ1σ2

c†k1σ1τ σ1σ2ck2σ2 · S
︸ ︷︷ ︸

HI

.
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The first commutation-rule can be used to derive the commutator of ckσ and the bilinear
part H0 of the Kondo-Hamiltonian

[
H0, ckσ

]
= −εkckσ, (B.5)

while the commutator of the interaction part with ckσ can be derived using the second
rule

[
HI, ckσ

]
=
J

2

∑

k2k1σ1σ2

τ σ2σ1

[
c†k2σ2ck1σ1 · S, ckσ

]

=
J

2

∑

k2k1σ1σ2

τ σ2σ1c
†
k2σ2

{
ck1σ1 · S, ckσ

}

︸ ︷︷ ︸
=0

− J

2

∑

k2k1σ1σ2

τ σ2σ1

{
c†k2σ2 , ckσ

}

︸ ︷︷ ︸
=δk2kδσ2σ

ck1σ1 · S

= −J
2

∑

k1σ1

τ σσ1ck1σ1 · S

= −J
2

∑

σ1

τ σσ1c0σ1
· S with

∑

k

ckσ = c0σ.

(B.6)

The anti-commutator in the first step disappears due to [ckσ,S] = 0. These two
different commutators can be used to write down an intermediate equations of motion
for the full Green’s function which is given by

(
i∂t − εk

)
G
ckk′σ

(t− t′) = δ(t− t′)δ
kk′
− iJ

2

∑

σ1

τ σσ1 ·
〈
Tt

[
c0σ1

(t)S(t)c†
k′σ

(t′)
]〉
.

(B.7)

The aim of every equation of motion-derivation is to find a closed set of equation. It
turns out that this can be achieved by using the derivation with respect to t′ in equation
equation (B.7) which is given by

i∂t′i
〈
Tt

[
c0σ1

(t)S(t)c†
k′σ

(t′)
]〉

=
〈{
c0σ1

(t)S(t), c†
k′σ

(t′)
}〉

δ(t− t′)− i
〈
Tt

[
c0σ1

(t)S(t)
[
H, c†

k′σ

]
(t′)
]〉
.

(B.8)

Again two different commutators contribute to the equation of motions where the com-
mutator with the bilinear part of the Kondo-Hamiltonian with c†kσ is given by

[
H0, c

†
k′σ

]
= ε

k′
c†
k′σ
, (B.9)
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while the commutator of c†kσ with the interaction term of the Kondo-Hamiltonian reads

[
HI, c

†
k′σ

]
=
J

2

∑

k2kσ2σ1


τ σ2σ1c

†
k2σ2

{
ckσ1 · S, c

†
k′σ

}

︸ ︷︷ ︸
δkk′δσσ1 ·S

−τ σ2σ1
{
c†k2σ2 , c

†
k′σ

}

︸ ︷︷ ︸
=0

ckσ1 · S




=
J

2

∑

k2σ2

τ σ2σc
†
k2σ2
· S

=
J

2

∑

σ2

τ σ2σc
†
0σ2
· S.

(B.10)

The equation of motion for the second Green’s function is given by

(
i∂t′ + ε

k′

)
i
〈
Tt

[
c0σ1

(t)S(t)c†
k′σ

(t′)
]〉

=

= δ(t− t′) 〈S〉 δσσ1 − i
J

2

∑

σ2

〈
Tt

[
c0σ1

(t)S(t)τ σ2σc
†
0σ2

(t′) · S(t′)
]〉 (B.11)

The imaginary part of the retarded T -matrix is related to the conductance of the
quantum dot and therefore only the part where t > t

′ is taken. Furthermore, the
T -matrix in dependence of energies is obtained with the Fourier transformation:

FR(ω) = −i
∫ ∞

−∞
d(t− t′)θ(t− t′)F (t)eiω(t−t′)eη(t−t′), (B.12)

where eηt is an infinitesimal small factor which regularizes the integral and represents
the causality of the correlation function. The derivation with respect to t gives ω + iη
and that with respect to t′ gives −ω − iη which leads to a closed set of equations in
dependence of energy ω:

(
ω + iη − εk

)
GR
ckk′σ

(ω) = δ
kk′

+
J

2

〈〈
τ σσ1 · S(t)c0σ1

(t); c†
k′σ

(t′)
〉〉

and
(
ω + iη − ε

k′

)〈〈
c0σ1

(t)S(t); c†
k′σ

(t′)
〉〉

=

〈S〉 δσσ1+
J

2

〈〈
c0σ1

(t)S(t); τ σ2σc
†
0σ2

(t′) · S(t′)
〉〉

,

(B.13)
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where 〈〈. . . 〉〉 indicates the Fourier transformation of the retarded part of the T -matrix.
Solving this leads to the T -matrix which is given by

GR
ckk′σ

(ω) = GR0ck(ω)δ
kk′

+
J

2
GR0ck(ω)

(
〈Sz〉+

J

2

〈〈
c0σ1

(t)τ σσ1 · S(t); c†0σ2(t′)τ σ2σ · S(t′)
〉〉)

︸ ︷︷ ︸
=Tσ(ω) 2

J

GR0ck′(ω),

(B.14)

where the free Green’s function of the conduction electrons is given by

GR0ck(ω) =
1

ω − εk + i0+
(B.15)

The time-ordered T -matrix can be read-off from these equations and is given by

Tσ(t) = −J
2
〈Sz〉 − iJ

2

4

〈
Tt

[
c0σ1

(t)τ σσ1 · S(t); c†0σ2(0)τ σ2σ · S(0)
]〉

(B.16)

and for imaginary-times it is given by

Tσ(τ) = −J
2
〈Sz〉 − J2

4

〈
Tτ

[
c0σ1

(τ)τ σσ1 · S(τ); c†0σ2(0)τ σ2σ · S(0)
]〉
, (B.17)

where Tτ is the imaginary-time ordering symbol.
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C. Polarization diagrams and
self-energies

In this appendix the polarization diagrams and the self-energies are calculated for both
the cases in absence and presence of a magnetic field B.

C.1. Polarization diagrams

In this chapter the polarization diagrams are calculated which provide the main contri-
bution to random phase approximation for the T -matrix. We will distinguish between
the absence and the presence of a magnetic field B. For the computations of the dia-
grams we will use the introduced Matsubara Green’s function technique from chapter 3.
The definitions for the Fourier transformation are given by

GAB(τ) =
1

β

∑

ν1

e−iν1τGAB(iν1)

GAB(iν) =

∫ β

0
dτGAB(τ).

We will also use the analytical continuation in the following form

GAB(iωn) = − 1

π

∫ ∞

−∞
dω1G

′′R
AB(ω1)

1

iν1 − ωn
,

which has the advantage that we only have to evaluate the Matsubara sum over simple
poles using equation (3.13).

C.1.1. Polarization diagram for B = 0

The polarization diagram in the absence of a magnetic field is given by

= Π0η(τ)= G0η(τ)G0c(τ).
τ 0

η (C.1)

In this equation the local conduction electron propagator G0c(iωn) occurs which is given
by

G0c(iωn) =

∫ ∞

−∞
dε

ρ(ε)

iωn − ε
,
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where ρ(ε) is the density of states of the electrons which is given by a flat band

ρ(ε) =
1

2D
Θ(D2 − ε2) = ρ0Θ(D2 − ε2).

The integral
∫
dε occurs due to the local Kondo-interaction term. The free Majorana

fermion propagator G0η(iωn) is given by

G0η(iωn) =
1

iωn

The corresponding retarded propagators can be obtained by applying the analytical
continuation rule where the Matsubara frequency is replaced by iωn → ω + 0+. Us-
ing the introduced Matsubara formalism for Majorana fermions from chapter 3 the
polarization diagram reads

Π0η(iωb) =

∫ β

0
dτeiωbτG0η(τ)G0c(τ)

=

∫ β

0
dτeiωbτ

1

β2

∑

ν1,ν2

G0η(iν1)G0c(iν2)e−iν1τe−iν2τ

=
1

β

∑

ν1

G0η(iν1)G0c(iωb − iν1)

= − 1

π2

∫ ∞

−∞
dω1

∫ ∞

−∞
dω2 G

′′R
0η (ω1)G

′′R
0c (ω2)

︸ ︷︷ ︸
=π2δ(ω1)ρ0Θ(D2−ω2

2)

1

β

∑

iν1

1

iν1 − ω1

1

iν1 − iωb + ω2

︸ ︷︷ ︸
nF (ω1)−nF (−ω2)

ω1−iωb+ω2

= −ρ0

2

∫ ∞

−∞
dω2 (1− 2nF (−ω2))︸ ︷︷ ︸

tanh
(
−βω2

2

)
1

−iωb + ω2
Θ(D2 − ω2

2).

(C.2)

Performing the analytical continuation iωb → ω + i0+ in the limit temperature T → 0
and using 1

x±i0+ = P∓iπδ(x) leads to the retarded polarization diagram ΠR
0η

ΠR
0η(ω) =

ρ0

2
P

∫ D

−D
dω2

sign(ω2)

ω + ω2
+ iπ

ρ0

2
sign(ω)Θ(ω2 −D2)

=
ρ0

2
log

(∣∣∣∣
ω2 −D2

ω2

∣∣∣∣
)

+ iπ
ρ0

2
sign(ω)Θ(ω2 −D2),

(C.3)

where tanh(βx) = sign(x) for T → 0 and δ(ω − ω2) were used.

C.1.2. Polarization diagram for B 6= 0

The polarization diagram for a finite magnetic field can be obtained directly from
equation C.2 when the Majorana fermion propagator G0η(τ) is replaced by G0f (τ)
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which is given by

G0f (iωn) =
1

iωn −B
. (C.4)

Doing so yields

Π0f (iωb) = − 1

π2

∫ ∞

−∞
dω1

∫ ∞

−∞
dω2 G

′′R
0f (ω1)G

′′R
0c (ω2)

︸ ︷︷ ︸
=π2δ(ω1−B)ρ0Θ(D2−ω2

2)

1

β

∑

iν1

1

iν1 − ω1

1

iν1 − iωb + ω2

︸ ︷︷ ︸
nF (ω1)−nF (−ω2)

ω1−iωb+ω2

= −ρ0

∫ ∞

−∞
dω2 (nF (B)− nF (−ω2))︸ ︷︷ ︸

−nF (−ω2)

1

B − iωb + ω2
Θ(D2 − ω2

2).

(C.5)

In the limit temperature T → 0 the Fermi-distribution function is given by1 nF (−ω2) =
Θ(ω2) and the analytical continuation iωb → ω + i0+ giving δ(B − ω + ω2) leads to

ΠR
0f (ω) = ρ0 P

∫ D

0

dω2

B − ω + ω2
+ iπρ0Θ(ω −B)Θ(D2 − (ω −B)2)

= ρ0 log

(∣∣∣∣
B − ω +D

B − ω

∣∣∣∣
)

+ iπρ0Θ(ω −B)Θ(D2 − (ω −B)2).

(C.6)

In the next chapter the polarization diagram Π0f∗ becomes important to calculate the
self-energy Ση in the presence of a magnetic field. In this case we have to replace the
propagator G0f by G0f∗ which is given by

G0f∗(iωn) =
1

iωn +B
. (C.7)

This leads to the polarization diagram

Π0f∗(iωb) = −ρ0

∫ ∞

−∞
dω2 (nF (−B)− nF (−ω2))︸ ︷︷ ︸

1−nF (−ω2)

1

−B − iωb + ω2
Θ(D2 − ω2

2), (C.8)

and the retarded polarization diagram is given in this case by

ΠR
0f∗(ω) = −ρ0 P

∫ 0

−D

dω2

−B − ω + ω2
− iπρ0Θ(−ω −B)Θ(D2 − (ω +B)2)

= ρ0 log

(∣∣∣∣
B + ω +D

B + ω

∣∣∣∣
)
− iπρ0Θ(−ω −B)Θ(D2 − (ω +B)2).

(C.9)

C.2. The self-energies

In this chapter the self-energies are calculated in the absence and presence of a magnetic
field. The self-energies are used to discuss the spin relaxation time in the magnetic
susceptibility and in the T -matrix.

1We mention that the Fermi level εF is put to zero (particle-hole-symmetry).
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C.2.1. Self-energy for B = 0

In chapter 3 it is shown that the self-energy Ση(τ) in the absence of a magnetic field is
given by

Ση(τ) = −J2G0c(−τ)Π0η(τ). (C.10)

Performing the Fourier transformation gives

Ση(iωn) = −J2

∫ β

0
dτeiωnτ

1

β2

∑

ν1,ωb

G0c(iν1)Π0η(iωb)e
iν1τe−iωbτ

= −J2 1

β

∑

ν1

G0c(iν1)Π0η(iν1 + iωn)

= −J2 1

π2

∫ ∞

−∞
dω1

∫ ∞

−∞
dω2G0c(ω1)Π0η(ω2)

× 1

β

∑

ν1

1

iν1 − ω1

1

iν1 + iωn − ω2
︸ ︷︷ ︸

=
nF (ω1)+nB(ω)

ω1+iωn−ω2

= −J2 1

2π2

∫ ∞

−∞
dω1

∫ ∞

−∞
dω2G0c(ω1)Π0η(ω2)

2nF (ω1)− 1 + 1 + 2nB(ω2)

ω1 − ω2 + iωn
.

(C.11)

We perform again the analytical continuation iωn → ω + i0+ giving a δ-function to
obtain the retarded self-energy. Further, rewriting the fermionic and bosonic distribu-
tion function using 1− 2nF (x) = tanh(x/2) and 1 + 2nB(x) = coth(x/2) and using the
polarization diagram Π

′′R
0η (ω) = π ρ02 sign(ω)Θ(ω2 −D2) leads to the imaginary part of

the retarded self-energy Σ
′′R
η given by

Σ
′′R
η (ω) = −J

2

2
ρ0

∫ ∞

−∞
dω1

∫ ∞

−∞
dω2δ(ω1 − ω2 + ω)

×Θ(D2 − ω2
1)Π

′′R
0η (ω2)

[
coth

(
βω2

2

)
− tanh

(
βω1

2

)]

= −J
2

2
ρ0

∫ D

−D
dω2Π

′′R
0η (ω2)

[
coth

(
βω2

2

)
− tanh

(
β(ω2 − ω)

2

)]

= −J
2

4
ρ2

0π

∫ D

−D
dω2

[
coth

(
βω2

2

)
− tanh

(
β(ω2 − ω)

2

)]

︸ ︷︷ ︸
=sign(ω1+ω)−sign(ω1) for T→0

Θ(D2 − ω2
2) sign(ω2)

= −J
2

4
ρ2

0π

∫ D

−D
dω2 [sign(ω2)− sign(ω2 − ω)] sign(ω2)

∝ −J
2

4
ρ2

0π|ω|Θ(D2 − ω2),

(C.12)
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which is called Korringa-term. The real part can be obtained by using the Kramers-
Kronig relation

Σ
′R
η (ω) =

1

π
P

∫ ∞

−∞

Σ
′′R
η (ω1)

ω1 − ω
dω1. (C.13)

The imaginary part of the self-energy is proportional to ω. Using this and

Σ
′R
η (ω) ∝ P

∫ b

a

ω1

ω1 − ω
dω1 =

[
ω log(ω1 − ω) + ω1

]a
b
. (C.14)

the real-part can be calculated. The self-energy ΣR
η is shown in Figure 3.4.

C.2.2. Self-energies for B 6= 0

The self-energies Ση and Σf can be calculated with the help of equation (C.12) and are
given by

Σf (τ) = −J
2

2
G0c(−τ) [Π0f (τ) + Π0η(τ)]

Ση(τ) = −J
2

2
G0c(−τ) [Π0f (τ) + Π0f∗(τ)] .

(C.15)

Combining those two equations leads to

Σ
′′R
η (ω) =− J2

4
ρ0

∫ ∞

−∞

[
Π
′′R
0f (ω2) + Π

′′R
0f∗(ω2)

]
,

× (sign(ω2)− sign(ω2 − ω)) Θ(D2 − (ω2 − ω)2)dω1

Σ
′′R
f (ω) =− J2

4
ρ0

∫ ∞

−∞

[
Π
′′R
0f (ω2) + Π

′′R
0η (ω2)

]

× (sign(ω2)− sign(ω2 − ω)) Θ(D2 − (ω2 − ω)2)dω1.

(C.16)

The real part can be obtained by using equation (C.13).
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D. List of Symbols

Symbol Meaning

P Principle value from 1
x±i0+ = P 1

x ∓ iπδ(x)

Tσ Transmission matrix which describes the tunneling of elec-
trons through the quantum dot

G Conductance of the quantum dot

GAB(τ, τ0) Matsubara Green’s function of the two operators A and B
(see chapter 3)

sign(x) Signum-function: returns 1 for x ≥ 0 and -1 for x < 0

Θ(x) Theta-functions: returns 1 for x ≥ 0 and 0 for x < 0

nF (ω) Fermi-distribution: nF (ω) = 1/(exp(β(ω − µ) + 1)

nB(ω) Bose-distribution: nB(ω) = 1/(exp(β(ω − µ)− 1)

β 1
T with temperature T

iωb bosonic Matsubara frequencies

iωn, iνj for j ∈ N fermionic Matsubara frequencies

η , Φ Majorana fermions η and independent fermionic field Φ

S, τ Spin operators Sx, Sy, Sz and Pauli matrices τx, τy, τ z

written as vector

S± = Sx ± iSy Spin ladder operators which increase or decrease the spin
quantum number by one

G0η, Gη Free and full Majorana fermion propagator (doubled and sin-
gle dashed lines in diagrammatics)
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f, f † Dirac fermions composed of Majorana fermions

G0f , G0f propagator of the Dirac fermions f, f †

G0c free local conduction electron propagator (represented by a
solid line in diagrammatics)

Π0η, Π0f polarization diagrams given by G0c(τ)G0η,f (τ)

DM-NRG Density Matrix Numerical Renormalization Group

NRG Numerical Renormalization Group

RPA Random Phase Approximation

2DEG two dimensional electron gas

Vg, Vb Gate voltage which allows to control the number of electrons
on the dot and bias voltage which defines a potential differ-
ence between the left and right lead

Re(FR(x)) = F
′R(x)

Im(FR(x)) = F
′′R(x)

Real part F ′ and imaginary part F ′′ of a retarded correlation
function F related by the Kramers-Kronig relation given by

F
′R(x) =

1

π

∫ ∞

−∞
dx1

F
′′R(x1)

x1 − x

GR(ω) GR0 full and free retarded Green’s functions

ρ0 = 1
2D flat band approach of the spectral function

ρ(ω) = ρ0Θ(D2 − ω2)

Tτ , Tt The imaginary time τ ordering and real time t ordering oper-
ator

U(τ, τ0), U(t, t0) imaginary time and real time evolution operator

Ση, Σf Self-energies

HZ Zeeman term in Kondo Hamiltonian

97



HK Kondo Hamiltonian

H0 The non-interacting term of the Kondo Hamiltonian

HI Interaction term of the Kondo Hamiltonian (vertices are rep-
resented by dots in the diagrammatics)

HD Describes the energy levels and interactions of the quantum
dot

HL;R Describes the non-interaction electrons in the reservoirs cou-
pled to the quantum dot

HT Describes coupling between the reservoirs and the quantum
dot with tunneling amplitude t leading to the hybridization
Γ
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