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What’s so special about IQHE?

I High precision quantification of the Hall conductance
I Disorder plays a central and positive role
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Why study IQHE now?

Experiments:

I New effects: microwave induced zero-resistance states

I New probes: local sensing techniques

I New systems: graphene, 2d edge states?

Electron interactions play an important part in IQHE also!

Theory:

I Many fundamental aspects well understood

I But: how do we calculate stuff!?
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Summary

I Motivation

I Basic elements on IQHE

I Semiclassical picture

I Landauer-Büttiker-Halperin edge state picture

I Landau levels and wavefunctions

I The high field expansion

I Vortex states and Green’s functions

I Local equilibrium properties

I Bulk transport equations

I Outlook: conclusion and perspectives
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Basics of IQHE:

Semiclassical picture
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Classical motion in high perpendicular magnetic field

Stable trajectories: F = −ev × B− eE = 0

−→ slow drift velocity: vd = 1
B E× ẑ = − 1

B∇V × ẑ

Transport: drift dominates over fast cyclotron motion

EB

Disordered bulk: localization on closed equipotential lines

Sharp edges: delocalized skipping orbits

4/31



Motivation Basics of IQHE High field expansion

Classical Hall effect

Local current density: j(r) = −ene(r)vd = − e
B neE× ẑ = −σxyE

−→ local Hall conductivity: σxy (r) = e
B ne(r)

For a homogeneous sample: I = GxyVxy

where Gxy = e
B ne is the Hall conductance

−→ Gxy gives information on the carriers charge and density
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Quantum effects on Hall transport

Back to conductance: Gxy = e
B ne = e2

h
h
eB ne = e2

h ν

where ν = h
eB ne = 2πl2Bne is a dimensionless density (filling factor)

This defines also a magnetic length: lB =
√

~/eB = 8nm at 10T

Landau level quantization: εm = ~ωc(m + 1
2)

with the cyclotron energy: ~ωc = ~eB
m? = 20 meV at 10T

Semiclassical picture of IQHE: successive filling of Landau level
with integer ν =

∑
m nF (εm − µ) leads to successive Gxy plateaus:

Gxy =
∑

m nF (εm − µ)
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Homogeneous system

As a function of density:
I sharp Landau levels
I µ sticks to εm and jumps between LL

ρ(ω)

ωǫm−1 ǫm ǫm+1 νm− 1 m m + 1

µ

ǫm−1

ǫm+1

ǫm

Conductance:
No plateaus!
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With disorder
With disorder: µ is pinned by bulk localized states

Localized states

Delocalized states

ρ(ω)

ωǫm−1 ǫm ǫm+1
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Disorder is essential to plateaus formation!
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One more caveat...

Hall bar: quantization of σxy does not guarantee Gxy quantized

lB
r

W

ν(r)

1

I width W ∼1mm

I non-homogeneous region near edge of width lB ∼8nm

Deviation to quantization: of the order lB/W ∼ 10−5

−→ in contradiction with experiment: δGxy/Gxy < 10−9

More subtle transport theory is needed!
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Basics of IQHE:

Edge state picture
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Landauer-Büttiker scattering theory

I Include contacts at fixed chemical potentials µi

µ1

µ2 µ3

µ4

µ5µ6

SCATTERING

I Only states near εF contribute to the current Ii in each
contact (diffusion mechanism)

I Büttiker formula:

Ii =
e

h

[
(νi − Ri )µi −

∑
j 6=i

Tijµj

]
where Ri = reflection amplitude in lead i
and Tij = transmission amplitude from lead j to lead i
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Edge-state picture

IQHE regime:
I No backscattering of edge states (skipping orbits): Ri = 0
I Electrons are transferred from one contact to the next:

only Ti ,i+1 = νi non zero

µ1

µ2 µ3

µ4

µ5µ6

I

Advantages of this formulation:
I The precise spatial dependence of the potential drop Φ(r) in

the Hall bar is not needed
I Deviations to quantization and dissipative features are related

to additional scattering mechanisms
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Scattering: a simple example

4 terminals with single ”scatterer”:

T
E

A
G µ3

µ1 µ4

I
ν νν ′

µ2

Transmissions:
T2←1 = ν, T3←2 = ν ′, T1←2 = ν − ν ′, etc...

Resistances:

I R14 = h
e2ν′

: two-point resistance

I R34 = h
e2ν

: Hall resistance

I R23 = h
e2 (

1
ν′ −

1
ν ): four-point resistance
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Limitations:

Limitations of Büttiker approach to IQHE:

I No information on the local variations of Φ(r)

I Frequency dependent transport difficult to treat

I Edges can leak in the bulk at large bias

I Taking into account disorder: scattering problem very hard

I Calculation of local observables (electronic density,

diamagnetic currents) not very practical: ρ(r) ∼ Tr
[
Ŝ† δŜ

δV (r)

]
I Challenge to incorporate electron interactions

An alternative approach from the bulk is needed!
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Basics of IQHE:

Landau levels and wavefunctions
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Schrödinger equation in a magnetic field

Free Hamiltonian: no disorder, no interactions
H0 = 1

2m?

(
−i~∇r − e

c A(r)
)2 with B = ∇× A

Landau states:
En,k = ~ωc(n + 1

2)

Ψn,k(x , y) = e iky exp
[
− (x−kl2B)2

2l2B

]
Hn

(
x−kl2B

lB

)
I Translationally invariant along y
I Localized on a scale lB along x

Ψn,k2

Ψn,k1

Ψn,k3
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Another solution

Circular states:
Em,l = ~ωc(l + m+|m|+1

2 ) = ~ωc(n + 1
2)

Ψl ,m(r , θ) = e imθrm exp
[
−r2

4l2B

]
Lm

l

(
r2

2l2B

)
I Rotationally invariant around the origin

I Localized on a scale lB along r

Ψl,m1

Ψl,m3

Ψl,m2

The absence of an external potential leads to a huge degeneracy!
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Confinement

1D Parabolic potential:

H = H0 + V (x) = H0 + 1
2m?ω2

0x
2

Modified Landau states:

En,k = ~Ω

(
n +

1

2

)
+ V (kL2)

Ψnk(r) = e−iky exp

[
−

(
x − ωc

Ω kL2
)2

2L2

]
Hn

(
x − ωc

Ω kL2

L

)
where Ω =

√
ω2

c + ω2
0 ' ωc and L =

√
~/m?Ω ' lB

I Degeneracy is fully lifted by V (x)
I Wavefunction localize around equipotential lines: X = kl2B
I Drift velocity: vy (X ) = 1

~
dEn,k

dk
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Local equilibrium properties

Three filled LL:
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Current originate from drift and density gradient
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With disordered potential

Numerical solution:
I Confirms the intuition
I But not very practical

V (r)

|Ψα(r)|2

Eα ≪ EF Eα < EF Eα ≃ EF

Is there an analytical solution at high field?
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The high field expansion:

Vortex states and Green’s functions
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What is the small parameter?

At large magnetic field:

I Magnetic length: lB =8nm at 10T

I Correlation length of the disordered potential:
ξ & 100nm in heterostructures

The random potential is smooth on the scale lB !

Mathematically:

I lB/ξ is the small parameter

I V (r) can be written in a gradient expansion
where V (r) � lB |∇V (r)| � l2B |∆V (r)| � . . .
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What are the correct quantum states?

We need: states that can adapt to an arbitrary shape of V (r), with
no preferred symmetry

Ψm,R2

Ψm,R1

Ψm,R3

Vortex states: Ψm,R(r) = 〈r|R,m〉

Em,R = ~ωc(m +
1

2
)

Ψm,R(r) = |r − R|m e im arg(r−R) exp

[
−(r − R)2 − 2i ẑ · (r × R)

4l2B

]
Remark: this is an overcomplete, coherent state basis

〈R1,m1|R2,m2〉 = δm1,m2 exp

[
−(R1 − R2)

2 − 2i ẑ · (R1 × R2)

4l2B

]
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Vortex Green’s functions

How to proceed:

I Define GR1,m1;R2,m2(ω) = 〈R1,m1|(ω − Ĥ0 − V̂ )−1|R2,m2〉
I Expand in powers of lB and gradients of V (r):

G = 〈R1,m1|R2,m2〉
∑

n(lB/
√

2)ng (n)

Lowest order result: semiclassical limit at lB → 0!

g
(0)
m1;m2(R) =

δm1,m2

ω − εm1 − V (R)

To all orders: closed recursion

g
(n)
m1;m2(R) = g

(0)
m1;m1(R)

∑
l<n,j ,k,m3,p

δn,2k+j+l

k!

(m1 + p)!√
m1!m3!

δm1+p,m3+j−p

p!(j − p)!

× (∂X − i∂Y )k+j−p (∂X + i∂Y )pV (R) (∂X + i∂Y )k g
(l)
m3;m2(R)
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The high field expansion:

Local equilibrium properties
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How to get physical quantities at equilibrium?

Local observables: in terms of the exact eigenstates |Ψα〉
I Electronic local density: ρ(r) =

∑
α nF (Eα)|〈r|Ψα〉|2

I Local current density: j(r) =
∑

α nF (Eα)〈Ψα |̂j(r)|Ψα〉

Electronic Green function:

G (r, r′, ω) = 〈r|(ω − Ĥ0 − V̂ )−1|r′〉 =
∑
α

Ψ∗α(r′)Ψα(r)

ω − Eα

Clearly : ρ(r) = −
∫

dω

π
nF (ω)ImG (r, r, ω + i0+)

Magic formula: simple connection to vortex Green’s functions

G (r, r′, ω) =

∫
d2R

2πl2B

∑
m,m′

Ψ∗m′,R(r′)Ψm,R(r)
+∞∑
k=0

1

k!

(
−

l2B
2

∆R

)k

gm;m′(R)
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Electronic charge density
Quantum expansion: define ξm(R) = εm + V (R)− µ

ρQu.(r) =

∫
d2R

2πl2B

∑
m

nF [ξm(R)]|Ψm,R(r)|2 + O(l2B)

Semiclassical result: point-like wavefunction for lB = 0

ρSc.(r) =
1

2πl2B

∑
m

nF [ξm(r)]

Checking a on solvable 1D model: for kBT/~ωc = 0.2, 0.1, 0.01

0 5 10 150
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Ex.
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Sc.
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ρ
(x
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π
l2 B

]

x/lB
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3

Ex.
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ρ
(x

)
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ρ
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)
[1

/2
π
l2 B

]
x/lB
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Full quantum result

Zooming in: deviations from terms like (l2B∆r)
kρQu.(r) = O(1)

2 4 6
2

2.5

3

Ex.
Qu.
Sc.

ρ
(x

)
[1

/2
π
l2 B

]

x/lB

Infinite order resummation: it can be done!

ρQu.∞(r) =

∫
d2R

2πl2B

+∞∑
m=0

nF [ξm(R)]

πm!l2B
Am(R− r) exp

[
−(R− r)2

l2B

]
where Am(R) = ∂m

∂sm

(
1

1+s exp
[

R2

l2B

2s
1+s

])
s=0

: special polynomial
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Full quantum result

Zooming in: deviations from terms like (l2B∆r)
kρQu.(r) = O(1)

2 4 6
2

2.5

3

Ex.
Qu.
Sc.
Qu.

ρ
(x

)
[1

/2
π
l2 B

]

x/lB

∞

Infinite order resummation: it can be done! IT WORKS!

ρQu.∞(r) =

∫
d2R

2πl2B

+∞∑
m=0

nF [ξm(R)]

πm!l2B
Am(R− r) exp

[
−(R− r)2

l2B

]
where Am(R) = ∂m

∂sm

(
1

1+s exp
[

R2

l2B

2s
1+s

])
s=0

: special polynomial
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The high field limit in practice

Bottomline:

I Equilibrium local density ρ(r) and current j(r) can be
computed for all temperatures with excellent accuracy
for any smooth potential

I Very simple density functional forms are obtained
I Possible use:

I DFT-like calculations
I Screening theory beyond the Thomas-Fermi approximation

Next question:
What about out of equilibrium transport?
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Local current density: semiclassical result
Leading order: at lB → 0

I Drift current: bulk contribution

j
(0)
b (r) =

e

h

+∞∑
m=0

nF [ξm(r)]∇rV (r)× ẑ

I Density gradient current: edge contribution

j
(0)
e (r) =

e

h

+∞∑
m=0

~ωc

(
m +

1

2

)
∇rnF [ξm(r)]× ẑ

Sub-leading order (bulk only): new terms!

j
(2)
b (r) = l2B

e

h

+∞∑
m=0

nF [ξm(r)]

[
(∇rV · ∇r)

~ωc
∇rV +

3

2

(
m +

1

2

)
∆r∇rV

]
×ẑ
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The high field expansion:

Transport equations
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Local equilibrium: Ohm’s law

Total potential: V (r) = Veff(r) + eΦ(r)
I Veff : confinement and impurity (screened) potential
I Φ(r): local out-of-equilibrium potential

Local conductivity tensor: purely transverse at lB → 0

I j(r) = σ̂(r)E = −σH(r)∇Φ(r)× ẑ
I σH(r) =

∑
m nF [εm + Veff(r)− µ]

Transport equation: ∇.j = 0 (continuity equation) gives(
∇σH(r)×∇Φ(r)

)
.ẑ = 0

I Equipotentials coincide with lines of constant filling factor
I Indeterminacy at points where ∇σH(r) = 0
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Conduction beyond the drift contribution

I Non-local contribution to current:

δj(r) = l2B
e2

h

+∞∑
m=0

nF [ξm(r)]
3

2

(
m +

1

2

)
∆r∇rΦ× ẑ

Originates from quantum tunneling

I Longitudinal and transverse corrections to the conductivity:

δσ̂(r) =
l2B

~ωc
σH(r)

(
−∂xyVeff ∂yyVeff

∂xxVeff ∂xyVeff

)
Local conductivities may not obey Onsager’s relation!

Transport equation: keeping local terms only

(∇rσH ×∇rΦ) · ẑ−
l2B

~ωc
σHTr

{
δσ̂.

(
∂xxΦ ∂xyΦ
∂xyΦ ∂yyΦ

)}
= 0
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Checking bulk conduction against Büttiker picture

T
E

A
G

ν ν

ν
′

µ3

µ1 µ4ν νν
′

µ2

Model: Veff(r) = Veff(0) + a x2

2 + b y2

2

I Non-trivial potential drop [for saddle point only (ab < 0)]:

Φ(r) =
[
A + B

∫ x/λ
0 dt exp(−t2)

] [
C + D

∫ y/λ
0 dt exp(−t2)

]
where λ2 = −2

l2B
~ωc

P
m nF (ξm(0))P
m n′F (ξm(0))

I Two-point conductance: G2P = e2

h σH(0) Edge state result!

Remark: the conductance is independent of microscopic aspects
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Transport: conduction vs. diffusion

Bottomline:

I Transport in IQHE regime may be investigated on the basis of
simple bulk equations

I Microscopic details of the equilibrium density and current
inhomogeneities are naturally taken into account:
practical approach

Interesting directions to investigate:

I General connection to edge state formalism

I Study bulk transport equations for complex geometries
(i.e. disordered)

I Role of non-local corrections: low temperature regime

I Coupling to self-consistent screening calculations
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Conclusion

I Vortex wavefunctions are the naturally selected quantum
states in the high field limit

I The mathematical foundation of vortex Green’s functions was
established

I Local equilibrium observables can be calculated accurately
from simple density functionals

I Quasi-classical (high temperature) transport was investigated
for a simplified scattering problem
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