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Topic: some effects of charged impurities in metals

Some advice and guidelines:

• You can use your manuscript notes from the lecture and the tutorial, but no book, computer, or phone

• Address first the questions that you feel confident about

• All questions (and sub-questions) are independent of each other, do not get stuck

• Write clearly and highlight the important results. Only a correct argumentation will give full points

• This 4 pages exam is too long, do not worry if you did not complete all the questions (but try your best)

• Write your name and page number on each page, and indicate the total number of pages on page 1

• ℏ = 1 is set throughout

1 General questions

Your answers to these general questions do not require any calculations. A few sentences are enough for each
question. You can add drawings to illustrate your answers.

1. Consider free electrons moving in a periodic lattice potential, without any scattering mechanism. Sketch a
typical density of states (versus energy), distinguishing conducting from non-conducting regions. What is the
value of the conductivity as the chemical potential moves in those different regions?

2. List three physical mechanisms that are responsible for the scattering of electrons in metals. Upon which
approximation can one add up the various scattering rates τ−1 associated to these different mechanisms?

3. Sketch the spectral function ρ(k, ω) in a Fermi liquid and indicate how the scattering rate τ−1 appears in
this curve

4. Sketch the low temperature behavior of the resistance in an interacting Fermi liquid in which static disorder
is also present (we do not consider here dynamical Kondo impurities or phonons)

2 X-ray edge spectrum in presence of a single “core” impurity

We will derive here the orthogonality theorem proven by P. Anderson in 1967, and explore its spectacular
physical consequences. The theorem states that the many-body ground state of a non-interacting fermion
system becomes orthogonal in the thermodynamic limit to the modified ground state in presence of a single
static impurity.

1. To put this theorem into physical context, we consider a model for a partially filled electron band with
energy ϵk ∈ [−D,D], chemical potential µ, and a deep atomic s-level (“core” impurity) with energy ϵs ≪ −D.
Electrons are supposed spinless, so that the interacting Hamiltonian is simply:

H = ϵsc
†
scs +

∑
k

ϵkc
†
kck + V (1− c†scs)

∑
k,k′

c†kck′ , (1)
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with V the screened Coulomb interaction between the deep level and the conduction band. Assuming V = 0
and that x-ray photons excite the deep core electron (in the energy level ϵs) into available states in the band,
sketch the photon absorption spectrum as a function of photon frequency ω, and write down the absorption
threshold in terms of the previous electronic parameters (no calculation required).

2. We now consider finite interaction V with the core s-level. Why can one assume that the s-level is either
full or empty, so that Hamiltonian (1) reduces in the case of empty core level to a non-interacting problem

HV =
∑

k ϵkc
†
kck + V

∑
k,k′ c

†
kck′ , with just a static potential V ? Why does physically V = 0 correspond to the

case of filled core level? We denote |ψk⟩ = c†k|0⟩ the one-particle plane-wave eigenstates of HV=0 at V = 0 with

energy ϵk, and |ϕl⟩ = c†l |0⟩ =
∑

k alk|ψk⟩ the new one-particle eigenstates of HV at finite V with energy El (the

deep level does not take part in these states). Write the many-body overlap ⟨Ω|Ω0⟩, with |Ω0⟩ =
∏

ϵk<0 c
†
k|0⟩

(resp. |Ω⟩ =
∏

El<0 c
†
l |0⟩) the ground state of HV with V = 0 (resp. with V ̸= 0), as a function of Det(â),

precising the conditions on ϵk and El (note that we have set µ = 0 here).

3. Rewriting the components of |ϕl⟩ below the chemical potential µ = 0 in terms of the “unit vectors”:

|ϕ̃l⟩ =
1√ ∑

ϵk<0
|alk|2

∑
ϵk<0

alk|ψk⟩, (2)

and using the fact that |ϕl⟩ is normalized, show that:

|⟨Ω|Ω0⟩|2 =
∏
El<0

(
1−

∑
ϵk>0

|alk|2
)

×Det[Matrix of unit vectors]
2
. (3)

Show that the determinant on the right-hand side is smaller than one, and that 1 − x < e−x for x > 0, as to
obtain the bound |⟨Ω|Ω0⟩|2 ≤ e−S , with S =

∑
El<0

∑
ϵk>0

|alk|2.

4. To complete the evaluation of the double sum S, solve the one-particle Schrödinger equation HV |ϕl⟩ = El|ϕl⟩
and show that alk = V/(El−ϵk), with the eigenenergies El obeying 1 =

∑
k V/(El−ϵk). Show graphically that El

is braketed by two successive energies ϵk and ϵk+1, so that the spectrum El is mainly similar to the one of the free

band, and becomes continuous in the thermodynamic limit. Deduce that S ≃ V 2
∫ −Emin

−D
dE
∫D

Emin
dϵ ρ20/(E−ϵ)2,

with ρ0 the free density of states (assumed constant), D the half-bandwidth, and Emin ∝ 1/L, with L the system

size. Show that S diverges like ρ20V
2 log(L), so that the overlap |⟨Ω|Ω0⟩|2 ≤ L−ρ2

0V
2

vanishes in a power-law
fashion as L→ ∞. This is the essence of Anderson’s orthogonality theorem.

5. Argue physically why the x-ray absorption amplitude is given by S(ω) =
∑

f |⟨f |
∑

k c
†
k|Ω⟩|2δ(ω −Ef +Eg)

(up to prefactors), with Eg the energy of the initial ground state |Ω0⟩, and |f⟩ an arbitrary final state of energy
Ef (here again ω is the photon frequency). Assuming V = 0, show that S(ω) is constant above the threshold.

6. For finite V , the fact that |⟨Ω|Ω0⟩| vanishes in the thermodynamic limit indicates that the overlap of |Ω⟩ rela-
tive to |Ω0⟩ is distributed over many particle-hole excitations above |Ω0⟩, which affects the shape of the x-ray ab-
sorption spectrum. Show that the Fourier transform S̃(t) =

∫
dωS(ω)eiωt reads S̃(t) = ⟨Ω0|e−iH0tc eiHV tc†|Ω0⟩,

with c† ≡
∑

k c
†
k. Some (advanced) calculation leads to the result S̃(t) ≃ t−[1+ρ0V ]2 at t→ ∞ (do not attempt

it). Demonstrate that the absorption spectrum is rounded at the threshold as S(ω) ≃ |ω|2ρ0V+(ρ0V )2 for small
frequency ω relative to the threshold. This anomalous behavior is observed experimentally in the x-ray absorp-
tion for many metallic elements.

3 Drude transport in weakly disordered metals

We turn to the physics of disordered metals, where now a macroscopic number of impurities are affecting the
electrons. We will develop here a perturbative approach (assuming disorder is weak and impurities are diluted),
which will allow us to justify microscopically the Drude theory at the quantum level.

2



1. Assuming impurities are only charged defects, why can we consider spinless fermions to model the system?
Argue why the Hamiltonian takes the form:

H =
∑
k

ϵkc
†
kck +

∑
k,p

Vpc
†
kck−p, (4)

with Vp the Fourier transform of the random real space potential V (r) due to disorder.

2. We want to compute the Green’s function G(k, k′, t) = −iT ⟨Ω|ck(t)c
†
k′ |Ω⟩, with |Ω⟩ the ground state of the

full Hamiltonian Eq. (4), and ck(t) = eiHtcke
−iHt (T is the time-ordering operator). Without calculation, why is

G(k, k′, t) proportional to δk,k′ when Vp = 0, but not anymore for finite Vp? Show that the free electron Green’s
function G0(k, k′, ω) at Vp = 0 obeys the equation of motion ∂/∂tG

0(k, k′, t) = −iδk,k′δ(t) − iϵkG
0(k, k′, t).

Similarly, demonstrate that ∂/∂tG(k, k
′, t) = −iδk,k′δ(t)− iϵkG(k, k

′, t)− i
∑

p VpG(k − p, k′, t).

3. We write matricially G(k, k′, t) = [Ĝ(t)]kk′ and G0(k, k′, t) = [Ĝ0(t)]kk′ . Fourier transforming to frequency
ω, show that Ĝ(ω) = [ω̂ − ϵ̂ − V̂ ]−1, with [ω̂]kk′ = ωδkk′ , [ϵ̂]kk′ = ϵkδk,k′ and [V̂ ]kk′ = Vk−k′ . Recover from

this G0(k, k′, ω) = δkk′/(ω − ϵk). By substitution, obtain the exact equation Ĝ(ω) = Ĝ0(ω) + Ĝ0(ω)V̂ Ĝ(ω),
noting that the last term is a matrix product and that Ĝ0(ω) is a diagonal matrix. Deduce the Dyson form
for the Green’s function: G(k, k′, ω) = G0(k, ω)δk,k′ + G0(k, ω)

∑
q Vk−qG(q, k

′, ω). By iteration, obtain the
perturbative series:

G(k, k′, ω) = G0(k, ω)δk,k′+G0(k, ω)Vk−k′G0(k′, ω)+G0(k, ω)
∑
k1

Vk−k1G
0(k1, ω)Vk1−k′G0(k′, ω)+O(V 3). (5)

Draw these two terms as Feynman diagrams and even the general term of order V n.

4. This exact yet formal solution is not practical as the result will depend on the specific choice of disorder Vp.
We will write V (r) =

∑
i u(r − Ri), with Ri the random position of the impurities in concentration nimp and

u(r) the screened Coulomb potential associated to a single impurity. Show that we get at second order:

G(k, k′, ω) = G0(k, ω)δk,k′+G0(k, ω)G0(k′, ω)
[∑

i

uk−k′ei(k−k′)Ri+
∑
i,j,k1

uk−k1G
0(k1, ω)uk1−k′ei(k−k1)Ri+i(k1−k′)Rj

]
.

In the dilute impurity limit, why can we write:

G(k, k′, ω) = G0(k, ω)δk,k′ +G0(k, ω)G0(k′, ω)
[∑

i

uk−k′ei(k−k′)Ri +
∑
i,k1

uk−k1G
0(k1, ω)uk1−k′ei(k−k′)Ri

]
? (6)

Averaging over all possible (random) impurity positions Ri, argue that

G(k, k′, ω) = G0(k, ω)δk,k′ + [G0(k, ω)]2u0nimpδk,k′ + [G0(k, ω)]2nimp

∑
k1

|uk−k1
|2G0(k1, ω)δk,k′ = G(k, ω)δk,k′ .

(7)
Why has become the Green’s function diagonal in terms of k, k′? We can resum these contributions to infinite
order by rewriting Dyson’s equation as G(k, k′, ω) = δkk′/(ω− ϵk −Σk(ω)). Show that the retarded self-energy
is given by Σk(ω) = u0nimp + nimp

∑
k1

|uk−k1
|2/(ω − ϵk1

+ i0+). Why is the first term not physically crucial?

Derive the disorder-induced scattering rate as τ−1
k ≡ 2ImΣk = 2πnimp

∑
k1

|uk−k1 |2δ(ϵk − ϵk′) and sketch
graphically the spectral function ρ(k, ω) = −(1/π)ImG(k, ω). Show that the scattering rate at the Fermi level
is τ−1 ≃ 2πρ0(u0)

2nimp, assuming uk is slowly varrying and the density of states ρ(ω) ≃ ρ0. Argue why this
perturbative computation is valid provided kFle ≫ 1, with kF the Fermi wavevector and le = vF τ the elastic
mean-free-path, with vF the Fermi velocity.

5. Under some hypothesis, one can obtain an approximate expression for the averaged electrical conductivity
in 3d from Kubo’s formula (do not attempt to derive this expression):

σ(ω) =
e2EF

3πm

∑
k

G(k, ω)[G(k, 0)]∗, (8)

with G(k, ω) = 1/(ω − ϵk + i/2τ), e the electron charge, m its mass, and EF the Fermi energy. Using again
ρ(ϵ) ≃ ρ0 and residues theorem, recover Drude formula σ(ω) = σ0

1−iωτ and express the DC component as

σ0 = ne2τ/m using the 3d electron density n = 2ρ0EF /3.
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4 Onset of insulating regime for strong disorder

Going beyond the lowest orders in perturbation theory leads to a wealth of transport phenomena that have no
classical analog due to quantum interferences, leading even to localization effects by disorder. We consider here
a simplified mean-field-like treatment of the strong disorder regime, which does not account for wavefunction
localization, but still correctly predicts insulating behavior.

1. We start with a simplified model of an alloy AxB1−x with two “atoms” A and B, described by Hamiltonian:

H =
∑
k

ϵkc
†
kck +

∑
i

vic
†
i ci , (9)

with c†k plane-wave creation operators, and c†i real space (Wannier) operators. The alloy model assumes that
vi = v for sites i on atoms A, and vi = −v for sites i on atoms B (atoms are placed at random on the
lattice). We note ρ0(ω) =

∑
k δ(ω − ϵk) the free density of states for v = 0. In the pure case of A atoms only

(x = 1), show that the local density of states at site i is constant in space and exactly given by ρ0(ω − v).
Why is the local Green’s function

∑
k,k′ G(k, k′, ω) = G0(ω − v) = (−1/π)

∫
dϵρ0(ϵ − v)/(ω − ϵ + i0+)? For

arbitrary x, a very crude approximation can be to replace vi by a constant effective potential on all sites,
vi = veff = xv + (1 − x)(−v), argue why. What happens when x = 1/2 (same population of A and B atoms)
and why is the result not reasonable?

2. A better mean-field uses the concept of effective medium. Let us focus on a given lattice site j. If j
is an A atom, we use an effective Hamiltonian of the form of Eq. (9), but with vj = v and an effective
potential vi = veff if i ̸= j (the value of veff is arbitrary for now). This basically treats exactly the potential
on site j and assumes an effective potential for the rest of the lattice. Conversely, if j is a B atom, the
effective potential is given by vj = −v and vi = veff if i ̸= j. Let us consider first the effective medium
for an atom of type A, assuming the local site j = 0. Why is the effective Hamiltonian for site A given by
HA =

∑
k(ϵk+veff)c

†
kck+(v−veff)

∑
kk′ c

†
kck′? From Dyson’s equation already derived just above Eq. (5), show

that G(k, k′, ω) = δkk′/(ω−ϵk−veff)+(v−veff)/[(ω−ϵk−veff)(ω−ϵk′−veff)(1−(v−veff)G0(ω−veff))], and derive
the local Green’s function on site j = 0 as GA(ω) =

∑
kk′ G(k, k′, ω) = G0(ω− veff)/[1 + (veff − v)G0(ω− veff)].

Similarly for a site j on a B atom, one gets locally GB(ω) = G0(ω − veff)/[1 + (veff + v)G0(ω − veff)].

3. Our first attempt at a mean-field treatment of the alloy problem is to assume the self-consistency equation
G0(ω− veff) = xGA(ω)+ (1−x)GB(ω), with veff a constant effective potential. Why is it physically motivated?
Simplify this equation as (v2eff − v2)G0(ω− veff) = x(veff − v) + (1− x)(veff + v), and show that an impossibility
arises unless x = 1 or x = 0 (pure limit), in which case one recovers the result veff = v or veff = −v respectively.

4. In order to tackle the problem with x ̸= 0, 1, we replace the constant parameter veff by a frequency dependent
quantity veff(ω) that can be possibly complex, and that needs to be found self-consistently (this is called a
dynamical mean-field approach). The effective Green’s function G(ω) becomes therefore also a mean-field
quantity, obtained as G(ω) =

∫
dϵρ0(ϵ)/(ω− ϵ+ veff(ω)), and still obeys the previous self-consistency condition

G(ω) = xGA(ω)+ (1−x)GB(ω), with the A atoms Green’s function GA(ω) = G(ω)/[1+ (veff(ω)− v)G(ω)] and
similarly GB(ω) = G(ω)/[1+(veff(ω)+v)G(ω)] for B atoms. This is a complicated non-linear integral equation in
terms of the unknown G(ω) (or equivalently in terms of veff(ω)), which is typically solved numerically. Analytical
progress can be made by taking a semi-circular density of states ρ0(ω) = (2/πD2)

√
D2 − ω2θ[D2 − ω2], with

D the half-bandwidth. We give the integral
∫
dϵρ0(ϵ)/(ω − ϵ) = (2/D2)(ω −

√
ω2 −D2) (do not rederive

it). Show by substitution ω → ω + veff(ω) that one can express explicitly veff(ω) in terms of G(ω) such as
veff(ω) = ω − 1/G(ω) + (D2/4)G(ω), and derive the now algebraic dynamical mean-field equation:

1 =
x

(ω − v)G(ω) +D2G(ω)2/4
+

1− x

(ω + v)G(ω) +D2G(ω)2/4
. (10)

5. Let us finally assume v ≫ D, corresponding to the large disorder limit, and focus first on frequencies
ω ≃ v. In this limit, solve Eq. (10) and find the contribution to the density of states originating from the
A-type atoms as ρ(ω) = −(1/π)ImG(ω) ≃ (2/πD2)

√
D2x− (ω − v)2θ[D2x − (ω − v)2]. Show that its total

spectral weight is x. Similarly, show for ω ≃ −v (contribution originating from B-type atoms) that one has
ρ(ω) ≃ (2/πD2)

√
D2(1− x)− (ω + v)2θ[D2(1 − x) − (ω + v)2], with total spectral weight 1 − x. Sketch the

resulting total density of states ρ(ω) for small x. For x = 1/2 at half-filling, why is the system insulating?
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