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Motivation

Basics of IQHE

High field expansion
What's so special about IQHE?

» High precision quantification of the Hall conductance
» Disorder plays a central and positive role
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Motivation Basics of IQHE High field expansion

Why study IQHE now?

Experiments:

» New effects: microwave induced zero-resistance states
» New probes: local sensing techniques

» New systems: graphene, 2d edge states?
Electron interactions play an important part in IQHE also!

Theory:

» Many fundamental aspects well understood

» But: how do we calculate stuff!?
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Summary

» Motivation

» Basic elements on IQHE
» Semiclassical picture
» Landauer-Biittiker-Halperin edge state picture
» Landau levels and wavefunctions

» The high field expansion
» Vortex states and Green's functions
» Local equilibrium properties
» Bulk transport equations

» Outlook: conclusion and perspectives
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High field expansion

Basics of IQHE:

Semiclassical picture
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Classical motion in high perpendicular magnetic field

Stable trajectories: F = —ev x B —eE =0
— slow drift velocity: vg = %E XZ= —%VV X Z

Transport: drift dominates over fast cyclotron motion
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Disordered bulk: localization on closed equipotential lines

Sharp edges: delocalized skipping orbits
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Motivation Basics of IQHE High field expansion

Classical Hall effect

Local current density: j(r) = —ene(r)vg = —gneE x 2 = —o E

— local Hall conductivity: oy, (r) = gne(r)

For a homogeneous sample: | = G, Vi,
where G,, = gne is the Hall conductance

— Gy, gives information on the carriers charge and density
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Motivation Basics of IQHE High field expansion

Quantum effects on Hall transport
Back to conductance: Gy, = gne = e—;%ne = e—hzy
where v = eiBne = 2r/3n, is a dimensionless density (filling factor)
This defines also a magnetic length: /g = \/i/eB = 8nm at 10T

Landau level quantization: e, = hwc(m + 1)

with the cyclotron energy: hw. = hnf*B = 20 meV at 10T
Semiclassical picture of IQHE: successive filling of Landau level

with integer v =) nr(em — p) leads to successive Gy, plateaus:
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Motivation Basics of IQHE High field expansion

Homogeneous system

As a function of density:
» sharp Landau levels
» 1 sticks to €, and jumps between LL
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Motivation

Basics of IQHE

High field expansion

With disorder
With disorder: p is pinned by bulk localized states

p(w)
. Delocalized states
Localized states
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Disorder is essential to plateaus formation!
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Motivation Basics of IQHE High field expansion

One more caveat...

Hall bar: quantization of o,, does not guarantee G,, quantized

v(r)
1

W Iy

» width W ~1mm

» non-homogeneous region near edge of width /g ~8nm

Deviation to quantization: of the order Ig/W ~ 107>
— in contradiction with experiment: 0Gyy, /Gy, < 109

More subtle transport theory is needed!
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High field expansion

Basics of IQHE:

Edge state picture
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Landauer-Buttiker scattering theory

» Include contacts at fixed chemical potentials p;

H2 H3
SCATTERING
He Hs

» Only states near ef contribute to the current /; in each

contact (diffusion mechanism)
» Biittiker formula:

e
li= [(vi = R)pi — Z Tij1;]
. . . J#I .
where R; = reflection amplitude in lead |
and Tj; = transmission amplitude from lead j to lead /
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Motivation Basics of IQHE High field expansion

Edge-state picture

IQHE regime:
» No backscattering of edge states (skipping orbits): R; =0
» Electrons are transferred from one contact to the next:
only T;iy1 = vj non zero
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Advantages of this formulation:
» The precise spatial dependence of the potential drop ®(r) in
the Hall bar is not needed
» Deviations to quantization and dissipative features are related
to additional scattering mechanisms
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Motivation

Basics of IQHE

High field expansion

Scattering: a simple example

4 terminals with single "scatterer”:

Transmissions:
Toc1=v, T30 = V', Tico=v— 1/’, etc...

Resistances:

> Ry
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| 2 R23
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Motivation

Basics of IQHE

High field expansion

Limitations:

Limitations of Biittiker approach to IQHE:

vV vVv.v. vy

Edges can leak in the bulk at large bias

POTENTIAL

No information on the local variations of ®(r)3

Frequency dependent transport difficult to treat

Calculation of local observables (electronic density,

2 4 6 8
TIP POSITION (um)

Taking into account disorder: scattering problem very hard

oV(r)

diamagnetic currents) not very practical: p(r) ~ Tr [S’T 6% }

» Challenge to incorporate electron interactions

An alternative approach from the bulk is needed!
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Basics of IQHE

High field expansion

Basics of IQHE:

Landau levels and wavefunctions
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Schrodinger equation in a magnetic field

Free Hamiltonian: no disorder, no interactions
Ho = 5ix (—ihV, — ¢A(r))® with B =V x A

Landau states:
Enk = hwe(n + %)

W, k(x,y) = e™ exp [_%] H, (x—klg)

» Translationally invariant along y
» Localized on a scale /g along x

Is
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Motivation Basics of IQHE High field expansion

Another solution

Circular states:
Emy = howe(l + mHIELY — pyy (n+ 1)

V) m(r,0) = e™ rmexp [W_] Ly ( . )
B
» Rotationally invariant around the origin
» Localized on a scale /g along r

The absence of an external potential leads to a huge degeneracy!
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Motivation Basics of IQHE High field expansion

Confinement y
at
D Paraboli ial: &
1D Parabolic potential: i

R
R
N

S
R
R

H = Ho + V(x) = Ho + 3 m*wix?
Modified Landau states:

E,x = hQ (n + %) + V(kL?)

. — e k2)? — k2
Vo(r) = e ®exp —(X 232 ) Hh (X 2 )

where Q = /w2 + w3 ~ wc and L = \/h/m*Q ~ Ig

» Degeneracy is fully lifted by V(x)

» Wavefunction localize around equipotential lines: X = k/é

» Drift velocity: vy (X) = ;li—dlff;i’k
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Motivation Basics of IQHE High field expansion

Local equilibrium properties

Three filled LL:

Density and current:

z/lp
Current originate from drift and density gradient
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Motivation Basics of IQHE High field expansion

With disordered potential

Numerical solution:
» Confirms the intuition
» But not very practical

[Wa(r)[?

o

Eﬂ<<EF EEX<EF E(l:EF

Is there an analytical solution at high field?
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High field expansion

The high field expansion:

Vortex states and Green's functions
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What is the small parameter?

At large magnetic field:

» Magnetic length: /g =8nm at 10T

» Correlation length of the disordered potential:
€ 2 100nm in heterostructures

The random potential is smooth on the scale /g!

Mathematically:

> Ig/¢ is the small parameter

» V/(r) can be written in a gradient expansion
where V(r) > Ig|VV(r)| > B|AV(r)] > ...
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Motivation Basics of IQHE High field expansion

What are the correct quantum states?

We need: states that can adapt to an arbitrary shape of V/(r), with
no preferred symmetry

Vortex states: W, g(r) = (r|R, m)

1
Em,R = hwc(m+§)

. o 2 95
Wnr(r) = |r—R|™emae(—R) gxp [_(r R)? —2i2 (er)}

412

Remark: this is an overcomplete, coherent state basis

(Rl — R2)2 —2iz- (Rl X R2)
412

(R1, m1|R2, m2) = 6y m, exp [—
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Motivation Basics of IQHE High field expansion

Vortex Green's functions
How to proceed:

> Define GRry.my:Ry.m(w) = (R1, mi|(w — Ho — V)~1|Ry, my)
» Expand in powers of /g and gradients of V/(r):
G = (Ri,m|Ry,my) 3, (I8 /v/2)"g"")

Lowest order result: semiclassical limit at /g — 0!

(0). R) — 5m1,m2
gmlymZ( ) W— €m1 — V(R)

To all orders: closed recursion

(n) (0) On2k+j+1 (M1 + P)! dmy+p,ms+j—p
8my;m R)=gm m R ;
1 2( ) 1 1( )I<n,j’zk’m3,p kl /—mllm3| pI(J _ p)l

x (Ox — i0y) P (9x + idy)PV(R) (9x + idy)* girms(R)
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High field expansion

The high field expansion:

Local equilibrium properties
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How to get physical quantities at equilibrium?

Local observables: in terms of the exact eigenstates |W,,)
» Electronic local density: p(r) = > nr(Ed)|(r |\IJ )?
» Local current density: j(r) = > nr(Ea)(Va HGINZS)

Electronic Green function:

G(I’, r/’w) = <r|(w _ [—A/o _ \A/)—l|rl> _ Z w

w—E,

Clearly : p(r) = — / d (@) G(r, 0 + 0%)
T

Magic formula: simple connection to vortex Green's functions

G(r,v,w) / DR PN (1 f)z P ( AR)kgm;m'(R)

Bmm/
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Motivation Basics of IQHE High field expansion
:

Electronic charge density
Quantum expansion: define {,,(R) = €, + V(R)

—H
pau.(r) = /2 2 Z P Em(R)IV mr(r)2 + O(12)

Semiclassical result: point-like wavefunctlon forlg =0

pSc = /2 Z nF[gm(r
Checking a on solvable 1D model: for kg T /hw. = 0.2,0.1,0.01

3\\
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Motivation Basics of IQHE High field expansion

Full quantum result

Zooming in: deviations from terms like (/13A,)%pqu.(r) = O(1)

p(x) [1/2xi3)]

z/lp
Infinite order resummation: it can be done!

2 nelém
PQu. oo(l‘ /dﬂz FTEn'(/g)] Am(R — r) exp |:—(R—

where Ap,(R) = gs—",; (1is exp [',?2 12:5]> _0: special polynomial
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Motivation Basics of IQHE High field expansion

Full quantum result

Zooming in: deviations from terms like (/13A,)%pqu.(r) = O(1)

p(x) [1/2xi3)]

6

.T,/IB4

Infinite order resummation: it can be done! IT WORKS!

2 nelém
PQu. oo(l‘ /dﬂ:z FTEn'(/g)] Am(R — r) exp |:—(R—

where Ap,(R) = gs—",; (1is exp [',?2 12:5]> _0: special polynomial
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Motivation Basics of IQHE High field expansion

The high field limit in practice

Bottomline:

» Equilibrium local density p(r) and current j(r) can be
computed for all temperatures with excellent accuracy
for any smooth potential

» Very simple density functional forms are obtained

» Possible use:

» DFT-like calculations
» Screening theory beyond the Thomas-Fermi approximation

Next question:
What about out of equilibrium transport?
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Motivation Basics of IQHE High field expansion

Local current density: semiclassical result
Leading order: at Ig — 0
» Drift current: bulk contribution

i (1) ,,an[gm NIVeV(r) x 2

» Density gradient current: edge contribution

i = Z huwe (m—l— ) Vene[Em(r)] x 2

Sub-leading order (bulk only): new terms!

+oo
I = B> nlém(v) {(V“‘,;)—V)V Vs ( %) A'V'V} i

.
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High field expansion

The high field expansion:

Transport equations
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Local equilibrium: Ohm's law

Total potential: V(r) = Veg(r) + e®(r)
» V.g: confinement and impurity (screened) potential
> ®(r): local out-of-equilibrium potential

Local conductivity tensor: purely transverse at /g — 0
> j(r) =6(r)E = —on(r)Ve(r) x 2
> on(r) =, nrlem + Ve (r) — p

Transport equation: V.j = 0 (continuity equation) gives

(Vou(r) x Vo(r)).2=0

» Equipotentials coincide with lines of constant filling factor
» Indeterminacy at points where Voy(r) =0
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Motivation Basics of IQHE High field expansion

Conduction beyond the drift contribution

» Non-local contribution to current:
2 +00

3i(r) = /g% 3y np[gm(r)]g (m + %) AV x 2

m=0
Originates from quantum tunneling

» Longitudinal and transverse corrections to the conductivity:

~ o lé _axy Veff ayy Veff
50’(") B Twe UH(r) ( Oxx Vet 8xy Vet

Local conductivities may not obey Onsager's relation!

Transport equation: keeping local terms only

. 2 o [ Oa® Dy \)
(Veoy x V@) -2 — hwcaHTr {50’. ( Dy ® 9,0 )} =0
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Motivation Basics of IQHE High field expansion

Checking bulk conduction against Biittiker picture

-

Model: Vg (r) = Verr(0) + a% + b%
» Non-trivial potential drop [for saddle point only (ab < 0)]:
o(r) = [A +B [ dt exp(—t2)} [c +D ¥ dt exp(—t2)}

. 1B > mne(Em(0))
where \2 = —2 ﬁfcm

. 2
» Two-point conductance: Gop = % o4(0) Edge state result!

Remark: the conductance is independent of microscopic aspects
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Motivation Basics of IQHE High field expansion

Transport: conduction vs. diffusion

Bottomline:

» Transport in IQHE regime may be investigated on the basis of
simple bulk equations

» Microscopic details of the equilibrium density and current
inhomogeneities are naturally taken into account:
practical approach

Interesting directions to investigate:

» General connection to edge state formalism

» Study bulk transport equations for complex geometries
(i.e. disordered)

» Role of non-local corrections: low temperature regime

» Coupling to self-consistent screening calculations
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Conclusion

» Vortex wavefunctions are the naturally selected quantum
states in the high field limit

» The mathematical foundation of vortex Green's functions was
established

» Local equilibrium observables can be calculated accurately
from simple density functionals

» Quasi-classical (high temperature) transport was investigated
for a simplified scattering problem
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