
ENS Lyon – M2 Physique – S3b Cours: Serge Florens (serge.florens@neel.cnrs.fr)
Many-body quantum physics TD: Fabio Mezzacapo (fabio.mezzacapo@ens-lyon.fr)

Final exam – Friday January 12th 2024 (9AM-12PM)

Topic: density fluctuations in 1D electron gases

Some advice and guidelines:

• You can use handwritten notes from the lectures and the tutorials, but no book, computer, or phone

• Write your name and page number on each page, and indicate the total number of pages on page 1

• Address first the questions that you feel confident about

• All questions (and sub-questions) are independent of each other, do not get stuck

• Avoid giving too lengthy answers

• Write clearly and highlight the important results, only a correct argumentation will give full points

• Some hints are given as underlined text (use them!)

• The exam is probably too long, don’t worry about it!

• ℏ = 1 is set throughout

1 General questions

Your answers to these questions do not require any detailed calculations. These questions are fully independent
from the main exam problem.

1. Here are a few many-body wavefunctions for particles in R3, without spin:

(a) Ψ1(r⃗1, r⃗2) = e−|r⃗1−r⃗2|

(b) Ψ2(r⃗1, r⃗2) = sinh[(r⃗1 − r⃗2).e⃗z]

(c) Ψ3(r⃗1, r⃗2, r⃗3) = cos[r⃗1.(r⃗2 × r⃗3)]e
−|r⃗1|2−|r⃗2|2−|r⃗3|2

Indicate for each if it is symmetric or antisymmetric, and argue if it is square integrable.

2. Consider a set of one-body wavefunctions Φµ(r⃗), with µ = 1, 2, 3, 4 only (no spin). Using second quantization

notation for fermionic many-body states |n1, n2, n3, n4⟩ = (c†1)
n1(c†2)

n2(c†3)
n3(c†4)

n4 |0⟩, where nµ = 0, 1 is the
occupation of orbital µ, enumerate a complete basis of antisymmetric states for N = 1 particles, then for N = 2
particles. Can one construct a non-trivial Fock space for N = 10 particles with those states?

3. Give three different types of symmetry-breaking phases found in electronic systems at low temperatures, and
write the corresponding order parameter as a bilinear form with fermionic creation/annihilation operators.

4. Let’s imagine putting a nanometer-sized conducting tip above a 2D electron gas. Putting the tip at a finite
electrical potential, which observable B̂ of the gas is perturbed? Which other observable Â do you imagine
could be measured in such a setup? If the tip is moved laterally, on which spatial length scales would you expect
to see some variations of the measured observable, assuming the gas contains some impurities?
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2 Density fluctuations in good metals

We will stick for simplicity to 1D fermions in all what follows. Our main goal is to investigate how density
fluctuations in an electron gas evolve from weak to strong interactions, and to learn how they give information
about the possible underlying electronic states: Fermi liquid, Luttinger liquid, or Wigner crystal.

1. We will start with non-interacting fermions, assumed to be spinless for simplicity. The 1D dispersion relation
is taken as linear: ϵk = vF|k|, with vF the Fermi velocity. Fixing a positive chemical potential µ > 0, sketch
graphically the filling of the Fermi sea and identify the Fermi wavevector kF on this plot. Write the energy
dispersion E(k, q) for a particle-hole excitation with a particle of momentum k+ q and a hole with momentum
k. Hint: beware, there are two possible electronic branches. Sketch the resulting particle-hole continuum, and
identify a collective mode. Can you comment on the difference for the collective mode with respect to the case
of quadratic dispersion seen in the exercises?

2. From the density operator n̂(x) = Ψ†(x)Ψ(x) =
∫

dk
2π

∫
dk′

2π ei(k−k′)xc†kck′ , show that the average density is
uniform in the ground state (filled Fermi sea) and reads ⟨n̂(x)⟩ = kF/π ≡ n0.

3. Compute the density-density correlation function g(x) = ⟨n̂(x)n̂(0)⟩ in the ground state using Wick’s theorem.
Perform the k-integral and show that:

g(x) = n2
0 −

sin2(kFx)

π2x2
= n2

0 −
1

2π2x2
+

cos(2kFx)

2π2x2
. (1)

We observe that both the slow amplitude term and the Friedel-like 2kF fast oscillating term both decay as 1/x2

at long distances. This is a hallmark of Fermi-liquid states in 1D. Compute g(0) and argue about its value.
Compute g(x) at x = ∞ and also explain its value.

4. We now introduce electron-electron interactions (still for spinless fermions):

Ĥ =
∑
k

ϵkc
†
kck +

1

2V
∑
k,k′,q

Vqc
†
k+qc

†
k′−qck′ck, (2)

with V the spatial volume. Assuming translation invariance, write explicitely the Hartree-Fock many-body
wavefunction in second quantized form. Show that the quasiparticle energies are given by the following expres-
sion Ek = ϵk + (1/V)

∑
k′ θ(k∗F − |k′|)(V0 − Vk′−k), with θ(k) the Heaviside function, and k∗F the renormalized

Fermi wavevector (it could naively be affected by interactions). Fixing the electron density to n0, and assuming
the renormalized dispersion relation Ek to be monotonous, show that in fact k∗F = kF (this is a peculiar case of
the Luttinger theorem). What does that imply for the density-density correlation function g(x)? Going beyond
the Hartree-Fock calculation (do not attempt it of course), and assuming a Fermi liquid state is obtained, what
could you say about the behavior of the slow amplitude term and of the 2kF term in g(x) at long distances?

3 Strong interaction limit: from Wigner crystal to Luttinger liquid

1. In this second part, we consider the opposite limit of very strong Coulomb interactions (relative to the
kinetic energy), which leads classically to a crystalline state where electrons are localized at position x0

i = ai,
with a = 1/n0 the inter-electron distance and n0 the average density. Fluctuations around the equilibrium

position will be described by collective phonon-like variables ϕ̂i, so that the electron position operator (in first

quantization) is x̂i = ai + aϕ̂i/π and the electron momentum operator p̂i = πΠ̂i (the π factors are just a
rescaling). In the continuum limit a → 0, with x = ai kept finite, show that the previous operators behave as

conjugate fields at the quantum level, namely [ϕ̂(x), Π̂(x′)] = iδ(x− x′). Express also the kinetic energy of the
electron gas as:

Ĥ0 =

∫
dx

π2

2ma
[Π̂(x)]2, (3)

with m the electron mass.

2



2. Show that the electron density operator simplifies in the continuum limit to the form n̂(x) ≃ n0 − ∂xϕ̂(x)/π.

Hint: argue physically what happens when one of the phase differences ϕ̂i+1 − ϕ̂i winds by −π.

Assuming for simplicity short-range Coulomb interaction with amplitude V0 (although this is not realistic),
express the interaction part of the energy (substracting the classical neutralizing background) as:

Ĥ1 =

∫
dx

V0

2π2
[∂xϕ̂(x)]

2. (4)

We reparametrize the full Hamiltonian as:

Ĥ = Ĥ0 + Ĥ1 =
1

2π

∫
dx

{
vKπ2[Π̂(x)]2 +

v

K
[∂xϕ̂(x)]

2
}
, (5)

with v the renormalized Fermi velocity and K a dimensionless interaction parameter. Extract v and K as a
function of the microscopic parameters in Ĥ0 + Ĥ1 and prove that v = vF/K, with vF the bare Fermi velocity.
Hint: show that a = π/(mvF). Argue why K ≪ 1 describes the regime of weak kinetic energy respective to
the strong Coulomb energy. Why is the bosonic Hamiltonian Ĥ much simpler than its original formulation in
terms of interacting fermions?

3. It will be useful to compute the retarded (bosonic) correlation function of the collective mode:

GR
ϕ (x, t) = −iθ(t)⟨[ϕ̂(x, t), ϕ̂(0, 0)]⟩, (6)

with ϕ̂(x, t) = eiĤtϕ̂(x)e−iĤt. For all x, why is this function continuous at t = 0? Taking a first derivative,
show that:

∂tG
R
ϕ (x, t) = −iθ(t)πKv⟨[Π̂(x, t), ϕ̂(0, 0)]⟩. (7)

Hint: you will need to compute the commutator [Ĥ, ϕ̂(x)] using the fields commutation relations. Taking a
second derivative, show similarly that:

∂ttG
R
ϕ (x, t) = −πvKδ(t)δ(x) + v2∂xxG

R
ϕ (x, t). (8)

Going to Fourier space both in frequency and momentum, obtain the bosonic propagator:

GR
ϕ (k, ω) =

πKv

−v2k2 + (ω + i0+)2
. (9)

4. Using the bosonic language, we are now equipped to compute the wanted density-density correlation function
g(x) = ⟨n̂(x)n̂(0)⟩, using that n̂(x) ≃ n0 − ∂xϕ̂(x)/π for slowly varying charge fluctuations. You can start

with g(x) = n2
0 − (1/π2)∂xx⟨ϕ̂(x)ϕ̂(0)⟩ (justify the negative sign). Use the fluctuation-dissipation theorem at

zero temperature to relate the unsymmetrized correlation function Sϕ(x, t) = ⟨ϕ̂(x, t)ϕ̂(0, t)⟩ to the retarded
propagator (6) taken in frequency domain. Using that g(x) = n2

0 − (1/π2)∂xx
∫
dωSϕ(x, ω), you should obtain:

g(x) = n2
0 +

1

π2

∫ +∞

−∞

dk

2π
k2eikx

∫ +∞

0

dω

π
ImGR

ϕ (k, ω). (10)

Inserting formula (9), and performing the ω-integral, derive the expression g(x) = n2
0+

K
4π2

∫ +∞
−∞ dk|k|eikx. One

sees that this integral is ultra-violet divergent, but you can regularize it phenomenologically with a cutoff term
e−|k|/kF . At long distances |kFx| ≫ 1, you should find g(x) ≃ n2

0 − K/(2π2x2). The amplitude of the slow
envelope in g(x) is thus renormalized by interactions. Comparing to the exact result (1), we thus extract the
dimensionless interaction parameter K = 1 for free fermions.

5. We finally investigate the 2kF oscillations in the density-density correlation function using the bosonic lan-
guage, generalizing the cos(2kFx) term of g(x) in Eq. (1) to the non-trivial case of interacting fermions in 1D. Ar-

gue physically why the oscillating contribution to the electron density behaves like n̂2kF
(x) ∝ ei2kFxe2iϕ̂(x)+h.c.

(up to a prefactor). We will employ the following general result (do not prove it, but it follows readily from
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the Baker-Campbell-Hausdorff formula) that ⟨eÔ⟩ = e⟨Ô
2⟩/2, with Ô a linear bosonic operator, and the aver-

age being taken in the ground state of a quadratic Hamiltonian. Show from this result that the 2kF term in

g(x) scales as
[
e−2⟨[ϕ̂(x)+ϕ̂(0)]2⟩ + e−2⟨[ϕ̂(x)−ϕ̂(0)]2⟩] cos(2kFx). Using the equal-time unsymmetrized correlator

⟨ϕ̂(x)ϕ̂(0)⟩ already computed previously, deduce that ⟨[ϕ̂(x) ± ϕ̂(0)]2⟩ = (K/2)
∫
dke−|k|/kF(1 ± eikx)/|k|. For

x → ∞, show the asymptotic behavior: ⟨[ϕ̂(x)− ϕ̂(0)]2⟩ ∝ K log |kFx|. Note that the correlator ⟨[ϕ̂(x)+ ϕ̂(0)]2⟩
is infra-red divergent for all x, so that the associated exponential term e−2⟨[ϕ̂(x)+ϕ̂(0)]2⟩ cancels out in g(x). The
final result is thus that g(x) contains an oscillatory term cos(2kFx)e

−2K log |kFx| = cos(2kFx)/|kFx|2K displaying
an anomalous power law decay, which is prototypical of Luttinger liquids (i.e. 1D non-Fermi liquids). How do
you recover the non-interacting limit? In the opposite limit of infinitely large interaction (K → 0), check that a
Wigner crystal forms. Physically, why is there no crystalline order for large but finite (0 < K ≪ 1) interaction?
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